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Announcements

I Practical 1 Submission

I Try to get signed off during session itself
I Otherwise, do it in the next session
I Exception: Practical 4 (Firm deadline Friday Week 8 at noon)

I Sheet 2 is due this Friday 12pm
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Recap: Supervised Learning - Regression

Discriminative Model: Linear Model (with Gaussian noise)

p(y |w,x) = w · x +N (0, σ2)

Other noise models possible, e.g., Laplace

Non-linearities using basis expansion

Regularisation to avoid overfitting: Ridge, Lasso

(Cross)-Validation to choose hyperparameters

Optimisation Algorithms for Model Fitting

Gauss Legendre

1800 2016

Least Squares Ridge Lasso
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Supervised Learning - Classification

In classification problems, the target/output y is a category

y ∈ {1, 2, . . . , C}

The input x = (x1, . . . , xD), where

I Categorical: xi ∈ {1, . . . ,K}

I Real-Valued: xi ∈ R

Discriminative Model: Only model the conditional distribution

p(y | x,θ)

Generative Model: Model the full joint distribution

p(x, y | θ)
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Prediction Using Generative Models

Suppose we have a model p(x, y | θ) over the joint distribution over inputs
and outputs

Given a new input xnew, we can write the conditional distribution for y

For c ∈ {1, . . . , C}, we write

p(y = c | xnew,θ) =
p(y = c | θ) · p(xnew | y = c,θ)∑C
c′=1 p(y = c′|θ)p(xnew | y = c′,θ)

The numerator is simply the joint probability p(xnew, c | θ) and the
denominator the marginal probability p(xnew | θ)

We can pick ŷ = argmaxc p(y = c | xnew,θ)
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Toy Example

Predict voter preference using in US elections

Voted in Annual State Candidate
2012? Income Choice

Y 50K OK Clinton
N 173K CA Clinton
Y 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K IL Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump
N 100K NY ?
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Classification : Generative Model

In order to fit a generative model, we’ll express the joint distribution as

p(x, y | θ,π) = p(y | π) · p(x | y,θ)

To model p(y | π), we’ll use parameters πc such that
∑
c πc = 1

p(y = c | π) = πc

For class-conditional densities, for class c = 1, . . . , C, we will have a model:

p(x | y = c,θc)
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Classification : Generative Model

So in our example,

p(y = clinton | π) = πclinton

p(y = trump | π) = πtrump

p(y = johnson | π) = πjohnson

Given that a voter supports Trump!!

p(x | y = trump,θtrump)

models the distribution over x given y = trump and θtrump

Similarly, we have p(x | y = clinton,θclinton) and p(x | y = johnson,θjohnson)

We need to pick ‘‘model’’ for p(x | y = c,θc)

Estimate the parameters πc, θc for c = 1, . . . , C
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Naïve Bayes Classifier (NBC)

Assume that the features are conditionally independent given the class
label

p(x | y = c,θc) =

D∏
j=1

p(xj | y = c,θjc)

So, for example, we are ‘modelling’ that conditioned on being a trump
supporter, the state, previous voting or annual income are conditionally
independent

Clearly, this assumption is ‘‘naïve’’ and never satisfied

But model fitting becomes very very easy

Although the generative model is clearly inadequate, it actually works
quite well

Goal is predicting class, not modelling the data!
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Naïve Bayes Classifier (NBC)

Real-Valued Features

I xj is real-valued e.g., annual income

I Example: Use a Gaussian model, so θjc = (µjc, σ
2
jc)

I Can use other distributions, e.g., age is probably not Gaussian!

Categorical Features

I xj is categorical with values in {1, . . . ,K}
I Use the multinoulli distribution, i.e. xj = iwith probability µjc,i

K∑
i=1

µjc,i = 1

I The special case when xj ∈ {0, 1}, use a single parameter θjc ∈ [0, 1]
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Naïve Bayes Classifier (NBC)

Assume that all the features are binary, i.e., every xj ∈ {0, 1}

If we have C classes, overall we have onlyO(CD) parameters, θjc for each
j = 1, . . . , D and c = 1, . . . , C

Without the conditional independence assumption

I We have to assign a probability for each of the 2D combination

I Thus, we haveO(C · 2D) parameters!

I The ‘naïve’ assumption breaks the curse of dimensionality and avoids
overfitting!
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Maximum Likelihood for the NBC

Let us suppose we have data 〈(xi, yi)〉Ni=1 i.i.d. from some joint distribution
p(x, y)

The probability for a single datapoint is given by:

p(xi, yi | θ,π) = p(yi | π) · p(xi | θ, yi) =

C∏
c=1

πI(yi=c)
c ·

C∏
c=1

D∏
j=1

p(xij | θjc)I(yi=c)

LetNc be the number of datapoints with yi = c, so that
∑C
c=1 Nc = N

We write the log-likelihood of the data as:

log p(D | θ,π) =

C∑
c=1

Nc log πc +

C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

The log-likelihood is easily separated into sums involving different
parameters!
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Maximum Likelihood for the NBC

We have the log-likelihood for the NBC

log p(D | θ,π) =

C∑
c=1

Nc log πc +
C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

Let us obtain estimates for π. We get the following optimisation problem:

maximise
C∑
c=1

Nc log πc

subject to :
C∑
c=1

πc = 1

This constrained optimisation problem can be solved using the method of
Lagrange multipliers
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Constrained Optimisation Problem

Suppose f(z) is some function that we want to maximise subject to
g(z) = 0.

Constrained Objective

argmax
z

f(z), subject to : g(z) = 0

Langrangian (Dual) Form

Λ(z, λ) = f(z) + λg(z)

Any optimal solution to the constrained problem is a stationary point of
Λ(z, λ)
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Constrained Optimisation Problem

Any optimal solution to the constrained problem is a stationary point of

Λ(z, λ) = f(z) + λg(z)

∇zΛ(z, λ) = 0⇒ ∇zf = −λ∇zg

∂Λ(z,λ)
∂λ

= 0⇒ g(z) = 0
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Maximum Likelihood for NBC
Recall that we want to solve:

maximise :
C∑
c=1

Nc log πc

subject to :
C∑
c=1

πc − 1 = 0

We can write the Lagrangean form:

Λ(π, λ) =
C∑
c=1

Nc log πc + λ

 C∑
c=1

πc − 1


We can write the partial derivatives and set them to 0:

∂Λ(π,λ)
∂πc

=
Nc
πc

+ λ = 0

∂Λ(π,λ)
∂λ

=

C∑
c=1

πc − 1 = 0
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Maximum Likelihood for NBC
The solution is obtained by setting

Nc
πc

+ λ = 0

And so,

πc = −Nc
λ

As well as using the second condition,

C∑
c=1

πc − 1 =

C∑
c=1

−Nc
λ
− 1 = 0

And thence,

λ = −
C∑
c=1

Nc = −N

Thus, we get the estimates,

πc =
Nc
N

16



Maximum Likelihood for the NBC

We have the log-likelihood for the NBC

log p(D | θ,π) =
C∑
c=1

Nc log πc +
C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc)

We obtained the estimates, πc = Nc
N

We can estimate θjc by taking a similar approach

To estimate θjc we only need to use the jth feature of examples with yi = c

Estimates depend on the model, e.g., Gaussian, Bernoulli, Multinoulli, etc.

Fitting NBC is very very fast!
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Summary: Naïve Bayes Classifier

Generative Model: Fit the distribution p(x, y | θ)

Make the naïve and obviously untrue assumption that features are
conditionally independent given class!

p(x | y = c,θc) =

D∏
j=1

p(xj | y = c,θjc)

Despite this classifiers often work quite well in practice

The conditional independence assumption reduces the number of
parameters and avoids overfitting

Fitting the model is very straightforward

Easy to mix and match different models for different features
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Outline

Generative Models for Classification

Naïve Bayes Model

Gaussian Discriminant Analysis



Generative Model: Gaussian Discriminant Analysis

Recall the form of the joint distribution in a generative model

p(x, y | θ,π) = p(y | π) · p(x | y,θ)

For classes, we use parameters πc such that
∑
c πc = 1

p(y = c | π) = πc

Suppose x ∈ RD , we model the class-conditional density for class
c = 1, . . . , C, as a multivariate normal distribution with mean µc and
covariance matrix Σc

p(x | y = c,θc) = N (x | µc,Σc)
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Quadratic Discriminant Analysis (QDA)

Let’s first see what the prediction rule for this model is:

p(y = c | xnew,θ) =
p(y = c | θ) · p(xnew | y = c,θ)∑C
c′=1 p(y = c′|θ)p(xnew | y = c′,θ)

When the densities p(x | y = c,θc) are multivariate normal, we get

p(y = c | x,θ) =
πc|2πΣc|−

1
2 exp

(
− 1

2
(x− µc)

TΣ−1
c (x− µc)

)
∑C
c′=1 πc′ |2πΣc′ |−

1
2 exp

(
− 1

2
(x− µc′)

TΣ−1
c′ (x− µc′)

)
The denominator is the same for all classes, so the boundary between class
c and c′ is given by

πc|2πΣc|−
1
2 exp

(
− 1

2
(x− µc)

TΣ−1
c (x− µc)

)
πc′ |2πΣc′ |−

1
2 exp

(
− 1

2
(x− µc′)

TΣ−1
c′ (x− µc′)

) = 1

Thus the boundaries are quadratic surfaces, hence the method is called
quadratic discriminant analysis
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Quadratic Discriminant Analysis (QDA)
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Linear Discriminant Analysis

A special case is when the covariance matrices are shared or tied across
different classes

We can write

p(y = c | x,θ) ∝ πc exp

(
−1

2
(x− µc)

TΣ−1(x− µc)

)
= exp

(
µT
cΣ
−1x− 1

2
µT
cΣ
−1µc + log πc

)
· exp

(
−1

2
xTΣ−1x

)
Let us set

γc = −1

2
µT
cΣ
−1µc + log πc βc = Σ−1µc

and so
p(y = c | xnew,θ) ∝ exp

(
βT
cx + γc

)
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Linear Discriminant Analysis (LDA) & Softmax

Recall that we wrote,

p(y = c | x,θ) ∝ exp
(
βT
cx + γc

)
And so,

p(y = c | x,θ) =
exp

(
βT
cx + γc

)
∑
c′ exp

(
βT
c′x + γc′

) = softmax(η)c

where, η = [βT
1x + γ1, · · · ,βT

Cx + γC ].

Softmax

Softmax maps a set of numbers to a probability distribution with
mode at the maximum

softmax([1, 2, 3]) ≈ [0.090, 0.245, 0.665]

softmax([10, 20, 30]) ≈ [2× 10−9, 4× 10−5, 1]

23



QDA and LDA
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Two class LDA
When we have only 2 classes, say 0 and 1,

p(y = 1 | x, θ) =
exp

(
βT

1x + γ1

)
exp

(
βT

1x + γ1

)
+ exp

(
βT

0x + γ0

)
=

1

1 + exp
(
−((β1 − β0)Tx + (γ1 − γ0))

)
= sigmoid((β1 − β0)Tx + (γ1 − γ0))

Sigmoid Function

The sigmoid function is defined as:

sigmoid(t) =
1

1 + e−t
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MLE for QDA (or LDA)

We can write the log-likelihood given dataD = 〈(xi, yi)〉Ni=1 as:

log p(D | θ) =
C∑
c=1

Nc log πc +
C∑
c=1

 ∑
i:yi=c

logN (x | µc,Σc)


As in the case of Naïve Bayes, we get πc = Nc

N
For other parameters, it is

possible to show that,

µ̂c =
1

Nc

∑
i:yi=c

xi

Σ̂c =
1

Nc

∑
i:yi=c

(xi − µ̂c)(xi − µ̂c)
T

(See Chap 4.1 fromMurphy for details)
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How to Prevent Overfitting

I The number of parameters in the model is roughly C ·D2

I In high-dimensions this can lead to overfitting

I Use diagonal covariance matrices (basically Naïve Bayes)

I Use weight tying a.k.a. parameter sharing (LDA vs QDA)

I Bayesian Approaches

I Use a discriminative classifier (+ regularize if needed)
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