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Announcements

» Allstudents eligible to take the course for credit can sign-up for classes
and practicals

» Attempt Problem Sheet 0 (contact your class tutor if you intend to
attend class in Week 2)

» Problem Sheet 1 is posted (submit by noon 21 Oct at CS reception)



Announcement : Strachey Lecture

oct
31

Strachey Lecture - The
Once and Future Turing
- Professor Andrew
Hodges

by Jayne Bullock, Department of
Computer Science, University of
Oxford

(stracheylectures@cs.ox.ac.uk)
Free

» Will finish 15-20 min early on Monday, October 31

» May run over by 5 minutes or so a few other days



Outline

Goals
» Review the supervised learning setting
» Describe the linear regression framework
» Apply the linear model to make predictions

» Derive the least squares estimate

Supervised Learning Setting
» Data consists of input and output pairs
» Inputs (also covariates, independent variables, predictors, features)

» Output (also variates, dependent variable, targets, labels)



Why study linear regression?

» Least squares is at least 200 years old going back to Legendre and Gauss

» Francis Galton (1886): “Regression to the mean”

» Often real processes can be approximated by linear models

» More complex models require understanding linear regression

» Closed Form analytic solutions can be obtained

» Many key notions of machine learning can be introduced



A toy example : Commute Times

Want to predict commute time into city centre

What variables would be useful?

» Distance to city centre
» Day of the week

Data
dist (km) day | commute time (min)
2.7 fri 25
4.1 mon 33
1.0 sun 15
5.2 tue 45

2.8 sat 22



Linear Models

Suppose the input is a vector x € R” and the outputis y € R.
We have data (x;, v:) ¥,

Notation: data dimension D, size of dataset N, column vectors

| Linear Model

y=w9+$1w1+---+waD+F

Bias/intercept Noise/uncertainty



Linear Models : Commute Time

| Linear Model |

y:w?+x1w1+~~+wnwp+f ’

Bias/intercept Noise/uncertainty

Input encoding: mon-sun has to be converted to a number

» monday: 0, tuesday: 1,.. ., sunday: 6 (Using 0-6 is a bad encoding.
» 0if weekend, 1 if weekday Use seven 0-1 features instead
called one-hot encoding

Say z1 € R (distance) and z» € {0, 1} (weekend/weekday)

Linear model for commute time

Yy = wo +wi1T1 + wax2 + €



Linear Model : Adding a feature for bias term

dist day | commute time
1 T2 Y
2.7 Fri 25
4.1 mon 33
1.0 sun 15
5.2 tue 45
2.8 sat 22
| Model |

‘ Y = wo + wiT1 + wax2 + € ’

one dist day | commute time
X0 X1 i) Yy
1 2.7 fri 25
1 4.1 mon 33
1 1.0 sun 15
1 5.2 tue 45
1 2.8 sat 22
Model

Y = woTo + wix1 + wax2 + €

=W -X+E¢€




Learning Linear Models

Data: {(x;, )i, wherex; € R” andy; € R
Model parameter w, where w € R?

Training phase: (learning/estimation w from data)

(%0, yi))ies Learning
data Algorithm

w (estimate)

Testing/Deployment phase: (predict Jnew = Xnew * W)

» How different is Ynew From ynew (actual observation)?
» We should keep some data aside for testing before deploying a model



a5

((xi,9:)),, wherez; e Randy; € R

y(z) = wo + = - w1, (no noise termin y)

L(w) = L(wo, w1) = % Z(yz —y) = —N Z wo + i - w1 — y;)?

Predict commute time usmg only distance

Loss function
Cost function
Objective Function
Energy Function
Notation - £, J, E, R

This objective is known
as the residual sum
of squares or (RSS)

® @ Data
% X Predictions
— Least Square Fit
— Residuals

The estimate (wo, w1)
is known as the least
squares estimate
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((xi,9:)),, wherez; e Randy; € R

y(z) = wo + = - w1, (no noise termin y)

N
— 2
l:(W) [,(on,wl QN Z yz = WZ wo + Ti W1 — Y4 )
N
aui):NZwo—‘,—wl xl—yl) :E:Z;\;Uz
| & = > Vi
%:NZ(w0+wl'mi—yi)mi N
=1 —~ > mf 2
var(z) = =2 — — %
We obtain the solution for (wg, w1 ) by setting the N
partial derivatives to 0 and solving the resulting vz, y) = 2Ty
system. (Normal Equations) ’ N
Zi Li Zl Yi
wo + wr - = (1) o cov(z, y)
S S S iy var(x)
wo Nt WL Ty N 2) Wo =F — w1 - T




Linear Regression : General Case

Recall that the linear model is

D
i =) wijw;
=0

where we assume that z;o = 1 for all x;, so that the bias term wy does not
need to be treated separately.
Expressing everything in matrix notation

y = Xw

Here we have y € RV*!, X ¢ RV*(P+D apd w € RP+DX1

YNx1 XN x(D+1)W(D+1)x1 XN x(D+1) W(D4+1)x1
~ T
Y1 X1 wo o ' X1D Wo
=~ T
Y2 X2 . 20 -t X2D
. wp wp

T
YN XN TNO °° IND



Back to toy example

one dist (km) weekday? | commute time (min)
1 2.7 7 (Fri) 25
1 41 1 (mon) 33
1 1.0 0 (sun) 15
1 5.2 1 (tue) 45
1 2.8 0 (sat) 22

We have N =5, D + 1 = 3 and so we get

25 1 27 1

33 1 41 1 Wo
y= |15, X=|1 1.0 0|, w= |[w

45 1 52 1 wa

22 1 28 0

Suppose we get w = [6.09,6.53,2.11]". Then our predictions would be

25.83
34.97
12.62
42.16
24.37
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Least Squares Estimate : Minimise the Squared Error

Low) = = S (xTw— )2 = (Xw —y)T (Xw — y)
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e
)
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Finding Optimal Solutions using Calculus

L(w)

S Tw — ) f2}V<xW ¥ (Xw —y)

N
=1

.

w' — WTXTy — yTXW + yTy)

E\H 2= ==

( XXW 2wa+yy)

Then, write out all partial derivatives to form the gradient V, £

oL _

w

aL
Ow,

oL
ow

Instead, we will develop tricks to differ-
entiate using matrix notation directly




Differentiating Matrix Expressions

Rules (Tricks)
(i) Linear Form Expressions: V. (cTw) =c
D
CTW = Z CjW;
j=0

B(CTW

o, ) _ Cjy andso V. (cTW) —c 3)

(i) Quadratic Form Expressions:
Ve (WTAW) =Aw+ ATw (= 2Aw for symmetric A)

D D
WTAW = Z Z wiij,-j

i=0 j=0
TAw
sz ik + ZAkaJ = AlyW + Ay gw

V“,(“ﬂlk“o :_ATWI+1AW' (4)



Deriving the Least Squares Estimate
1 =t 2 1 T (T T T
£ = gy Soeelw =)’ = 5 (W' (X"X) w2y Xw 47y
We compute the gradient V£ = 0 using the matrix differentiation rules,
Vol = % ((XTX) w— XTy>
By setting V£ = 0 and solving we get,
(XTX) w=X"y
w = (XTX) - X'y (Assuming inverse exists)
The predictions made by the model on the data X are given by
¥ =Xw=X (XTX)_l X'y

-1
For this reason the matrix X (XTX) XT is called the “hat” matrix



‘ Least Squares Estimate

—1
w= (XTX> Xy

» When do we expect XX to be invertible?
rank(XTX) = rank(X) < min{D + 1, N’}
AsXTXis D +1 x D + 1, invertible is rank(X) = D + 1
» What if we use one-hot encoding for a feature like day?
SUPPOSE Zmon, - - - , Tsun Stand for 0-1 valued variables in the one-hot encoding
We always have zmon + -+ + Zsun = 1
This introduces a linear dependence in the columns of X reducing the rank

In this case, we can drop some features to adjust rank. We'll see alternative
approaches later in the course.

» What is the computational complexity of computing w?
Relatively easy to get O(D?N) bound



LS using all points
LS without outliers
Using absolute loss
data

0.6 0.8 1.0



Recap : Predicting Commute Time

Goal
» Predict the time taken for commute given distance and day of week
» Do we only wish to make predictions or also suggestions?
Model and Choice of Loss Function
» Use a linear model
y=wo+wix1+ - +wprp+e=y+e

» Minimise average squared error - >~ (yi — :)°

Algorithm to Fit Model

» Simple matrix operations using closed-form solution

20



Model and Loss Function Choice

“Optimisation” View of Machine Learning

» Pick model that you expect may fit the data well enough

» Pick a measure of performance that makes “sense” and can be
optimised

» Run optimisation algorithm to obtain model parameters

Probabilistic View of Machine Learning

» Pick a model for data and explicitly formulate the deviation (or
uncertainty) from the model using the language of probability

» Use notions from probability to define suitability of various models

» "“Find” the parameters or make predictions on unseen data using these
suitability criteria (Frequentist vs Bayesian viewpoints)
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Next Time

v

Probabilistic View of Machine Learning (Maximum Likelihood)

v

Non-linearity using basis expansion

v

What to do when you have more features than data?

v

Make sure you're familiar with the the multi-variate Gaussian
distribution

22



