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Announcements

I Problem Sheet 3 due this Friday by noon

I Practical 2 next week

I (Optional) Reading a paper
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Outline

This week we’ll discuss classification using support vector machines.

I No clear probabilistic interpretation

I MaximumMargin Formulation

I Optimisation problem using Hinge Loss

I Dual Formulation

I Kernel Methods for non-linear classification
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Binary Classification

Goal: Find a linear separator

Data is linearly separable if there exists a linear separator that classifies all
points correctly

Which separator should be picked?
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MaximumMargin Principle

Maximise the distance of the closest point from the decision boundary

Points that are closest to the decision boundary are support vectors
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Geometry Review

Given a hyperplane:H ≡ w · x + w0 = 0 and a point x ∈ RD , how far is x
fromH?
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Geometry Review

I Consider the hyperplane:H ≡ w · x + w0 = 0

I The distance of point x fromH is given by:

|w · x + w0|
‖w‖2

I All points on one side of the hyperplane satisfy

w · x + w0 > 0

and points on the other side satisfy

w · x + w0 < 0
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SVM Formulation : Separable Case

LetD = 〈(xi, yi)〉Ni=1 with yi ∈ {−1, 1}

Ignoring the max-margin for now

Findw, w0, such that

yi(w · xi + w0) ≥ 1

for i = 1, . . . , N

This is simply a linear program!

For anyw, w0 satisfying the above, the smallest margin is at least 1
‖w‖2

In order to obtain a maximum-margin condition, we minimise ‖w‖22 subject to
the above constraints

This results in a quadratic program!
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SVM Formulation : Separable Case

minimise: 1
2
‖w‖22

subject to:

yi(w · xi + w0) ≥ 1

for i = 1, . . . , N

Here yi ∈ {−1, 1}

If data is separable, then we find a classifier with no classification error on the
training set
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Non-separable Data

I Quadratic program on previous slide has no feasible solution

I Which linear separator should we try to find?

I Minimising the number of misclassifications is NP-hard

9



SVM Formulation : Non-Separable Case

minimise: 1
2
‖w‖22 + C

N∑
i=1

ζi

subject to:

yi(w · xi + w0) ≥ 1− ζi

ζi ≥ 0

for i = 1, . . . , N

Here yi ∈ {−1, 1}

Penalty for slack terms

Slack to violate constraints
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SVM Formulation : Loss Function

minimise:
1

2
‖w‖22︸ ︷︷ ︸

Regularizer

+ C

N∑
i=1

ζi︸ ︷︷ ︸
Loss Function

subject to:

yi(w · xi + w0) ≥ 1− ζi

ζi ≥ 0

for i = 1, . . . , N

Here yi ∈ {−1, 1}
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Note that for the optimal solution, ζi = max{0, 1− yi(w · xi + w0)}

Thus, SVM can be viewed as minimizing the hinge loss with regularization
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Logistic Regression: Loss Function

Here yi ∈ {0, 1}, so to compare effectively to SVM, let zi = (2yi − 1):

I zi = 1 if yi = 1

I zi = −1 if yi = 0

NLL(yi;w,xi) = −

(
yi log

(
1

1 + e−w·xi

)
+ (1− yi) log

(
1

1 + ew·xi

))
= log

(
1 + e−zi(w·xi)

)
= log

(
1 + e−(2yi−1)(w·xi)

)
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Loss Functions
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Multiclass Classification with SVMs (and beyond)

It is possible to have a mathematical formulation of the max-margin
principle when there are more than two classes

In practice, one of the following approaches is far more common

One-vs-One:

I Train
(
K
2

)
different classifiers for all pairs of classes

I At test time, choose the most commonly occurring label

One-vs-Rest:

I TrainK different classifiers, one class vs the restK − 1

I At test time, ties may be broken by value ofw · xnew + w0
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Multiclass Classification with SVMs (and beyond)

One-vs-One

I Training roughlyK2/2 classifiers

I Each training procedure only uses
on average 2/K portion of the
training data

I Resulting learning problems are
more likely to be ‘‘natural’’

One-vs-Rest

I Training onlyK classifiers

I Each training procedure only uses
average all the training data

I Resulting learning problems are
less likely to be ‘‘natural’’

For a more efficient method read the paper posted on the website

Reducing Multiclass to Binary. E. Allwein, R. Schapire, Y. Singer
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Measuring Performance

We’ve encountered a few different loss functions used by learning
algorithms during training time

For regression problems, it made sense to use the same loss function to
measure performance (though not always necessary)

For classification problems, the natural measure of performance is
classification error, number of misclassified datapoints

However, not all mistakes are equally problematic
I Mistakenly blocking a legitimate comment vs failing to mark abuse on

online message boards
I Failing to detect medical risk is worse than inaccurately predicting

chance of risk
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Measuring Performance

For binary classification, we have:

Actual Labels
Prediction yes no

yes true positive false positive
no false negative true negative

For multi-class classification, it is common to write confusion matrix

Actual Labels
Prediction 1 2 · · · K

1 N11 N12 · · · N1K

2 N21 N22 · · · N2K

...
...

...
. . .

...
K NK1 NK2 · · · NKK
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Measuring Performance

For binary classification, we have:

Actual Labels
Prediction yes no

yes true positive false positive
no false negative true negative

False positive errors are also called Type I errors, false negative errors are
called Type II errors

I True Positive Rate: TPR = TP
TP+FN

, aka sensitivity or recall

I False Positive Rate: FPR = FP
FP+TN

I Precision: P = TP
TP+FP
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Receiver Operating Characteristic
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Which classifier would you pick?
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Receiver Operating Characteristic
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I For many classifiers, it is possible to tradeoff the FPR vs TPR

I Often summarised by the area under the curve (AUC)

20



Precision Recall Curves
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I For many classifiers, we can tradeoff the Precision vs Recall (TPR)

I More useful when number of false negatives is very large
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How to tune classifiers to satisfy these criteria?

I Some classifiers like logistic regression output the probability of a label
being 1, i.e., p(y | x,w)

I In generative models, the actual prediction is based on the ratio of
conditional probabilities,

p(y = 1 | x,θ)

p(y = 0 | x,θ)

I We can choose a threshold other than 1/2 (for logistic) or 1 (for
generative models), to prefer one type of errors over the other

I For classifiers like SVM, it is harder (though possible) to have a
probabilistic interpretation

I It is possible to reweight the training data to prefer one type of errors
over the other
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SVM Formulation: Non-Separable Case

What if your data looks like this?
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SVM Formulation : Constrained Minimisation

minimise: 1
2
‖w‖22 + C

N∑
i=1

ζi

subject to:

yi(w · xi + w0)− (1− ζi) ≥ 0

ζi ≥ 0

for i = 1, . . . , N

Here yi ∈ {−1, 1}
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Contrained Optimisation with Inequalities

Primal Form

minimise F (z)

subject to gi(z) ≥ 0 i = 1, . . . ,m

hj(z) = 0 j = 1, . . . , l

Lagrange Function

Λ(z;α,µ) = F (z)−
m∑
i=1

αigi(z)−
l∑

j=1

µjhj(z)

For convex problems, i.e., F is convex, all gi are convex and hi are affine,
necessary and sufficient conditions for a critical point of Λ to be the
minimum of the original constrained optimisation problem are given by the
Karush-Kuhn-Tucker (or KKT) conditions

For non-convex problems, they are necessary but not sufficient
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KKT Conditions

Lagrange Function

Λ(z;α,µ) = F (z)−
m∑
i=1

αigi(z)−
l∑

j=1

µjhj(z)

For convex problems, Karush-Kuhn-Tucker (KKT) conditions give necessary
and sufficient conditions for a solution (critical point of Λ) to be optimal

Dual feasibility: αi ≥ 0 for i = 1, . . .m

Primal feasibility: gi(z) ≥ 0 for i = 1, . . .m
hj(z) = 0 for j = 1, . . . l

Complementary slackness: αigi(z) = 0 for i = 1, . . .m
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SVM Formulation

minimise: 1
2
‖w‖22 + C

N∑
i=1

ζi

subject to:

yi(w · xi + w0)− (1− ζi) ≥ 0

ζi ≥ 0

for i = 1, . . . , N

Here yi ∈ {−1, 1}

Lagrange Function

Λ(w, w0, ζ;α,µ) =
1

2
‖w‖22+C

N∑
i=1

ζi−
N∑
i=1

αi(yi(w·xi+w0)−(1−ζi))−
N∑
i=1

µiζi
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SVM Dual Formulation

Lagrange Function

Λ(w, w0, ζ;α,µ) =
1

2
‖w‖22+C

N∑
i=1

ζi−
N∑
i=1

αi(yi(w·xi+w0)−(1−ζi))−
N∑
i=1

µiζi

We write derivatives with respect tow, w0 and ζi,

∂Λ
∂w0

= −
N∑
i=1

αiyi

∂Λ
∂ζi

= C − αi − µi

∇wΛ = w −
N∑
i=1

αiyixi

For (KKT) dual feasibility constraints, we require αi ≥ 0, µi ≥ 0
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SVM Dual Formulation

Setting the derivatives to 0, substituting the resulting expressions in Λ (and
simplifying), we get a function g(α) and some constraints

g(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj

Constraints

0 ≤ αi ≤ C i = 1, . . . , N

N∑
i=1

αiyi = 0

Finding critical points of Λ satisfying the KKT conditions corresponds to
finding the maximum of g(α) subject to the above constraints
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SVM: Primal and Dual Formulations

Primal Form

minimise: 1
2
‖w‖22 +C

N∑
i=1

ζi

subject to:

yi(w · xi +w0) ≥ (1− ζi)

ζi ≥ 0

for i = 1, . . . , N

Dual Form

maximise
N∑
i=1

αi−
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi ·xj

subject to:

∑N
i=1 αiyi = 0

0 ≤ αi ≤ C

for i = 1, . . . , N
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KKT Complementary Slackness Conditions

I For all i, αi
(
yi(w · xi + w0)− (1− ζi)

)
= 0

I If αi > 0, yi(w · xi + w0) = 1− ζi

I Recall the form of the solution:w =
∑N
i=1 αiyixi

I Thus, only those datapoints xi for which αi > 0, determine the solution

I This is why they are called support vectors
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Support Vectors
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SVM Dual Formulation

maximise
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

subject to:

0 ≤ αi ≤ C i = 1, . . . , N
N∑
i=1

αiyi = 0

I Objective depends only between dot products of training inputs

I Dual formulation particularly useful if inputs are high-dimensional

I Dual constraints are much simpler than primal ones

I Tomake a new prediction only need to know dot product with support vectors

I Solution is of the formw =
∑N
i=1 αiyixi

I And sow · xnew =
∑N
i=1 αiyixi · xnew
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GramMatrix

If we put the inputs in matrixX, where the ith row ofX is xT
i .

K = XXT =


xT

1x1 xT
1x2 · · · xT

1xN
xT

2x1 xT
2x2 · · · xT

2xN
...

...
. . .

...
xT
Nx1 xT

Nx2 · · · xT
NxN



I The matrixK is positive definite ifD > N and xi are linearly independent

I If we perform basis expansion

φ : RD → RM

then replace entries by φ(xi)
Tφ(xj)

I We only need the ability to compute inner products to use SVM
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Kernel Trick

Suppose, x ∈ R2 and we perform degree 2 polynomial expansion, we could
use the map:

ψ(x) =
[
1, x1, x2, x

2
1, x

2
2, x1x2

]T
But, we could also use the map:

φ(x) =
[
1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2

]T

If x = [x1, x2]T and x′ = [x′1, x
′
2]T, then

φ(x)Tφ(x′) = 1 + 2x1x
′
1 + 2x2x

′
2 + x2

1(x′1)2 + x2
2(x′2)2 + 2x1x2x

′
1x
′
2

= (1 + x1x
′
1 + x2x

′
2)2 = (1 + x · x′)2

Instead of spending≈ Dd time to compute inner products after degree d
polynomial basis expansion, we only needO(D) time
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Kernel Trick

We can use a symmetric positive semi-definite matrix (Mercer Kernels)

K =


κ(x1,x1) κ(x1,x2) · · · κ(x1,xN )
κ(x2,x1) κ(x2,x2) · · · κ(x2,xN )

...
...

. . .
...

κ(xN ,x1) κ(xN ,x2) · · · κ(xN ,xN )


Here κ(x,x′) is some measure of similarity between x and x′

The dual program becomes

maximise
N∑
i=1

αi −
N∑
i=1

N∑
j=1

αiαjyiyjKi,j

subject to : 0 ≤ αi ≤ C and
∑N
i=1 αiyi = 0

To make prediction on new xnew, only need to compute κ(xi,xnew) for support
vectors xi (for which αi > 0)

36



Polynomial Kernels

Rather than perform basis expansion,

κ(x,x′) = (1 + x · x′)d

This gives all terms of degree up to d

If we use κ(x,x′) = (x · x′)d, we get only degree d terms

Linear Kernel: κ(x,x′) = x · x′

All of these satisfy the Mercer or positive-definite condition
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Gaussian or RBF Kernel

Radial Basis Function (RBF) or Gaussian Kernel

κ(x,x′) = exp

(
−‖x− x′‖2

2σ2

)

σ2 is known as the bandwidth

We used this with γ = 1
2σ2 when we studied kernel

basis expansion for regression

Can generalise to more general covariance matrices

Results in a Mercel kernel
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Kernels on Discrete Data : Cosine Kernel

For text documents: let x denote bag of words

Cosine Similarity

κ(x,x′) =
x · x′

‖x‖2‖x′‖2

Term frequency tf(c) = log(1 + c), cword count for some word w

Inverse document frequency idf(w) = log
(

N
1+Nw

)
,Nw #docs containing w

tf-idf(x)w = tf(xw)idf(w)
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Kernels on Discrete Data : String Kernel

Let x and x′ be strings over some alphabetA

A = {A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V }

κ(x,x′) =
∑
s wsφs(x)φs(x

′)

φs(x) is the number of times s appears in x as substring

ws is the weight associated with substring s
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How to choose a good kernel?

Not always easy to tell whether a kernel function is a Mercer kernel

Mercer Condition: For any finite set of points, the Kernel matrix should be
positive semi-definite

If the following hold:
I κ1, κ2 are Mercer kernels for points in RD

I f : RD → R

I φ : RD → RM

I κ3 is a Mercer kernel on RM

the following are Mercer kernels
I κ1 + κ2, κ1 · κ2, ακ1 for α ≥ 0

I κ(x,x′) = f(x)f(x′)

I κ3(φ(x), φ(x′))

I κ(x,x′) = xTAx′ forA positive definite
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Kernel Trick in Linear Regression

Recall the least squares objective for linear regression

L(w) =
N∑
i=1

(wTxi − yi)2

and the solution ŵLS = (XTX)−1(XTy).

We can express ŵ =
∑m
i=1 αixi. Why?

Revisit Problem 3 on Sheet 1 (You essentially performed the ’Kernel Trick’)
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Next Time : Neural Networks

I Online book: Michael Nielsen http://www.michaelnielsen.org

I Draft Deep Learning Book: http://www.deeplearningbook.org
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