
Journal of Computer Security 0 (2020) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

On the semantics of communications when
verifying equivalence properties
Kushal Babel a,∗, Vincent Cheval b,∗∗, and Steve Kremer b

a Cornell University, US
E-mail: babel@cs.cornell.edu
b Inria Nancy Grand-Est, Loria, France
E-mails: vincent.cheval@inria.fr, steve.kremer@inria.fr

Abstract. Symbolic models for security protocol verification were pioneered by Dolev and Yao in their seminal
work. Since then, although inspired by the same ideas, many variants of the original model were developed. In
particular, a common assumption is that the attacker has complete control over the network and can therefore
intercept any message. This assumption has been interpreted in slightly different ways depending on the particular
models: either any protocol output is directly routed to the adversary, or communications may be among any two
participants, including the attacker — the scheduling between which exact parties the communication happens
is left to the attacker. This difference may seem unimportant at first glance and, depending on the verification
tools, either one or the other semantics is implemented. We show that, unsurprisingly, they indeed coincide
for reachability properties. However, for indistinguishability properties, we prove that these two interpretations
lead to incomparable semantics. We also introduce and study a new semantics, where internal communications
are allowed but messages are always eavesdropped by the attacker. This new semantics yields strictly stronger
equivalence relations. Moreover, we identify two subclasses of protocols for which the three semantics coincide.
Finally, we implemented verification of trace equivalence for each of the three semantics in the DeepSec tool and
compare their performances on several classical examples.
Keywords: Cryptographic protocols, Symbolic models, Verification, Semantics, Equivalence properties

1. Introduction

Automated, symbolic analysis of security protocols, based on the seminal ideas of Dolev and
Yao, comes in many variants. All of these models however share a few fundamental ideas:

• messages are represented as abstract terms,
• adversaries are computationally unbounded, but may manipulate messages only according
to pre-defined rules (this is sometimes referred to as the perfect cryptography assumption),
and
• the adversary completely controls the network.

*Part of the work was carried out while the first author was a student at IIT Bombay during an internship at
Inria Nancy Grand-Est.

**Corresponding author. E-mail: vincent.cheval@inria.fr.

0926-227X/20/$35.00 c© 2020 – IOS Press and the authors. All rights reserved

mailto:babel@cs.cornell.edu
mailto:vincent.cheval@inria.fr
mailto:steve.kremer@inria.fr
mailto:vincent.cheval@inria.fr

2 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

In this paper we will revisit this last assumption. Looking more precisely at different models
we observe that this assumption may actually slightly differ among the models. The fact that the
adversary controls the network is supposed to represent a worst case assumption.
In some models this assumption translates to the fact that every protocol output is sent to

the adversary, and every protocol input is provided by the adversary. This is the case in the
original Dolev Yao model and also in the models underlying several tools, such as AVISPA [1],
Scyther [2], Tamarin [3], Millen and Shmatikov’s constraint solver [4], and the model used in
Paulson’s inductive approach [5]. We will refer to this choice of semantics as the private semantics,
as internal communications are only allowed on private channels.
Some other models, such as those based on process algebras, e.g. work based on CSP [6], the

Spi [7] and applied pi calculus [8], but also the strand space model [9], consider a slightly differ-
ent communication model: any two agents may communicate. Scheduling whether communication
happens among two honest participants, or a honest participant and the attacker is under the
attacker’s control. We will refer to this choice of semantics as the classical semantics, as it corre-
sponds to what is generally used in process calculi.
When considering reachability properties, these two communication models indeed coincide: in-

tuitively, any internal communication could go through the adversary who acts as a relay and
increases his knowledge by the transmitted message. However, when considering indistinguisha-
bility properties, typically modelled as process equivalences, these communication models diverge.
Interestingly, when forbidding internal communication, i.e., forcing all communication to be re-
layed by the attacker, we may weaken the attacker’s distinguishing power. This observation may
seem counter-intuitive at first. However, executing a (non-observable) internal communication
may enable actions that are otherwise only available after an observable input. These actions may
then provide additional capabilities for simulating the other process.
In many recent work privacy properties have been modelled using process equivalences, see for

instance [10–12]. The number of tools able to verify such properties is also increasing [13–18]. For
instance, the AKISS [16] and SAT-EQUIV [17] tools do not allow any direct communication on
public channels, while the APTE [15] and DeepSec [18] tools allow for internal communications.
One motivation for disallowing direct communication is that it allows for more efficient verification
(as less actions need to be considered and the number of interleavings to be considered is smaller).
Our contributions. We have formalised three semantics in the applied pi calculus which differ by
the way communication is handled:

• the classical semantics (as in the original applied pi calculus) allows both internal commu-
nication among honest participants and communication with the adversary;
• the private semantics allows internal communication only on private channels while all
communication on public channels is routed through the adversary;
• the eavesdropping semantics which allows internal communication, but as a side-effect adds
the transmitted message to the adversary’s knowledge.

For each of the new semantics we define may-testing and observational equivalences. We also
define corresponding labelled semantics and trace equivalence and bisimulation relations (which
may serve as proof techniques).
We show that, as expected, the three semantics coincide for reachability properties. For equiva-

lence properties we show that the classical and private semantics yield incomparable equivalences,

Babel et al. / On the semantics of communications when verifying equivalence properties 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

while the eavesdropping semantics yields strictly stronger equivalence relations than both other
semantics. The results are summarized in Figure 4.
An interesting question is whether these semantics coincide for specific subclasses of processes.

We note that the processes that witness the differences in the semantics do not use replication,
private channels, nor terms other than names, and no equational theory. Moreover, all except one
of these examples only use trivial else branches (of the form else 0); the use of a non-trivial else
branch can even be avoided by allowing a single free symbol.
We first study different notions of determinate processes: in the context of the applied pi calculus,

Cheval et al. [19] have for instance shown that observational, testing, trace equivalence and labelled
bisimulation coincide for this class of processes (for the classic semantics). We will show that this
is actually the case for all semantics and show, among others that the private and eavesdropping
semantics do coincide on these equivalences, and imply them for the classic semantics. We consider
several specific subclasses of determinate processes when we bound the number of sessions. In
particular, we show that all equivalences and semantics coincide for the class of strong action
determinate processes. This class is of practical importance as this condition is checked in the
AKISS and DeepSec tools to enable partial order reduction optimizations [20]. These optimizations
provide spectacular speed-ups, but they were designed and shown correct only in the private
semantics. Showing that all three semantics coincide for strong action determinate processes lifts
the benefit of these optimizations to the other semantics. The results on subclasses of determinate
processes are summarized in Figure 8.
We also identify a syntactic class of processes, that we call I/O-unambiguous. For this class we

forbid communication on private channels, communication of channel names and an output may
not be sequentially followed by an input on the same channel directly, or with only conditionals
in between. Note however that I/O-unambiguous processes, unlike most determinate processes,
do allow outputs and inputs on the same channel in parallel. We show that for this class the
eavesdropping semantics (which is the most strict relation) coincides with the private one (which
is the most efficient for verification).
Finally, we extended the DeepSec tool to support verification of trace equivalence for the three

semantics. Verifying existing protocols in the DeepSec example repository we verified that the
results, fortunately, coincided for each of the semantics. We also made slight changes to the
encodings, renaming some channels, to make them I/O-unambiguous. Interestingly, using different
channels, significantly increased the performance of the tool. Finally, we also observed that, as
expected, the private semantics yields more efficient verification. The results of our experiments
are summarized in Section 5.
A preliminary version of this work appeared in [21]. In contrast to [21], this work contains full

proofs of all results, new results for several subclasses of processes, giving a detailed comparison
of the different semantics and equivalences, as well as an implementation of all three semantics in
the DeepSec tool, together with an experimental evaluation.

Outline. In Section 2 we define the three semantics we consider. In Section 3 we present our main
results on comparing these semantics. We present subclasses for which (some) semantics coincide
in Section 4 and compare the performances when verifying protocols for different semantics using
DeepSec in Section 5, before concluding in Section 6.

4 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

2. Model

The applied pi calculus [8] is a variant of the pi calculus that is specialised for modelling cryp-
tographic protocols. Participants in a protocol are modelled as processes and the communication
between them is modelled by message passing on channels. In this section, we describe the syntax
and semantics of the applied pi calculus as well as the two new variants that we study in this
paper.

2.1. Syntax

We consider an infinite set N of names of base type and an infinite set Ch of names of channel
type. We also consider an infinite set of variables X of base type and channel type and a signature
F consisting of a finite set of function symbols. We rely on a sort system for terms. In particular,
the sort base type differs from the sort channel type. Moreover, any function symbol can only
be applied to and returns base type terms. We define terms as names, variables and function
symbols applied to other terms. Given N ⊆ N , X ⊆ X and F ⊆ F , we denote by T (F,X,N)
the sets of terms built from X and N by applying function symbols from F . We denote v(t) the
sets of variables occurring in t. We say that t is ground if v(t) = ∅. We describe the behaviour of
cryptographic primitives by the means of an equational theory E that is a relation on terms closed
under substitutions of terms for variables and closed under one-to-one renaming. Given two terms
u and v, we write u =E v when u and v are equal modulo the equational theory.
In the original syntax of the applied pi calculus, there is no distinction between an output

(resp. input) from a protocol participant and from the environment, also called the attacker. In
this paper however, we will make this distinction in order to concisely present our new variants of
the semantics. Therefore, we consider two process tags ho and at that respectively represent honest
and attacker actions. The syntax of plain processes and extended processes is given in Figure 1.

P,Q := 0 plain processes A,B := P extended processes
P | Q A | B
!P νn.A
νn.P νx.A
if u = v then P else Q {u/x}
inθ(c, x).P ωc
outθ(c, u).P
eav(c, x).P

where u and v are base type terms, n is a name, x is a variable and c is a name or variable of
channel type, θ is a tag, i.e. θ ∈ {ho, at}.

Fig. 1. Syntax of processes

The process outθ(c, u) represents the output by θ of the message u on the channel c. The process
inθ(c, x) represents an input by θ on the channel c. The input message will instantiate the variable
x. The process eav(c, x) models the capability of the attacker to eavesdrop a communication on
channel c. The process !P represents the replication of the process P , i.e. unbounded number

Babel et al. / On the semantics of communications when verifying equivalence properties 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

of copies of P . The process P | Q represents the parallel composition of P and Q. The process
νn.P (resp. νx.A) is the restriction of the name n in P (resp. variable x in A). The process
if u = v then P else Q is the conditional branching under the equality test u = v. The process ωc
records that a private channel c has been opened, i.e., it has been sent on a public or previously
opened channel. Finally, the substitution {u/x} is an active substitution that replaces the variable
x with the term u of base type.
We say that a process P (resp. extended process A) is an honest process (resp. honest extended

process) when all inputs and outputs in P (resp. A) are tagged with ho and when P (resp. A) does
not contain eavesdropping processes and ωc. We say that a process P (resp. extended process A)
is an attacker process (resp. attacker extended process) when all inputs and outputs in P (resp.
A) are tagged with at.
As usual, names and variables have scopes which are delimited by restrictions, inputs and

eavesdrops. We denote fv(A), bv(A), fn(A), bn(A) the sets of free variables, bound variables, free
names and bound names respectively in A. Moreover, we denote by oc(A) the sets of terms c
of channel type opened in A, i.e. that occurs in a process ωc. We say that an extended process
A is closed when all variables in A are either bound or defined by an active substitution in A.
We define an evaluation context C[_] as an extended process with a hole instead of an extended
process. As for processes, we define an attacker evaluation context as an evaluation context where
all outputs and inputs in the context are tagged with at.
Note that our syntax without the eavesdropping process, opened channels and tags correspond

exactly to the syntax of the original applied pi calculus.
Lastly, we consider the notion of frame that are extended processes built from 0, parallel com-

position, name and variable restrictions and active substitution. Given a frame ϕ, we consider
the domain of ϕ, denoted dom(ϕ), as the set of free variables in ϕ that are defined by an active
substitution in ϕ. Given an extended process A, we define the frame of A, denoted φ(A), as the
process A where we replace all plain processes by 0. Finally, we write dom(A) as syntactic sugar
for dom(φ(A)).

2.2. Operational semantics

In this section, we define the three semantics that we study in this paper, namely:

• the classical semantics from the applied pi calculus, where internal communication can occur
on both public and private channels;
• the private semantics where internal communication can only occur on private channels;
and
• the eavesdropping semantics where the attacker is able to eavesdrop on a public channel.

We first define the structural equivalence between extended processes, denoted ≡, as the smallest
equivalence relation on extended processes that is closed under renaming of names and variables,
closed by application of evaluation contexts, that is associative and commutative w.r.t. |, and such
that:

A≡A | 0 !P ≡ !P | P νn.0≡ 0
νi.νj.A≡ νj.νi.A νx.{u/x} ≡ 0 {u/x} | A≡ {u/x} | A{u/x}
A | νi.B ≡ νi.(A | B) when i 6∈ fv(A) ∪ fn(A) ωc ≡ ωc | ωc
{u/x} ≡ {v/x} when u =E v

6 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The three operational semantics of extended processes are defined by the structural equivalence
and by three respective internal reductions, denoted →c, →p and →e. These three reductions
are the smallest relations on extended processes that are closed under application of evaluation
context, structural equivalence and such that:

if u = v then P else Q τ−→s P where u =E v and s ∈ {c, p, e} Then
if u = v then P else Q τ−→s Q Else

where u, v ground, u 6=E v and s ∈ {c, p, e}

outθ(c, u).P | inθ′(c, x).Q τ−→c P | Q{u/x} Comm

νc.(outθ(c, u).P | inθ′(c, x).Q | R) τ−→s νc.(P | Q{u/x} | R) C-Priv
where c 6∈ oc(R) and s ∈ {p, e}

outθ(c, u).P | inθ′(c, x).Q τ−→s P | Q{u/x} C-Env
at ∈ {θ, θ′}, u is of base type and s ∈ {p, e}

outθ(c, d).P | inθ′(c, x).Q τ−→s P | Q{d/x} | ωd C-Open
at ∈ {θ, θ′}, d is of channel type and s ∈ {p, e}

outho(c, u).P | inho(c, x).Q | eav(c, y).R τ−→e P | Q{u/x} | R{u/y} C-Eav
where u is of base type

outho(c, d).P | inho(c, x).Q | eav(c, y).R τ−→e P | Q{d/x} | R{d/y} | ωd C-OEav
where d is of channel type

We emphasise that the application of the rule is closed under application of arbitrary evaluation
contexts. In particular the context may restrict channels, e.g. the rule C-Open may be used
under the context νc._ resulting in a private channel c, but with the attacker input/output being
in the scope of this restriction. It follows from the definition of evaluation contexts that the
resulting processes are always well defined. We denote by ⇒s the reflexive, transitive closure of
τ−→s for s ∈ {c, p, e}. We note that the classical semantics τ−→c is independent of the tags θ, θ′, the
eavesdrop actions and the ωc processes.

Example 1. Consider the process

A = (νd.outθ(c, d).inθ(d, x).P) | (inθ′(c, y).outθ′(y, t).Q)

where d is a channel name and t a term of base type. Suppose θ = θ′ = ho then we have that
communication is only possible in the classical semantics (using twice the Comm rule):

A
τ−→c νd.(inθ(d, x).P | outθ′(d, t).Q{d/y})
τ−→c νd.(P{t/x} | Q{d/y})

while no transitions are available in the two other semantics. To enable communication in the
eavesdropping semantics we need to explicitly add eavesdrop actions. Applying the rules C-OEav

Babel et al. / On the semantics of communications when verifying equivalence properties 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

and C-Eav we have that

A | eav(c, z1).eav(z1, z2).R τ−→e νd.(inθ(d, x).P | outθ′(d, t).Q{d/y}
| eav(d, z2).R{d/z1} | ωd)

τ−→e νd.(P{t/x} | Q{d/y} | R{d/z1}{t/z2} | ωd)

We note that the first transition adds the information ωd to indicate that d is now available to the
environment.
Finally, if we consider that at ∈ {θ, θ′} then internal communication on a public channel is

possible and, using rules C-Open and C-Env we obtain for s ∈ {p, e} that

A
τ−→s νd.(inθ(d, x).P | outθ′(d, t).Q{d/y} | ωd)
τ−→s νd.(P{t/x} | Q{d/y} | ωd)

2.3. Reachability and behavioural equivalences

We are going to compare the relation between the three semantics for the two general kind of
security properties, namely reachability properties encoding security properties such as secrecy,
authentication, and equivalence properties encoding properties such as anonymity, unlinkability,
strong secrecy, and receipt freeness. Intuitively, reachability properties encode that a process
cannot reach some bad state. Equivalences define the fact that no attacker can distinguish two
processes. This was originally defined by the (may)-testing equivalence [7] in the spi-calculus.
An alternate equivalence, which was considered in the applied pi calculus [8], is observational
equivalence.
Reachability properties can simply be encoded by verifying the capability of a process to perform

an output on a given channel. We define A ⇓s,θc to hold when A =⇒s C[outθ(c, t).P] for some
evaluation context C that does not bind c, some term t and some plain process P , and A ⇓sc to
hold when A ⇓s,θc for some θ ∈ {at, ho}. For example the secrecy of s in the process νs.A can be
encoded by checking whether for all attacker plain process I, we have that

I | νs.(A | inho(c, x).if x = s then outho(bad, s)) 6⇓s,ho
bad

where bad 6∈ fn(A).
Authentication properties are generally expressed as correspondence properties between events

annotating processes, see e.g. [22]. A correspondence property between two events begin and end,
denoted begin ⇐ end, requires that the event end is preceded by the event begin on every trace.
A possible encoding of this correspondence property consists in first replacing all instances of the
events in A by outputs outho(ev, begin) and outho(ev, end) where ev 6∈ fn(A) ∪ bn(A). This new
process A′ can then be put in parallel with a cell Cell that reads on the channel ev and stores any
new value unless the value is end and the current stored value in the cell is not begin. In such a case,
the cell will output on the channel bad. The correspondance property can therefore be encoded
by checking whether for all attacker plain process I, we have that I | νev.(A′ | Cell) 6⇓s,ho

bad .
We say that an attacker evaluation context C[_] is c-closing for an extended process A if

fv(C[A]) = ∅. For s ∈ {p, e}, we say that C[_] is s-closing for A if it is c-closing for A, variables
and names are bound only once in C[_] and for all channels c ∈ bn(C[_])∩ fn(A), if the scope of
c includes _ then the scope of c also includes ωc.

8 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We next introduce the two main notions of behavioural equivalences: may testing and observa-
tional equivalence.

Definition 1 ((May-)Testing equivalences ≈c
m, ≈p

m, ≈e
m). Let s ∈ {c, p, e}. Let A and B two closed

honest extended processes such that dom(A) = dom(B). We say that A ≈sm B if for all attacker
evaluation contexts C[_] s-closing for A and B, for all channels c, we have that C[A] ⇓sc if and
only if C[B] ⇓sc.

Definition 2 (Observational equivalences ≈c
o, ≈p

o, ≈e
o). Let s ∈ {c, p, e}. Let A and B two closed

extended processes such that dom(A) = dom(B). We say that A ≈so B if ≈so is the largest equiva-
lence relation such that:

• A ⇓sc implies B ⇓sc;
• A τ−→s A

′ implies B ε=⇒s B
′ and A′ ≈so B′ for some B′;

• C[A] ≈so C[B] for all attacker evaluation contexts C[_] s-closing for A and B.

For each of the semantics we have the usual relation between these two notions: observational
equivalence implies testing equivalence.

Proposition 1. ≈so (≈sm for s ∈ {c, e, p}.

Example 2. Consider processes A and B of Figure 2. Process A computes a value hn(a) to be
output on channel c, where hn(a) denotes n applications of h and h0(a) = a. The value is initially
a and A may choose to either output the current value, or update the current value by applying
the free symbol h. B may choose non-deterministically to either behave as A or output the fresh
name s. (The non-deterministic choice is encoded by a communication on the private channel e
which may be received by either the process behaving as A or the process outputting s.)
We have that A 6≈so B. The two processes can indeed be distinguished by the context

C[_] =̂ _ | outat(ca, a) | !(inat(ca, x).outat(ca, h(x))
| inat(ca, y).inat(c, z).if y = z then outat(ct, h(x))

Intuitively, when B outputs s the attacker context C[_] can iterate the application of h the same
number of times as would have done process A. Comparing the value computed by the adversary
(hn(a)) and the honestly computed value (either hn(a) or s) the adversary distinguishes the two
processes by outputting on the test channel ct.
However, we have that A ≈sm B. Indeed, for any s-closing context D[_] and all public channel

ch we have that D[A] ⇓sch if and only if D[B] ⇓sch. In particular for context C[_] defined above we
have that both C[A] ⇓sch and C[B] ⇓sch for ch ∈ {ca, ct, c}. Unlike observational equivalence, may
testing does not require to “mimic” the other process stepwise and we cannot force a process into
a particular branch.

Babel et al. / On the semantics of communications when verifying equivalence properties 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A =̂ νd.outho(d, a) | !inho(d, x).outho(d, h(x)) | inho(d, y).outho(c, y)
B =̂ νe.outho(e, a) | inho(e, z).A | inho(e, z).νs.outho(c, s)

Fig. 2. Processes A and B such that A ≈s
m B, but A 6≈s

o B and A 6≈s
t B for s ∈ {c, e, p} .

2.4. Labelled semantics

The internal reduction semantics introduced in the previous section requires to reason about
arbitrary contexts. Similar to the original applied pi calculus, we extend the three opera-
tional semantics by a labeled operational semantics which allows processes to directly interact
with the (adversarial) environment: we define the relation `−→c, `−→p and `−→e where ` is part
of the alphabet A = {τ, out(c, d), eav(c, d), in(c, w), νk.out(c, k), νk.eav(c, k) | c, d ∈ Ch, k ∈
X ∪ Ch and w is a term of any sort}. The labeled rules are given in Figure 3.

In inho(c, y).P in(c,t)−−−→s P{t/y}

Out-Ch outho(c, d).P out(c,d)−−−−→s P

Open-Ch A
out(c,d)−−−−→s A

′ d 6= c

νd.A
νd.out(c,d)−−−−−−→s A′

Eav-OCh A
eav(c,d)−−−−→e A

′ d 6= c

νd.A
νd.eav(c,d)−−−−−−→e A′

Scope A
`−→s A

′ u does not occur in `
νu.A

`−→s νu.A′

bn(`) ∩ fn(B) = ∅

Par A
`−→s A

′ bv(`) ∩ fv(B) = ∅
A | B `−→s A′ | B

Struct A ≡ B B
`−→s B

′ B′ ≡ A′

A
`−→s A′

Eav-Ch outho(c, d).P | inho(c, x).Q eav(c,d)−−−−→e P | Q{d/x}

Eav-T outho(c, t).P | inho(c, x).Q νy.eav(c,y)−−−−−−→e P | Q{t/x} | {t/y}

Out-T outho(c, t).P νx.out(c,x)−−−−−−→s P | {t/x}
x 6∈ fv(P) ∪ v(t)

where s ∈ {c, p, e}.
Fig. 3. Labeled semantics

Consider our alphabet of actions A defined above. Given w ∈ A∗, s ∈ {c, p, e} and an extended
process A, we say that A w−→s An when A

`1−→s A1
`2−→s A2

`3−→s . . .
`n−→s An for some extended

processes A1, . . . , An and w = `1 · . . . ·`n. By convention, we say that A ε−→s A where ε is the empty
word. Given tr ∈ (A \ {τ})∗, we say that A tr=⇒s A

′ when there exists w ∈ A∗ such that tr is the
word w where we remove all τ actions and A w−→s A

′.

Example 3. Coming back to Example 1, we saw that A τ−→c
τ−→c νd.(P{t/x} | Q{d/y}) and no τ -

actions in the other two semantics were available. Instead of explicitly adding eavesdrop actions,

10 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

we can apply the rules Eav-OCh and Eav-T and obtain that

A
νd.eav(c,d)−−−−−−→e inho(d, x).P | outho(d, t).Q{d/y})
νz.eav(d,z)−−−−−−→e P{t/x} | Q{d/y} | {t/z}

We can now define both reachability and different equivalence properties in terms of these
labelled semantics and relate them to the internal reduction. To define reachability properties in
the labelled semantics, we define A �sc to hold when A tr=⇒ A′, tr = tr1out(c, t)tr2 and tr1 does not
bind c for some tr, tr1, tr2 ∈ (A \ {τ})∗, term t and extended process A′.
The following proposition states that any reachability property modelled in terms of A ⇓s,θc and

universal quantification over processes, can also be expressed using A �sc without the need to
quantify over processes.

Proposition 2. For all closed honest plain processes A, for all s ∈ {c, e, p}, A �sc iff there exists
an attacker plain process Is such that Is | A ⇓s,ho

c .

Next, we define equivalence relations using our labelled semantics that may serve as proof
techniques for the may testing relation. First we need to define an indistinguishability relation on
frames, called static equivalence [8].

Definition 3 (Static equivalence ∼). Two terms u and v are equal in the frame φ, written (u =E
v)φ, if there exists ñ and a substitution σ such that φ ≡ νñ.σ, ñ ∩ (fn(u) ∪ fn(v)) = ∅, and
uσ =E vσ.
Two closed frames φ1 and φ2 are statically equivalent, written φ1 ∼ φ2, when:

• dom(φ1) = dom(φ2), and
• for all terms u, v we have that: (u =E v)φ1 if and only if (u =E v)φ2.

Example 4. Consider the equational theory generated by the equation dec(enc(x, y), y) = x. Then
we have that

νk. {enc(a,k)/x1} ∼ νk. {enc(b,k)/x1}
νk. {enc(a,k)/x1 ,

k /x2} 6∼ νk. {enc(b,k)/x1 ,
k /x2}

νk, a. {enc(a,k)/x1 ,
k /x2} ∼ νk, b. {enc(b,k)/x1 ,

k /x2}

Intutively, the first equivalence confirms that encryption hides the plaintext when the decryption
key is unknown. The second equivalence does not hold as the test (dec(x1, x2) =E a) holds on the
left hand side, but not on the right hand side. Finally, the third equivalence again holds as two
restricted names are indistinguishable.

Now we are ready to define two classical equivalences on processes, based on the labelled se-
mantics: trace equivalence and labelled bisimulation.

Definition 4 (Trace equivalences ≈c
t , ≈

p
t , ≈e

t). Let s ∈ {c, p, e}. Let A and B be two closed honest
extended processes. We say that A vst B if for all A tr=⇒s A

′ such that bn(tr) ∩ fn(B) = ∅, there
exists B′ such that B tr=⇒s B

′ and φ(A′) ∼ φ(B′). We say that A ≈st B when A vst B and B vst A.

Babel et al. / On the semantics of communications when verifying equivalence properties 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Definition 5 (Labeled bisimulations ≈c
`, ≈

p
` , ≈e

`). Let s ∈ {c, p, e}. Let A and B two closed
honest extended processes such that dom(A) = dom(B). We say that A ≈s` B if ≈s` is the largest
equivalence relation such that:

• φ(A) ∼ φ(B)
• A τ−→s A

′ implies B ε=⇒s B
′ and A′ ≈s` B′ for some B′,

• A `−→s A
′ and bn(`) ∩ fn(B) = ∅ implies B `=⇒s B

′ and A′ ≈s` B′ for some B′.

We again have, as usual that labelled bisimulation implies trace equivalence.

Proposition 3. ≈s` (≈st for s ∈ {c, e, p}.

In [8] it is shown that ≈c
o = ≈c

`. We conjecture that for the new semantics p and e this same
equivalence holds as well. Re-showing these results is beyond the scope of this paper, and we
will mainly focus on testing/trace equivalence. As shown in [19], for the classical semantics trace
equivalence implies may testing, while the converse does not hold in general. The two relations
do however coincide on image-finite processes.

Definition 6. Let A be a closed extended process. A is image-finite for the semantics s ∈ {c, e, p}
if for each trace tr the set of equivalence classes {φ(B) | A tr=⇒s B}/∼ is finite.

Note that any replication-free process is necessarily image-finite as there are only a finite number
of possible traces for any given sequence of labels tr. The same relations among trace equivalence
and may testing shown for the classical semantics hold also for the other semantics.

Theorem 1. ≈st (≈sm and ≈st = ≈sm on image-finite processes for s ∈ {c, e, p}.

The proof of this result (for the classical semantics) is given in [19] and is easily adapted to
the other semantics. To see that the implication is strict, we continue Example 2 on processes A
and B defined in Figure 2. We already noted that A ≈sm B, but will now show that A 6≈st B (for
s ∈ {c, e, p}). All possible traces of A are of the form A

νx.out(c,x)======⇒s A
′ where φ(A′) = {hn(a)/x}

for n ∈ N. We easily see that A 6≈st B as for any n we have that {hn(a)/x} 6∼ {s/x}, by testing
x = hn(a). On the other hand, given an image-finite process, we can only have a finite number of
different frames for a given trace, and therefore we can bound the context size that is necessary
for distinguishing the processes.

3. Comparing the different semantics

In this section we state our results on comparing these semantics. Results on equivalence com-
parison are summarized in Figure 4.
We first show that, as expected, all the semantics coincide for reachability properties.

Theorem 2. For all ground, closed honest extended processes A, for all channels d, we have that
A �p

d iff A �c
d iff A �e

d.

12 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

≈s` ≈so

≈st

≈sm

for all s ∈ {c, p, e}
for image finite processes ≈st = ≈sm
if s = c then ≈s` = ≈so (conjectured for s ∈ {p, e})

≈c
r ≈e

r ≈p
r

for all r ∈ {m, t, `}

Fig. 4. Overview of the results.

A =̂ νs1.νs2.((outho(c, s1).inho(c, x).P1(x)) | (inho(c, y).P2(y)))
B =̂ νs1.νs2.((outho(c, s1).inho(c, x).P2(x)) | (inho(c, y).P1(y)))

where

P1(x) =̂ (if x = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))
P2(x) =̂ (if x = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) followed by P1(s2). In the classical
semantics, a trace of A emitting on e through an internal communication between outho(c, s1)

and inho(c, y) forces B to execute P1(s1) thus preventing it to emit on e.

Fig. 5. Processes A and B such that A ≈p
` B and A 6≈c

m B.

The next result is, in our opinion, more surprising. As the private semantics force the adversary
to observe all information, one might expect that his distinguishing power increases over the
classical one. This intuition is however wrong: the classical and private trace equivalences, testing
equivalence and labelled bisimulations appear to be incomparable.

Theorem 3. ≈p
r 6⊆ ≈c

r and ≈c
r 6⊆ ≈p

r for r ∈ {`, t,m}.

Proof. We show both statements separately.
≈p
r 6⊆ ≈c

r. We first show that there exist A and B such that A ≈p
` B, but A 6≈c

m B. Note that,
as ≈s` ⊂ ≈st ⊆ ≈sm for s ∈ {c, p} these processes demonstrate both that ≈p

` 6⊆ ≈c
`, ≈

p
t 6⊆ ≈c

t and
≈p
m 6⊆ ≈c

m.
Consider processes A and B defined in Figure 5. In short, the result follows from the fact that

if A performs an internal communication on channel c followed by an output on d (from P1), B
has no choice other then performing the output on d in P2. In the private semantics, however, the
internal communication will be split in an output followed by an input: after the output on c, the
input inho(c, x).P2(x) following the output becomes available. More precisely, to see that A ≈p

` B

we first observe that if A νz.out(c,z)−−−−−−→p A
′ then B

νz.out(c,z)−−−−−−→p B
′ and A′ ≡ B′, and vice-versa. If

A
in(c,t)−−−→p A

′ then B
in(c,t)−−−→p B

′. As t 6∈ {s1, s2} we have that P1(t) ≈p
` 0 ≈p

` P2(t). Finally, if

Babel et al. / On the semantics of communications when verifying equivalence properties 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

t 6= s2 we also have that P1(t) ≈p
` P2(t) as in particular P1(s1) ≈p

` P2(s1). Therefore,

νs1.νs2.(outho(c, s1).inho(c, x).P1(x)) ≈p
` νs1.νs2.(outho(c, s1).inho(c, x).P2(x))

which allows us to conclude.
As A and B are image-finite, we have that A ≈c

m B if and only if A ≈c
t B. To see that

A 6≈c
t B we observe that A may perform the following transition sequence, starting with an

internal communication on a public channel:

A
τ−→c νs1.νs2.((inho(c, x).P1(x)) | (P2(s1)))

νz.out(d,z)======⇒c νs1.νs2.((inho(c, x).P1(x)) | {s2/z})
in(c,z)−−−−→c νs1.νs2.(P1(s2) | {s2/z})

In order to mimic the behaviour of A, B must perform the same sequence of observable transitions:

B
νz.out(d,z) in(c,z)==========⇒c νs1.νs2.(P2(s2) | {s2/z})

We conclude as νs1.νs2.(P1(s2) | {s2/z})
νz′.out(e,z′)−−−−−−−→ νs1.νs2.({s2/z} | {s2/z′}), but νs1.νs2.(P2(s2) |

{s2/z}) 6
νz′.out(e,z′)−−−−−−−→. This trace inequivalence has also been shown using DeepSec.

≈c
r 6⊆ ≈p

r . To show that ≈c
r 6⊆ ≈p

r for r ∈ {`, t,m} we show that there exist processes A and B
such that A ≈c

` B and A 6≈p
m B. As in the first part of the proof, note that, as ≈s` ⊂ ≈st ⊆ ≈sm for

s ∈ {c, p} these processes demonstrate that ≈c
` 6⊆ ≈

p
` , ≈c

t 6⊆ ≈
p
t and ≈c

m 6⊆ ≈p
m.

Consider the processes A and B defined in Figure 6. The proof crucially relies on the fact that
B may perform an internal communication in the classical semantics to mimic A, which becomes
visible in the attacker in the private semantics. To see that A ≈c

` B we first observe that the
only first possible action from A or B is an input. In particular, given a term t, there is a unique
B′ such that B in(c,t)−−−→ B′ where B′ = νs.(outho(c, s).outho(d, a) | inho(c, y).P (y)). However, if
A

in(c,t)−−−→ A′ then either A′ = B′ or A′ = A′′ with A′′ =̂ νs.(inho(c, x).outho(c, s).outho(d, a) | P (t)).
Therefore, to complete the proof, we only need to find B′′ such that B in(c,t)===⇒ B′′ and A′′ ≈c

` B
′′.

Such a process can be obtained by applying an internal communication on B′, i.e. B in(c,t)−−−→c
B′

τ−→ νs.(outho(d, a) | P (s)). Note that t 6= s since s is bound, meaning that P (t) ≈c
` outho(d, a).

Moreover, P (s) ≈c
` inho(c, x).outho(c, s).outho(d, a). This allows us to conlude that νs.(outho(d, a) |

P (s)) ≈c
` A
′′.

Again, as A and B are image-finite may and trace equivalence coincide. To see that A 6≈p
t B we

first observe that A may perform the following transition sequence:

A
in(c,t)−−−→p A

′′ τ−→p νs.(inho(c, x).outho(c, s).outho(d, a) | outho(d, a))
νz.out(d,z)−−−−−−→p νs.(inho(c, x).outho(c, s).outho(d, a) | {a/z})

We conclude as B in(c,t)−−−→p B
′ but B′ 6 νz.out(d,z)−−−−−−→p. Violation of this trace equivalence has also been

shown using the DeepSec tool. �

14 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A =̂ νs.(inho(c, x).outho(c, s).outho(d, a) | inho(c, y).P (y))
B =̂ νs.(inho(c, x).(outho(c, s).outho(d, a) | inho(c, y).P (y)))

where

P (y) =̂ if y = s then inho(c, z).outho(c, s).outho(d, a) else outho(d, a)

In the private semantics, a trace of A starting with the execution of inho(c, y) can only be
matched on B by executing inho(c, x). B could then emit on channel c, which is not the case for
A, hence yielding non equivalence. In the classic semantics, an internal communication between

outho(c, s) and inho(c, y) allows to hide the fact that B can emit on c.

Fig. 6. Processes A and B such that A ≈c
` B and A 6≈p

m B.

One may also note that the counter-example witnessing that equivalences in the private se-
mantics do not imply equivalences in the classical semantics is minimal: it does not use function
symbols, equational reasoning, private channels, replication nor else branches. The second part of
the proof relies on the use of else branches. We can however refine this result in the case of labeled
bisimulation to processes without else branches, the counter-example being the same processes
A and B described in the proof but where we replace each outho(d, a) by 0. In the case of trace
equivalence, we can also produce a counter-example without else branches witnessing that trace
equivalences in the classical semantics do no imply trace equivalences in the private semantics but
provided that we rely on a function symbol h. In the appendix, we describe in more details these
processes and give the proofs of them being counter-examples.
Next, we show that the eavesdropping semantics yields strictly stronger bisimulations, trace

and may testing equivalences: the eavesdropping semantics is actually strictly included in the
intersection of the classic and private semantics.

Theorem 4. ≈e
t (≈

p
t ∩ ≈c

t .

Proof sketch. We show the result in 3 steps: we show that (1) ≈e
t ⊆ ≈

p
t , (2) ≈e

t ⊆ ≈c
t , and (3) that

the implication is strict, i.e., there exist A,B such that A ≈p
t B, A ≈c

t B and A 6≈e
t B.

(1) We first prove that ≈e
t ⊆ ≈

p
t . Suppose that A ≈e

t B. We need to show that for any A′ such
that A tr=⇒p A′ there exists B′ such that B tr=⇒p B′. It follows from the definition of the
semantics that whenever A tr=⇒p A

′ then we also have A tr=⇒e A
′ as `−→p ⊂

`−→e. As A ≈e
t B,

we have that there exists B′, such that B tr=⇒e B
′ and φ(A′) ∼ φ(B′). As tr does not contain

labels of the form eav(c, d) nor νy.eav(c, y) and as no Comm-Eav are possible (A and B
are honest processes) we also have that B tr=⇒p B

′. Hence A ≈p
t B.

(2) We next prove that ≈e
t ⊆ ≈c

t . Similar to Item 1 we suppose that A ≈e
t B and A trc==⇒c A

′
c.

From the semantics, we obtain that A tre==⇒e A
′
e, where

• φ(A′c) ⊆ φ(A′e), i.e., dom(φ(A′c)) ⊆ dom(φ(A′e)) and the frames coincide on the common
domain.

Babel et al. / On the semantics of communications when verifying equivalence properties 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A =̂ νs1.νs2.((outho(c, s1).inho(c, x).P1(x)) | (inho(c, y).P2(y)))
B =̂ νs1.νs2.((outho(c, s1).inho(c, x).P2(x)) | (inho(c, y).P1(y)))

where

P1(x) =̂ (if x = s1 then inho(d, z).if z = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))
P2(x) =̂ (if x = s1 then inho(d, z).if z = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) by inputing twice s1 followed by P1(s2). In the
classical semantics, an internal communication on A between outho(c, s1) and inho(c, y) forces B to execute
P1(s1) but hides s1, preventing a second input of s1 by A. However, in the eavesdropping semantics, the internal
communication reveals s1 allowing A to emit on e but not B.

Fig. 7. Processes A and B such that A ≈c
` B, A ≈p

` B but A 6≈e
t B.

• tre is constructed from trc by replacing any τ action resulting from the Comm rule by
an application of an eavesdrop rule (Eav-T, Eav-Ch, or Eav-OCh).

The proof is done by induction on the length of trc and the proof tree of each transition.
As A ≈e

t B we also have that B tre==⇒e B′e and A′e ∼ B′e. We show by the definition of
the semantics that B trc==⇒c B

′
c and φ(B′c) ⊆ φ(B′e) (replacing each eavesdrop action by an

internal communication). Due to the inclusions of the frames and A′e ∼ B′e we also have
that A′c ∼ B′c.

(3) Finally we show that the implication ≈e
t (≈

p
t ∩ ≈c

t is strict, i.e., there exist A and B such
that A ≈c

` B (which implies A ≈c
t B), A ≈p

` B (which implies A ≈p
t B) but A 6≈e

t B.
Consider the processes A and B defined in Figure 7. This example is a variant of the one
given in Figure 5. The difference is the addition of “inho(d, z).if z = s1 then ” in processes
P1(x) and P2(x): this additional check is used to verify whether the adversary learned s1 or
not. The proofs that A ≈c

` B and A ≈p
` B follow the same lines as in Theorem 3. We just

additionally observe that νs1.(inho(d, z).if z = s1 then outho(d, s2)) ≈s` νs1. (inho(d, z).0) for
s ∈ {c, p}.
The trace witnessing that A 6≈e

t B is again similar to the one in Theorem 3, but starting
with an eavesdrop transition which allows the attacker to learn s1, which in turn allows him
to learn s2 and distinguish P1(s2) from P2(s2). These trace (in)equivalences have also been
verified using DeepSec. �

We note from the processes defined in Figure 7 that the implications are strict even for processes
that do not communicate on private channels, do not use replication, nor else branches and terms
are simply names (no function symbols nor equational theories).

Theorem 5. ≈e
` (≈

p
` ∩ ≈c

`.

Proof sketch. The proof is structured in 3 steps, as in the proof of Theorem 4.

(1) We first show that ≈e
` ⊆ ≈

p
` . Suppose A≈e

`B and let R be the relation witnessing this
equivalence. We will show that R is also a labelled bisimulation in the private semantics.
Suppose A R B.

16 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• as A ≈e
` B, we have that φ(A) ∼ φ(B).

• if A τ−→p A
′ then, as τ−→p⊂

τ−→e, A τ−→e A
′. As A ≈e

` B there exists B′ such that B ε=⇒e B
′

and A′ R B′. As B is a honest process no Comm-Eav transition is possible, and hence
B

ε=⇒p B
′.

• if A `−→p A
′ and bn(`) ∩ fn(B) = ∅ then we also have that A `−→e A

′ (as `−→p⊂
`−→e and

there exists B′ such that B `=⇒e B
′ and A′ R B′. As no Comm-Eav are possible and `

is not of the form eav(c, d) nor νy.eav(c, y) we have that B `=⇒p B
′.

(2) We next show that ≈e
` ⊆ ≈c

`. We will show that ≈e
` is also a labelled bisimulation in

the classical semantics. The proof relies on similar arguments as in Item 2 of the proof of
Theorem 4 and the facts that
• νñ.(A′ | {t/x}) ≈e

` νñ.(B′ | {u/x}) implies νñ.A′ ≈e
` νñ.B

′,
• A′ ≈e

` B
′ implies νc.A′ ≈e

` νc.B
′

The first property is needed when an internal communication of a term or public channel
is replaced by an eavesdrop action and an input. The second property handles the case
when we replace the internal communication of a private channel by an application of the
Eav-OCh rule and an input.

(3) To show that the implication ≈e
` (≈

p
` ∩≈c

` is strict, we exhibit processes A and B such that
A ≈c

` B, A ≈p
` B but A 6≈e

t B (which implies A 6≈e
` B). The processes defined in Figure 7

witness this fact (cf the discussion of these processes in the proof of Theorem 4). �

Again we note that the implications are strict, even for processes containing only public channels.

Theorem 6. ≈e
m (≈p

m ∩ ≈c
m.

Proof sketch. The proof is structured in 3 parts, as for Theorems 5 and 4.

(1) We first prove that ≈e
m ⊆ ≈p

m. Suppose that A ≈e
m B. Suppose that A ≈e

m B. We need to
show that for all channel c, for all C[_] attacker evaluation contexts p-closing for A and B,
C[A] ⇓p

c is equivalent to C[B] ⇓p
c . It follows from the definition of the private semantics that

any process eav(c, x).P in C[_] has the same behaviour as the process 0. Hence, we generate
a context C1[_] by replacing in C[_] any instance of eav(c, x).P by 0, and thus obtaining
C[A] ⇓p

c ⇔ C ′[A] ⇓p
c and C[B] ⇓p

c ⇔ C ′[B] ⇓p
c . Notice that the definition of semantics gives

us→p ⊆ →e. Hence, C ′[A] ⇓p
c implies C ′[A] ⇓e

c and C ′[B] ⇓p
c implies C ′[B] ⇓e

c. Furthermore,
since we built C ′[_] to not contain any process of the form eav(c, x).P , we deduce that
rules C-Eav and C-OEav can never be applied in a derivation of C ′[A] or C ′[B]. It implies
that C ′[A] ⇓p

c⇔ C ′[A] ⇓e
c and C ′[B] ⇓p

c⇔ C ′[B] ⇓e
c. Thanks to A ≈e

m B, we know that
C ′[A] ⇓e

c ⇔ C ′[B] ⇓e
c and so we conclude that C[A] ⇓p

c ⇔ C[B] ⇓p
c .

(2) We next prove that ≈e
m ⊆ ≈c

m. Similarly to Item 1, we consider a channel c and an at-
tacker evaluation context C[_] that is c-closing for A and B. The main difficulty of this
proof is to match the application of the rule Comm in the classical semantics with the
rules C-Eav and C-OEac. However, C[_] does not necessarily contain eavesdrop process
eav(d, x) | ωc. Moreover, as mentioned in Item 1, a process eav(d, x).P has the same be-
havior as 0 in the classical semantics but can have a completely different behaviour in
the eavesdropping semantics if P is not 0. Thus, we remove from C[_] the eavesdrop

Babel et al. / On the semantics of communications when verifying equivalence properties 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

processes, obtaining C ′[_]. Then, we define a new context C ′′[_] based on C ′[_] where
will add harmless eavesdrop process eav(d, y).0. We first add in parallel the processes
!eav(a, y) | ωa for all free channels a in C ′[_], A and B. Moreover, since private chan-
nels can be opened, we also replace any process νd.P , inat(c, x).P where d, x are of channel
type with νd.(P |!eav(d, y)) and inat(c, x).(P |!eav(x, y)). By induction of the derivations,
we can show that C[A] ⇓c

c ⇔ C ′′[A] ⇓e
c and C[B] ⇓c

c ⇔ C ′′[B] ⇓e
c. Since A ≈e

m B, we deduce
that C ′′[A] ⇓e

c ⇔ C ′′[B] ⇓e
c and so C[A] ⇓c

c ⇔ C[B] ⇓c
c.

(3) Finally we show that the implication ≈e
m (≈p

m ∩ ≈c
m is strict, i.e., there exist processes

A and B such that A ≈c
m B, A ≈p

m B but A 6≈e
m B. The processes defined in Figure 7

witness this fact. They already were witness of the strict inclusion ≈e
t (≈

p
t ∩≈c

t (see proof
of Theorem 4) and since A and B are image finite, we know from Theorem 1 that may and
trace equivalences between A and B coincide. �

4. Subclasses of processes for which (some of) the semantics coincide

As illustrated in previous sections, the presence of internal communications between public
channels is the main issue when comparing the different semantics. Thus, the most natural class
of processes on which the semantics coincide are processes where no internal communication on a
public channel is possible.

Definition 7. Let P be a closed honest process. P is internal communication free if and only for
all P tr=⇒c P

′ τ−→c P
′′, the τ action in P ′ τ−→c P

′′ is not the application of the rule Comm.
We denote by ICF the set of internal communication free processes.

Lemma 1. When restricted to ICF , ≈s1
r = ≈s2

r for r ∈ {`, o,m, t} and s1, s2 ∈ {c, p, e}.

Proof. Immediate from the semantics. �

However, this class is very restrictive as it prevents any process of the form outho(c, u).P |
inho(c, x).Q(x). Therefore, we study in the rest of this section alternate classes of processes. The
class of processes we study are mainly related to the notion of determinism: we first study the class
of determinate processes, denoted D, and then mainly restrict our attention to the case when the
number of sessions is bounded. This is motivated by the fact that most tools able to verify these
equivalences are restricted to a bounded number of sessions. We study three increasingly restric-
tive classes: (i) bounded determinate processes (denoted BD), (ii) action-determinate processes
(denoted AD), and (iii) strong action determinate processes (denoted SAD). As the definition of
determinism depends on the semantics, we may add the semantics as a parameter, e.g., we write
D(e) for the class of processes that are determinate in the eavesdrop semantics. Figure 8 provides
an overview of the results of this section.
Finally, we also identify a new syntactic subclass of processes, called I/O-unambiguous and

show relations among the equivalences for different semantics.

18 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

SADAD
BD(p)

= BD(e)
D(p)

= D(e) D(c)

BD(c)
=

BD(e) ∩ D(c)

ICF

≈s1
r1 = ≈s2

r2 (≈c
r3

r1, r2, r3 ∈ {`, t}
s1, s2 ∈ {p, e}

≈s1
r1 = ≈s2

r2
r1, r2 ∈ {`, o,m, t}
s1, s2 ∈ {c, p, e}

≈e
r1 (≈c

r2
≈c

r2 6⊆ ≈
p
r3

r1, r2, r3 ∈ {`, t}

≈s1
r = ≈s2

r

r ∈ {`, o,m, t}
s1, s2 ∈ {c, p, e}

Fig. 8. Summary of results for (bounded) determinate processes

4.1. Determinate processes

4.1.1. Defining classes of determinate processes and their relations
In this section we define a subclass of determinate processes. These subclasses however depend

on the semantics and therefore we also study the relations between these different subclasses.
The notion of determinacy was defined in [19] for the classical semantics. It was shown that for
determinate processes, observational and trace equivalence coincide. Intuitively, on determinate
processes the attacker can determine, at each step of the execution, the position of the executed
action in the process tree: this means that either the labels leading to the executed action differ,
or, in case of two identical sequence of labels, the frames may be distinguished.

Definition 8 (determinacy). Let s ∈ {c, p, e}. Let ∼= be an equivalence relation on closed honest
extended processes. A closed honest extended process A is ∼=-s-determinate if whenever A `=⇒s B,
A

`=⇒s B
′ and φ(B) ∼ φ(B′) then B ∼= B′.

We denote by D(s,∼=) the set of closed honest extended processes that are ∼=-s-determinate.

It was shown in [19] that D(c,≈c
`) = D(c,≈c

t). We can show that this equality also holds in the
private and eavesdrop semantics.

Lemma 2. For all s ∈ {c, p, e}, D(s,≈s`) = D(s,≈st).

Proof. The proof of [19, Lemma 2] literally holds for all semantics. �

Thanks to the previous lemma, we may simply consider the set of s-determinate processes,
denoted D(s), as the set of closed honest extended processes that are ≈s`-s-determinate or ≈st -s-
determinate coincide. It was also shown in [19] that when restricted to c-determinate processes,

Babel et al. / On the semantics of communications when verifying equivalence properties 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A = outho(c, a) | inho(c, x).outho(c, a)

(a) A ∈ D(p) but A 6∈ D(c).

P = !outho(c, a) | !inho(c, x).outho(d, a)
Q = !outho(c, a) | !inho(c, x) | !outho(d, a)

B = νs.outho(s, s) | inho(s, x).P | inho(s, x).Q

(b) P, Q ∈ D(c) ∩D(p), P ≈c
` Q but P 6≈p

t Q
B ∈ D(c) but B 6∈ D(p)

Fig. 9.

we have that ≈c
`=≈c

t . Once again, this result directly extends to p-determinate and e-determinate
processes.

Lemma 3. When restricted to D(s), ≈s` = ≈st for s ∈ {c, p, e}.

Proof. The proof of [19, Theorem 2] literally holds for all semantics. �

The notion of determinacy depends on equivalences. Therefore one might expect the relations
between determinate processes for different semantics to follow similar result as for the equiva-
lences. However, we show that the sets of determinate processes coincide for eavesdrop and private
semantics, while they are incomparable to the classic semantics

Lemma 4. D(p) = D(e), D(c) 6⊆ D(p) and D(p) 6⊆ D(c).

Proof sketch. We sketch the proof here. A more detailed version is available in Appendix F.
We start by showing that D(p) 6⊆ D(c). Consider the process A displayed in Figure 9a. A ∈ D(c)

since A τ−→c outho(c, a) by the rule Comm and outho(c, a) 6≈c
` A. Moreover, A ∈ D(p) since for all

tr, there is a unique A′ such that A tr=⇒p A
′. Hence D(p) 6⊆ D(c).

We now show that D(c) 6⊆ D(p). Consider the process B displayed in Figure 9b. Intuitively,
the use of the private channel s in B encodes a non determinist choice between the two processes
P and Q. We can show that P,Q ∈ D(c) which allows us to deduce that B ∈ D(c). However,
B

ε=⇒p P , B
ε=⇒p Q and P 6≈p

t Q imply B 6∈ D(p).
Let us show D(e) ⊆ D(p). Consider an honest closed process A such that A ∈ D(e). Let

A
tr=⇒p A1 and A tr=⇒p A2. By definition of the semantics, A tr=⇒p Ai implies A tr=⇒e Ai, for i = 1, 2.

Since A ∈ D(e), we deduce A1 ≈e
` A2. By applying Theorem 5, we obtain A1 ≈p

` A2 which
concludes the proof of D(e) ⊆ D(p).
Finally, we need to show that D(p) ⊆ D(e). This part of the proof is detailed in Appendix F. �

4.1.2. Relations between semantics for determinate processes
We will now compare the equivalences when we restrict the processes to D(s) for a given

semantics s. We start with the subclass D(p) (which coincides with D(e)).

Theorem 7. When restricted to D(p), we have ≈s1
r1 = ≈s2

r2 (≈c
r3 for s1, s2 ∈ {p, e}, r1, r2, r3 ∈

{`, t}.

20 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The proof is given in Appendix F.
Next, we consider the subclass D(c). We show that even for this subclass of processes, the

equivalences for the classical semantics are not included in the other ones.

Lemma 5. When restricted to D(c), we have ≈c
r 6⊆ ≈sr for s ∈ {p, e} and r ∈ {`, t}.

Proof. In the proof of Theorem 7 we showed that the processes P and Q displayed in Figure 9b
satisfy the following properties: P,Q ∈ D(c), P ≈c

` Q and P 6≈p
t Q. Note that we also have

P 6≈e
t Q. Hence P and Q allow us to prove that ≈c

r 6⊆ ≈sr for s ∈ {p, e} and r ∈ {`, t}. �

4.2. Determinacy for bounded processes

As many verification tools [14–18] consider a bounded number of sessions we study in this sec-
tion, notions of determinacy when restricted to processes without replication. We also consider the
notion of action-determinate which was introduced in [20] as a subclass of determinate processes
that enable partial order reductions that significantly speed-up verification. Finally, we discuss
the notion of strong action-determinate processes: this class was introduced in several tools, as
this property can easily be checked syntactically. Interestingly, for this class of action-determinate
processes, all notions of equivalences and semantics coincide.
4.2.1. Bounded determinate processes
We investigate in this section whether additional relations hold between the semantics when

restricted to bounded processes, i.e., processes without replication. In particular we show that
when restricted to such bounded processes, a c-determinate P cannot have internal communica-
tion. However, we also show that even when restricted to bounded processes, ≈p

` and ≈c
` do not

coincide.
We denote by BD(s) the set of bounded processes in D(s) for s ∈ {p, c, e}.

Lemma 6. BD(c) (BD(p) = BD(e) and BD(c) (ICF .

Proof. Note that Lemma 4 directly gives us BD(p) = BD(e). Moreover, consider the process A
displayed in Figure 9a. We already showed in Lemma 4 that A ∈ D(p) and A 6∈ D(c). Since A
does not contain a replication, we deduce that BD(p) 6⊆ BD(c).
Let us now show that BD(c) ⊆ ICF . Let A ∈ BD(c). Assume by contradiction that A tr=⇒c

A1
τ−→c A2 where the transition A1

τ−→c A2 is the application of the rule Comm. Hence A1 ≡
νñ.(outho(c, u).P | inho(c, x).Q | R) and A2 = νñ.(P | Q{u/x} | R) for some c, u, P,Q. Since
A ∈ BD(c), we deduce that A1 ≈c

t A2. Consider the maximal trace trm of A1 (the trace trm
exists since A is bounded), i.e. A1

trm==⇒c A
′
1. Since A1 ≈c

t A2, the trace trm is also maximal for
A2 with A2

trm==⇒c A
′
2. But A1

νz.out(c,z).in(c,z)==========⇒c νñ.(P | Q{u/x} | R | {u/x}). Since A2 = νñ.(P |
Q{u/x} | R) and A2

trm==⇒c A
′
2, we deduce that νñ.(P | Q{u/x} | R | {u/x})

trm==⇒c A
′′
2 for some A′′2

and so νz.out(c, z).in(c, z).trm is a trace of A1 which contradicts the maximality of trm. Hence
BD(c) ⊆ ICF .
To see that the inclusion BD(c) (ICF is strict, observe that for the process

P =̂ outho(c, a).outho(c, a1) | outho(c, a).outho(c, a2)

Babel et al. / On the semantics of communications when verifying equivalence properties 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

P =̂ νk1, . . . , k7.(inho(c, x1).R1(x1) | outho(c, k1) | inho(d, x2).if x2 = k2 then outho(c, k3))
Q =̂ νk1, . . . , k7.(inho(c, x1).R1(x1) | outho(c, k1).inho(d, x2).if x2 = k2 then outho(c, k3))

where

R1(x1) =̂ if x1 = k1 then outho(d, k2).inho(c, x3).if x3 = k3 then R3 else inho(d, x)
R3 =̂ outho(c, k4).inho(d, x5).R5(x5) | inho(c, x4).if x4 = k4 then outho(d, k5)

R5(x5) =̂ if x5 = k5 then
inho(d, z).
(outho(c, k6) | inho(c, x6).if x6 = k6 then outho(d, k7).inho(c, x3).inho(d, x))

Fig. 10. P ≈c
` Q but P 6≈p

t Q

we have that P ∈ ICF , but P 6∈ BD(c).
Finally, let us prove BD(c) ⊆ BD(p). Let A ∈ BD(c), A tr=⇒p A1 and A

tr=⇒p A2. Note that
A

tr=⇒p Ai implies A tr=⇒c Ai, for i = 1, 2. As A ∈ BD(c), A1 ≈c
` A2. As BD(c) ⊆ ICF , A ∈ ICF

and so A1, A2 ∈ ICF . By Lemma 1, we obtain A1 ≈p
` A2 which allows us to conclude. �

In particular, as BD(c) ⊂ ICF we directly have that all semantics coincide (Lemma 1), and by
determinacy all equivalences coincide as well (Lemma 3).

Corollary 1. When restricted to BD(c), we have that ≈s1
r1 = ≈s2

r2 for r1, r2 ∈ {`, o,m, t} and
s1, s2 ∈ {c, p, e}.

We next investigate the relations when processes are restricted to the subclass BD(p) (which
coincides with BD(e)).

Theorem 8. When restricted to BD(p), we have that ≈p
r = ≈e

r (≈c
r for r ∈ {`, t}.

The proof is given in Appendix G.

Action-determinate. As mentioned above, the class of action determinate processes is of interest
for verification tools since it supports partial order reduction techniques [20] which speed-up
verification by several orders of magnitude. Such techniques have been implemented in several
verification tools such as APTE, AKISS and DeepSec.

Definition 9. Let P be a closed honest process. We say that P is action-determinate if bn(P)∩Ch =
∅ and for all P tr=⇒c P

′, P ′ 6≡ νk̃.(outho(c, u1).Q1 | outho(c, u2).Q2|Q3) and P ′ 6≡ νk̃.(inho(c, x1).Q1 |
inho(c, x2).Q2|Q3) for all k̃, c, u1, u2, x1, x2, Q1, Q2, Q3.
We define AD to be the set of all action determinate processes.

Intuitively, a process is action determinate when there are never two similar available actions,
i.e. two inputs or two outputs on the same channel. Note in particular that any (non-trivial)
replicated process violates action-determinism.

22 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We first show that the class of action determinate processes is strictly included in the class of
determinate processes (for the private and, hence, eavesdropping semantics).

Lemma 7. AD (BD(p).

The proof is give in Appendix H.
We can now show that the relations among equivalences that did hold for the subclass BD(p)

(Theorem 8) do also hold for the subclass AD.

Theorem 9. When restricted to AD, we have that ≈p
r = ≈e

r (≈c
r for r ∈ {`, t}.

Note that, while the equality and inclusion is a direct corollary of Theorem 8 and Lemma 14,
the fact that the inclusion is strict needs to be shown. The proof is given in Appendix I.
Strong action determinate. In the context of automated verification, deciding whether a process
is action-determinate is still rather costly as it basically requires to verify a reachability prop-
erty. We therefore introduce a stronger and more syntactical notion of action determinate, which
is actually implemented in the verification tools AKISS and DeepSec. Intuitively, while action
determinate processes never reach a situation where two “similar” actions are available, strong
action-determinate processes verify that such similar actions never appear in parallel, syntacti-
cally.
We first define the set of action skeletons S = {out(c), in(c) | c ∈ Ch}.

Definition 10 (strong action determinate). The set Sa(S) built on S ⊆ S is the smallest set of
honest processes such that {u/x}, 0 ∈ Sa(∅) for all u, x and such that if P ∈ Sa(S) and Q ∈ Sa(S′)
then

• outho(c, u).P ∈ Sa({out(c)} ∪ S) when c ∈ Ch
• inho(c, x).P ∈ Sa({in(c)} ∪ S) when c ∈ Ch
• νk;P ∈ Sa(S) when {in(k), out(k)} ∩ S = ∅
• if u = v then P else Q ∈ Sa(S ∪ S′)
• Sa(P | Q) ∈ Sa(S ∪ S′) when S ∩ S′ = ∅

We define the set of strong action determinate process as SAD = ∪S⊆SSa(S).

As the name indicates, it is easy to see that any strong action determinate process is also an
action determinate process.

Lemma 8. SAD (AD.

Proof. The implication follows directly from the definition, as any strongly action determinate
process forbids two identic skeletons in parallel. To see that the implication is strict we observe
that, for

P =̂νk. (outho(c, k) | inho(c, x).if x = k then outho(c, a))

we have that P ∈ AD, but P 6∈ SAD. �

Babel et al. / On the semantics of communications when verifying equivalence properties 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

While for action determinate processes we have that ≈p
` (≈c

`, we can show that for strong
action determinate processes we actually have ≈c

` ⊆ ≈
p
` .

Theorem 10. When restricted to SAD, we have ≈c
` ⊆ ≈

p
` .

Proof of Theorem 10 can be found in Appendix J.
This implies the following corollary stating that for strong action determinate processes, all se-

mantics and equivalences coincide. This is particularly interesting as the AKISS and DeepSec tools
check this condition. Moreover, it means that partial-order reduction optimizations, developed and
shown correct for the private semantics [20], are correctly applied by these tools, regardless of the
chosen semantics.

Corollary 2. When restricted to SAD, we have that ≈s1
r1=≈s2

r2 for r1, r2 ∈ {`, o,m, t} and s1, s2 ∈
{c, p, e}.

4.3. I/O-unambiguous processes

Restricting processes to action-determinate processes may sometimes be too restrictive. For
instance, when verifying unlinkability and anonymity properties, two outputs by different parties
should not be distinguishable due to the channel name. We therefore introduce another class
of processes, that we call I/O-unambiguous for which we also show that the different semantics
(although not the different equivalences) do coincide.
Intuitively, an io-unambiguous process forbids an output and input on the same public channel

to follow each other directly (or possibly with only conditionals in between). For instance, we forbid
processes of the form outθ(c, t).inθ(c, x).P , outθ(c, t).(inθ(c, x).P | Q) as well as outθ(c, t).if t1 =
t2 then P else inθ(c, x).Q. We however allow inputs and outputs on the same channel in parallel.

Definition 11. We define an honest extended process A to be I/O-unambiguous when ioua(A,_) =
> where

ioua(0, c) = > ioua({u/x}, c) = > ioua(!P, c) = ioua(P, c)
ioua(A | B, c) = ioua(A, c) ∧ ioua(B, c) ioua(νx.A, c) = ioua(A, c)

ioua(νn.A, c) =
{
⊥ if n ∈ Ch
ioua(A, c) otherwise

ioua(if u = v then P else Q, c) = ioua(P, c) ∧ ioua(Q, c)

ioua(outθ(d, u).P, c) =
{
⊥ if u is of channel type
ioua(P, d) otherwise

ioua(inθ(d, x).P, c) =
{
⊥ if x is of channel type or d = c
ioua(P,_) otherwise

Note that an I/O-unambiguous process does not contain private channels and always in-
put/output base-type terms. We also note that a simple way to enforce that processes are I/O-
unambiguous is to use disjoint channel names for inputs and outputs (at least in the same parallel
thread).

Theorem 11. When restricted to I/O-unambiguous processes, we have that ≈p
r=≈e

r but ≈e
r(≈c

r

for r ∈ {`, t}.

24 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Proof. From Theorems 5 and 4, we already know that ≈e
r⊆≈p

r and ≈e
r⊆≈c

r. Hence, we only need
to show that ≈p

r⊆≈e
r and ≈p

r(≈c
r. The latter is easily shown by noticing that the processes A and

B in Figure 6 are I/O-unambiguous. Thus, we focus on ≈p
r⊆≈e

r.
We start by proving that for all I/O-unambiguous processes A, for all A tr=⇒ A′, we have that

A′ is I/O-unambiguous. Note that structural equivalence preserves I/O-unambiguity, i.e. for all
extended processes A,B, for all channel name c, A ≡ B implies ioua(A, c) = ioua(B, c). Hence,
we assume w.l.o.g. that a name is bound at most once and the set of bound and free names are
disjoint.
Second, we show that for all I/O-unambiguous processes A, for all A νz.out(c,z).in(c,z)==========⇒p A

′, we have
that νz.eav(c,z)======⇒e A

′. To prove this property, denoted P , let us assume w.l.o.g. that A νz.out(c,z)−−−−−−→p

A1 →∗p A2
in(c,z)−−−−→p A

′. The transition A νz.out(c,z)−−−−−−→p A1 indicates that A ≡ νñ.(outho(c, u).P | Q)
and A1 ≡ ñ.(P | Q | {u/z}) for some P,Q, ñ, c, u. Note that A is I/O-unambiguous, and hence
ioua(P, c) = >.
As A is I/O-unambiguous implies that A does not contain private channels, we have that the

rule applied in A1 →∗p A2 is either the rule Then or Else. Therefore, there exists P ′ and Q′ such
that P →∗p P ′, Q →∗p Q′, An ≡ νñ.(P ′ | Q′ | {u/x}) and ioua(P ′, c) = >. Hence, we deduce that
there exists Q1, Q2 such that Q′ ≡ νm̃.(in.(c, x)Q1 | Q2) and A′ ≡ νñ.νm̃.(P ′ | Q1{u/x} | Q2). We
conclude the proof of this property by noticing that we can first apply on A the reduction rules
of Q→∗p Q′, then apply the rule C-Eav and finally apply the rules of P →∗p P ′.

(1) To prove ≈p
t⊆≈e

t , we assume that A,B are two closed honest extended processes such that
A ≈p

t B. For all A tr=⇒e A
′, it follows from the semantics that A trp=⇒p A

′ where trp is obtained
by replacing in tr each νz.eav(c, z) by νz.out(c, z).in(c, z). Since A ≈p

t B, there exists B′

such that B trp=⇒p B′ and φ(A′) ∼ φ(B′). Thanks to the property P , we conclude that
B

tr=⇒e B
′.

(2) To prove ≈p
`⊆≈e

`, we assume that A,B are two closed honest extended processes such that
A ≈p

` B and let R be the relation witnessing this equivalence. We will show that R is also
a labelled bisimulation in the eavesdropping semantics. Suppose ARB.
• as A ≈p

` B, we have that φ(A) ∼ φ(B).
• if A τ−→e A′ then, as A is honest, A τ−→p A′. As A ≈p

` B there exists B′ such that
B

ε=⇒p B
′ and A′RB′. As τ−→p ⊂

τ−→e, B
ε=⇒e B

′

• if A `−→e A
′ then, as A is I/O-unambiguous, A tr=⇒e A

′ where tr = νz.out(c, z).in(c, z)
when ` = νz.eav(c, z) else tr = `. As A ≈p

` B, there exists B′ such that B tr=⇒p B
′ and

A′RB′. When tr = `, the definition of the semantics directly gives us B `=⇒e B
′. When

tr = νz.out(c, z).in(c, z), the property P gives us B `=⇒e B
′. �

5. Different semantics in practice

As we have seen, in general, the three proposed semantics may yield different results. A conserva-
tive approach would consist in verifying always the eavesdropping semantics which is stronger than
the two other ones, as shown before. However, this semantics seems also to be the least efficient

Babel et al. / On the semantics of communications when verifying equivalence properties 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

one to verify. Moreover, partial-order reduction techniques that provide tremendous speed-ups
were only developed for the private semantics.
We have implemented the three different semantics in the DeepSec tool. This allowed us to

investigate the difference in results and performance between the semantics. In our experiments we
considered several examples from DeepSec’s example repository. We rely on the existing modelling
and do not describe these protocols, as these details are not important for the observations we
wish to make. All benchmarks were carried out on a machine with 20 Intel Xeon 3.10GHz cores
and 50 Gb of memory. The implementation and the specification files are available at [23].
The specifications we used for these experiments include verification of

• strong secrecy in several classical authentication protocols (Denning-Sacco, Needham-
Schroeder-Lowe (NSL), Wide Mouth Frog, and Yahalom-Lowe protocols);

• anonymity of the Private Authentication protocol proposed by Abadi and Fournet [24];

• anonymity and unlinkability of the passive authentication protocol implemented in the Eu-
ropean Passport protocol [25, 26];

• unlinkability of the AKA protocol, deployed in 3G mobile telephony [27];

• vote privacy in the Helios e-voting protocol [28], and the e-voting protocol proposed by Scytl
for elections in the Swiss Neuchâtel canton [29].

For all these examples we found that the results were unchanged, independent of the semantics.
However, as expected, performance was generally better for the private semantics, and much better
for strong action determinate processes, as this class allows for powerful partial-order reductions.
The existing protocol encodings generally used a single public channel. To enforce membership
in a particular subclass we had to use different channel names. Surprisingly, the use of distinct
channels to enforce I/O-unambiguity, significantly enhances the tool’s performance. We could not
make the voting protocols I/O unambiguous and action determinate, because the encodings use
private channels. In the absence of private channels using different channel names to enhance
efficiency is tempting. One must however be careful as changing channel names changes the
attacker’s observation and may change the result. Typically, a single channel name models that
the attacker does a priori not know which process sent a given message. Binding the channel name
to the identity allows the attacker to know which host sent a message, but not necessarily which of
the possibly multiple processes, e.g. sessions, on the given host. However, this modelling is typically
not adequate when checking anonymity, or unlinkability, as it reveals the sender’s identity. For such
properties, it may be possible to use different channel names for each session, modelling that the
adversary can distinguish different sessions, but not necessarily whether the same host executed
one or several sessions. This is the encoding we used for verifying anonymity and unlinkability
properties to enforce strong action determinism in the AKA and Passive Authentication protocols.

26 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Property / Protocol #roles Single channel I/O unambiguous SAD
≈p
t ≈e

t ≈c
t ≈p

t = ≈e
t ≈c

t ≈p
t = ≈e

t = ≈c
t

Strong secrecy
Denning-Sacco 6 33s 2m 7s 1m 58s 9s 35s <1s

NSL 4 29s 1m 43s 3s 6s <1s
Wide Mouth Frog 9 12m 16s 34m 43s 20m 1s 24s 58s <1s
Yahalom-Lowe 6 2h 46m 11h 11m 5h 17m 4m 5s 13m 47s <1s
Anonymity

Passive Authentication 6 1h 59m 5h 6m 6h 49m 7m 2s 1h 50m <1s
Private Authentication 4 9s 9s 11s 1s 2s <1s

Unlinkability
Passive Authentication 6 3h 15m 7h 15m 11h 6m 10m 30s 2h 49m <1s

AKA 4 13m 26m 9s 17m 13s 18s 49s <1s
Vote privacy

Helios 10 10m 9s 19m 10s 14m 50s - - -
Scytl 3 2m 47s 5m 9s 5m 14s - - -

6. Conclusion

In this paper we investigated two families of Dolev-Yao models, depending on how the hypothesis
that the attacker controls the network is reflected. While the two semantics coincide for reachability
properties, they yield incomparable notions of behavioral equivalences, which have recently been
extensively used to model privacy properties. The fact that forcing all communication to be routed
through the attacker may diminish his distinguishing power may at first seem counter-intuitive.
We also propose a third semantics, where internal communication among honest participants
is permitted but leaks the message to the attacker. This new communication semantics entails
strictly stronger equivalences than the two classical ones. We also identify several subclasses of
protocols for which (some) semantics coincide. Finally, we implemented the three semantics in
the DeepSec tool. Our experiments showed that the three semantics provide the same result on
the case studies in the DeepSec example repository. However, the private semantics is slightly
more efficient, as less interleavings have to be considered. Our results illustrate that behavioral
equivalences are much more subtle than reachability properties and the need to carefully choose
the precise attacker model.

Acknowledgments. We would like to thank Catherine Meadows and StÃľphanie Delaune for
interesting discussions, as well as the anonymous reviewers for their comments. This work has
received funding from the European Research Council (ERC) under the European UnionâĂŹs
Horizon 2020 research and innovation program (grant agreement No 645865-SPOOC) and the
ANR projects SEQUOIA ANR-14-CE28-0030-01 and TECAP ANR-17-CE39-0004-01.

References

[1] A. Armando, D.A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P.H. Drielsma, P.-C. Héam,
O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani,
L. Viganò and L. Vigneron, The AVISPA Tool for the Automated Validation of Internet Security Protocols
and Applications., in: Proc. 17th International Conference on Computer Aided Verification (CAV’05), Lecture
Notes in Computer Science, Springer, 2005, pp. 281–285.

Babel et al. / On the semantics of communications when verifying equivalence properties 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[2] C.J.F. Cremers, The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols, in: Proc.
20th International Conference on Computer Aided Verification (CAV’08), Lecture Notes in Computer Sci-
ence, Vol. 5123, Springer, 2008, pp. 414–418.

[3] B. Schmidt, S. Meier, C. Cremers and D. Basin, The TAMARIN Prover for the Symbolic Analysis of Security
Protocols, in: Proc. 25th International Conference on Computer Aided Verification (CAV’13), Lecture Notes
in Computer Science, Vol. 8044, Springer, 2013, pp. 696–701.

[4] J.K. Millen and V. Shmatikov, Constraint solving for bounded-process cryptographic protocol analysis., in:
Proc. 8th Conference on Computer and Communications Security, ACM Press, 2001, pp. 166–175.

[5] L.C. Paulson, The inductive approach to verifying cryptographic protocols, Journal of Computer Security
6(1/2) (1998), 85–128.

[6] P.Y.A. Ryan, S.A. Schneider, M. Goldsmith, G. Lowe and A.W. Roscoe, Modelling and Analysis of Security
Protocols, Addison Wesley, 2000.

[7] M. Abadi and A.D. Gordon, A Calculus for Cryptographic Protocols: The spi Calculus, Inf. Comput. 148(1)
(1999), 1–70.

[8] M. Abadi and C. Fournet, Mobile Values, New Names, and Secure Communication, in: 28th Symposium on
Principles of Programming Languages (POPL’01), H.R. Nielson, ed., ACM, London, UK, 2001, pp. 104–115.

[9] F.J. Thayer Fabrega, J.C. Herzog and J.D. Guttman, Strand Spaces: Proving Security Protocols Correct,
Journal of Computer Security 7(2/3) (1999), 191–230.

[10] S. Delaune, S. Kremer and M.D. Ryan, Verifying privacy-type properties of electronic voting protocols,
Journal of Computer Security 17(4) (2009), 435–487.

[11] M. Arapinis, T. Chothia, E. Ritter and M. Ryan, Analysing Unlinkability and Anonymity Using the Applied
Pi Calculus, in: Proc. 23rd Computer Security Foundations Symposium (CSF’10), IEEE Computer Society
Press, 2010, pp. 107–121.

[12] N. Dong, H. Jonker and J. Pang, Analysis of a receipt-free auction protocol in the applied pi calculus, in: Proc.
International Workshop on Formal Aspects in Security and Trust (FAST’10), S. Etalle and J. Guttman, eds,
Pisa, Italy, 2010, To appear.

[13] B. Blanchet, M. Abadi and C. Fournet, Automated verification of selected equivalences for security protocols,
Journal of Logic and Algebraic Programming 75(1) (2008), 3–51.

[14] A. Tiu and J.E. Dawson, Automating Open Bisimulation Checking for the Spi Calculus, in: Proc. 23rd
Computer Security Foundations Symp. (CSF’10), IEEE Comp. Soc., 2010, pp. 307–321.

[15] V. Cheval, H. Comon-Lundh and S. Delaune, Trace Equivalence Decision: Negative Tests and Non-
determinism, in: Proc. 18th ACM Conference on Computer and Communications Security (CCS’11), ACM,
2011.

[16] R. Chadha, V. Cheval, Ş. Ciobâcă and S. Kremer, Automated verification of equivalence properties of cryp-
tographic protocol, ACM Transactions on Computational Logic 17(4) (2016), 1–32. doi:10.1145/2926715.

[17] V. Cortier, S. Delaune and A. Dallon, SAT-Equiv: an efficient tool for equivalence properties, in: Proceedings
of the 30th IEEE Computer Security Foundations Symposium (CSF’17), IEEE Computer Society Press, 2017,
pp. 481–494. doi:10.1109/CSF.2017.15.

[18] V. Cheval, S. Kremer and I. Rakotonirina, DEEPSEC: Deciding Equivalence Properties in Security Protocols
- Theory and Practice, in: Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P’18), IEEE
Computer Society Press, San Francisco, CA, USA, 2018, pp. 525–542. doi:10.1109/SP.2018.00033.

[19] V. Cheval, V. Cortier and S. Delaune, Deciding equivalence-based properties using constraint solving, The-
oretical Computer Science 492 (2013), 1–39. doi:10.1016/j.tcs.2013.04.016.

[20] D. Baelde, S. Delaune and L. Hirschi, Partial Order Reduction for Security Protocols, in: Proceedings of the
26th International Conference on Concurrency Theory (CONCUR’15), L. Aceto and D. de Frutos-Escrig, eds,
Leibniz International Proceedings in Informatics, Vol. 42, Leibniz-Zentrum für Informatik, Madrid, Spain,
2015, pp. 497–510. doi:10.4230/LIPIcs.CONCUR.2015.497. http://www.lsv.ens-cachan.fr/Publis/PAPERS/
PDF/BDH-concur15.pdf.

[21] K. Babel, V. Cheval and S. Kremer, On communication models when verifying equivalence properties, in:
6th International Conference on Principles of Security and Trust (POST’17), Lecture Notes in Computer
Science, Vol. 10204, Springer, Uppsala, Sweden, 2017, pp. 141–163. doi:10.1007/978-3-662-54455-6.

[22] B. Blanchet, Automatic Verification of Correspondences for Security Protocols, Journal of Computer Security
17(4) (2009), 363–434.

[23] V. Cheval, S. Kremer and I. Rakotonirina, DeepSec 1.1, 2019. https://github.com/DeepSec-prover/deepsec/
tree/ae7a64e9023df242370b011dfa82a7586ac7a772.

[24] M. Abadi and C. Fournet, Private Authentication, Theor. Comput. Sci. 322(3) (2004), 427–476, ISSN 0304-
3975.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BDH-concur15.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BDH-concur15.pdf
https://github.com/DeepSec-prover/deepsec/tree/ae7a64e9023df242370b011dfa82a7586ac7a772
https://github.com/DeepSec-prover/deepsec/tree/ae7a64e9023df242370b011dfa82a7586ac7a772

28 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A =̂ νs.(inho(c, x).outho(c, s) | inho(c, y).P (y))
B =̂ νs.(inho(c, x).(outho(c, s) | inho(c, y).P (y)))

where

P (y) =̂ if y = s then inho(c, z).outho(c, s)

Fig. 11. A and B (without else branches) such that A ≈c
` B and A 6≈p

` B

[25] P.T. Force, PKI for machine readable travel documents offering ICC read-only access, Technical Report,
International Civil Aviation Organization, 2004.

[26] M. Arapinis, V. Cheval and S. Delaune, Verifying privacy-type properties in a modular way, in: Proceedings
of the 25th IEEE Computer Security Foundations Symposium (CSF’12), V. Cortier and S. Zdancewic, eds,
IEEE Computer Society Press, Cambridge Massachusetts, USA, 2012, pp. 95–109.

[27] M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon and R. Borgaonkar, New privacy issues
in mobile telephony: fix and verification, in: 19th Conference on Computer and Communications Security
(CCS’12), ACM Press, 2012, pp. 205–216.

[28] B. Adida, Helios: web-based open-audit voting, in: 17th conference on Security symposium (SS’08), USENIX
Association, 2008, pp. 335–348. http://dl.acm.org/citation.cfm?id=1496711.1496734.

[29] V. Cortier, D. Galindo and M. Turuani, A formal analysis of the Neuchâtel e-voting protocol, in: IEEE
European Symposium on Security and Privacy (EuroS&P), 2018.

Appendix A. Refining Theorem 3

We here give a more refined version of Theorem 3. In particular we show that the private and
classical semantics are incomparable for trace equivalence and labelled bisimulation, even when
restricted to processes that do not use else branches.

Theorem 12. When restricted to processes without else branches, we have that ≈p
r 6⊆ ≈c

r and
≈c
r 6⊆ ≈p

r for r ∈ {`, t}.

Proof. The fact that ≈p
r 6⊆ ≈c

r for r ∈ {`, t} has already been shown in the proof of Theorem 3
as the processes A,B witnessing the result did not have else branches.

To show that ≈c
` 6⊆ ≈

p
` we show that there exist processes A and B without else branches such

that A ≈c
` B and A 6≈p

` B. Such processes are defined in Figure 11. To see that A ≈c
` B we first

observe that the only first possible action from A or B is an input. In particular, given a term t,
there is a unique B′ such that B in(c,t)−−−→ B′ where B′ = νs.(outho(c, s) | inho(c, y).P (y)). On the
other hand, if A in(c,M)−−−−→ A′ then either A′ = B′ or A′ = A′′ where A′′ =̂ νs.(inho(c, x).outho(c, s) |
P (t)). Therefore, to complete the proof, we only need to find B′′ such that B in(c,t)===⇒ B′′ and
A′′ ≈c

` B
′′. Such process can be obtain by applying an internal communication on B′, i.e. B in(c,t)−−−→c

B′
τ−→ νs.P (s). Note that t 6= s since s is bound, meaning that P (t) ≈c

` 0. Moreover, P (s) ≈c
`

inho(c, x).outho(c, s). This allows us to conclude that νs.P (s) ≈c
` A
′′.

http://dl.acm.org/citation.cfm?id=1496711.1496734

Babel et al. / On the semantics of communications when verifying equivalence properties 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Ai =̂ νs1.νs2.(outho(c, h(s1)) | outho(c, h(s2)) |
inho(d, x).(if x = h(s1) then Qi | if x = h(s2) then P2)

where Q1=̂P1, Q2=̂P2 and

P1 =̂ outho(e, a)
P2 =̂ outho(f, a).outho(e, a) | inho(f, x)

Fig. 12. A1 and A2 such that A1 ≈c
t A2, but A1 6≈p

t A2.

To see that A 6≈p
` B we first observe that when A

in(c,t)−−−→p A
′′, B can only mimic A by pre-

forming the transition B in(c,t)−−−→ B′. We conclude as B′ νz.out(c,z)−−−−−−→p νs.(inho(c, y).P (y) | {s/z}) and
A′′ 6 νz.out(c,z)−−−−−−→p.

We next show that there also exist A1 and A2 such that A1 ≈c
t A2, but A1 6≈p

t A2.
We define such processes in Figure 12. Using the DeepSec tool we have shown that indeed

A1 ≈c
t A2 and A1 6≈p

t A2. The main argument why the result holds is that P1 is trace included in
P2 in the classical semantics (as the output on channel f can be made silent through an internal
communication) while this is not the case in the private semantics. �

Appendix B. Proof of Proposition 2

Definition 12. We say that a plain process P (resp. extended process P) is name-cleaned if P is
of the form P1 | . . . | Pm and every Pi is not of the form νk.B′ with k a name or variable of any
type.

Lemma 9. Let A be an extended process. There exist a sequence of names and variables k̃ and a
name-cleaned extended process A′ such that A ≡ νk̃.A′.

Proof. Direct from the definition of structural equivalence. �

Proposition 2. For all closed honest plain processes A, for all s ∈ {c, e, p}, A �sc iff there exists
an attacker plain process Is such that Is | A ⇓s,ho

c .

Proof. We will prove that A �sc implies there exists an attacker plain process Is such that Cs[A] ⇓sc
for s ∈ {c, e, p} by constructing Is.
Let us first focus on s = c. Since A �c

c, we know that there exist A′, t and tr ∈ (A \ {τ})∗ such
that A tr=⇒c A

′, c 6∈ bn(tr) and out(c, t) ∈ tr. Note that we can assume w.l.o.g. that no name in tr
is bound twice and bound names in tr are distinct from free names that occurs in A and tr.
Let {a1, . . . , ak} be all the channel names that occur in tr (bound or free). To each a1, . . . , ak,

we associate a variable of channel type xa1 , . . . , xak
. Given a subset S ⊆ {a1, . . . , ak}, we denote

by σ(S) the substitution {xa → a | a ∈ S}. We define Ic such that Ic = Qc(tr, σ(fc(tr))) where
Qc(tr, σ) is defined by induction on tr as follows:

30 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• if tr = ε then Qc(tr, σ) = 0;
• if tr = in(a,M).tr′ then Qc(tr, σ) = outat(xaσ,M).Qc(tr′, σ);
• if tr = out(a, c).tr′ with c of channel-type then

Qc(tr, σ) = inat(xaσ, y).Qc(tr′, σ)

where y is fresh variable of channel type;
• if tr = νx.out(a, x).tr′ and x is of base type then

Qc(tr, σ) = inat(xaσ, x).Qc(tr′, σ)

• if tr = νc.out(a, c).tr′ and c is of channel type then

Qc(tr, σ) = inat(xaσ, xc).Qc(tr′, σ)

Since A tr=⇒c A
′, there exist A0, . . . , An and `1, . . . , `N such that A′ = AN , A = A0 and A0

`1−→c

A1
`2−→c . . .

`N−→c AN . We can show by induction that for all n 6 N , there exist a plain process Qn

and two sequences of names ỹn, r̃n such that:

• IcA→∗c νỹn.νr̃n.(An | Qn)
• r̃n is the sequence of bounded channel names in `1 · · · . . . `n−1
• ỹn ⊆ dom(φ(An))
• trn is the sequence `n · . . . · `N where the τ action are removed
• Qn = Qc(trn, σ(fc(trn)))

To conclude this proof, recall that out(c, t) ∈ tr and c 6∈ bn(tr) so there exists n 6 N such
that `n = out(c, t) or `n = νt.out(c, t). But since An−1

`n−→c An and An−1 ≡ νk̃n−1.Bn−1 with
Bn−1 being name-cleaned, we deduce that there exist P,R such that Bn−1 = outho(c, t).P | R
and c 6∈ k̃n−1. Therefore, Ic | A →∗c νỹn−1.νr̃n−1.νk̃n−1.(outho(c, t).P | R | Qn−1). Note that
ỹn−1 ⊆ dom(φ(Bn−1)) hence c 6∈ ỹn−1. Moreover, we assumed that c 6∈ bn(tr) hence c 6∈ r̃n−1 by
definition of r̃n−1. It allows us to conclude Ic | A ⇓c,ho

c .

The proof for the other two semantics is very similar. First, the construction of the context
changes to adapt the changes in the labeled semantics. Second, we prove a slightly different
property on the traces to account the presence of opened channels that are generated by the rule
C-Open. The rest stay the same (up to renaming of c into p and e respectively).
Concerning the semantics private, we define Ip =̂ Ic and we can prove the following property:

For all n 6 N , there exist two extended processes Qn, Rn and thwo sequences of names ỹn, r̃n
such that:

• Cp[A]→∗p νỹn.νr̃n.(An | Qn | Rn)
• r̃n is the sequence of bounded channel names in `1 · · · . . . `n−1
• Rn =̂ωc1 | . . . | ωcm for some c1, . . . , cm such that r̃n ⊆ {c1, . . . , cm}
• ỹn ⊆ dom(φ(Bn))
• trn is the sequence `n · . . . · `N where the τ action are removed

Babel et al. / On the semantics of communications when verifying equivalence properties 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• Qn = Qc(trn, σ(fc(trn)))

Notice that the presence of Rn is the only difference between the property in the classical and
private semantics. This is the consequence of the application of the rule C-Open that introduces
opened channels ωc1 and that we apply when the trace contains labeled transitions out(c, d) or
νd.out(c, d).
For the eavesdropping semantics, we can prove the same property as for private semantics (up

to renaming of p into e) but we need to modify the context as follows. We define Ce[_] such that
Ie[_] =̂ Qe(tr, σ) is defined by induction on tr as follows:

• if tr = ε then Qe(tr, σ) = 0;
• if tr = in(a,M).tr′ then Qe(tr, σ) = outat(xaσ,M).Qe(tr′, σ);
• if tr = out(a, c).tr′ with c of channel-type then

Qe(tr, σ) = inat(xaσ, y).Qe(tr′, σ)

where y is fresh variable of channel type;
• if tr = νx.out(a, x).tr′ and x is of base type then

Qe(tr, σ) = inat(xaσ, x).Qe(tr′, σ)

• if tr = νc.out(a, c).tr′ and c is of channel type then

Qe(tr, σ) = inat(xaσ, xc).Qe(tr′, σ)

• if tr = eav(a, c).tr′ with c of channel-type then

Qe(tr, σ) = eav(xaσ, y).Qe(tr′, σ)

where y is fresh variable of channel type;
• if tr = νx.eav(a, x).tr′ and x is of base type then

Qe(tr, σ) = eav(xaσ, x).Qe(tr′, σ)

• if tr = νc.eav(a, c).tr′ and c is of channel type then

Qe(tr, σ) = eav(xaσ, xc).Qe(tr′, σ)

Let us now focus on the other implications, that are: if there exists an attacker plain process
Is such that Is | A ⇓s,ho

c then A �sc for s ∈ {c, e, p}. By Lemma 9, we can assume w.l.o.g. that
Is = νk̃.D for some name-cleaned plain process D and some sequence of names and variables of
any type k̃. We now prove that for all Is | A →∗s B, there exist an attacker evaluation context
C ′[_] = νk̃′.(D′ | _) with D′ name-cleaned, an honest extended process A′ and tr such that C ′[_]
is s-closing for A, B ≡ C ′[A′] and A tr=⇒s A

′. We first focus on s = c. Note that it is not necessary
to prove the property name-cleaned since it is implied by Lemma 9.
We prove this result by induction on the number of reduction rules in Ic | A→∗c B.

32 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Base case: By structural equivalence, there exists k̃′ and D′ such that I | A ≡ νk̃′.(D′ | A).
Moreover, since fv(A) = ∅, k̃′.(D′ | _) is closing for A and so the base case holds.

Inductive step Cc[A]→∗c B′ →c B: By our inductive hypothesis, we know that there exist C ′[_] =
νk̃′.(D′ | _), and honest extended process A′ and tr such that C ′[_] is c-closing for A′, B′ ≡ C ′[A′]
and A tr=⇒c A

′. Note that due to the structural equivalence, we can assume w.l.o.g. that A′ = νr̃.P
where P is name-cleaned. Moreover, since B′ →c B and B′ ≡ C ′[A′], we deduce that C ′[A′]→c B.
Let us do a case analysis on the rule applied.

Case 1, internal reduction on A′, i.e. there exists A′′ such that A′ τ−→c A
′′ and B ≡ C ′[A′′]. In

such a case, we have that C ′[A′] τ−→c C
′[A′′]. Moreover, since A tr=⇒c A

′ then we directly obtain that
A

tr=⇒c A
′′ and so the result holds.

Case 2, internal reduction on C ′, i.e. there exists D′′ such that D′ τ−→c D
′′ and B ≡ νk̃′.(D′′ | A′).

By the structural equivalence, we know that there exist k̃′′ and D′′′ such that D′′ is named-cleaned
and νk̃′.(D′′ | A′) ≡ νk̃′′.(D′′′ | A′). Therefore, we can define C ′′[_] = νk̃′′.(D′′′ | _) and obtain
that C ′[A′] τ−→c C

′′[A′]. Since A tr=⇒c A
′, the result holds.

Case 3, rule Comm between C ′ (input) and A′ (output), i.e. D′ = inat(c, x).D1 | D2, A′ =
νr̃.(outho(c, u).P1 | P2) and B ≡ νk̃′.νr̃.(D1{u/x} | D2 | P1 | P2) (We assume w.l.o.g. that the
names and variables in r̃ are not in D′). Note that in such a case, c 6∈ r̃. We do a case analysis
on u.

• Case 3.a, u ∈ Ch∩ r̃: Let us redenote νr̃ as νr̃′.νu. Thus A′ νu.out(c,u)−−−−−−→c νr̃
′.(P1 | P2). Hence,

since the names and variables in r̃ are not in D′, we obtain that B ≡ νk̃′.νu.(D1{u/x} | D2 |
νr̃′.(P1 | P2)). Hence, by denoting C ′′[_] = νk̃′.νu.(D1{u/x} | D2 | _) and A′′ = νr̃′.(P1 |
P2), the result hold.
• Case 3.b, u ∈ Ch but u 6∈ r̃. In such a case, A′ out(c,u)−−−−→c νr̃.(P1 | P2). Hence, since the names
and variables in r̃ are not in D′, we obtain that B ≡ νk̃′.(D1{u/x} | D2 | νr̃.(P1 | P2)). By
denoting C ′′[_] = νk̃′.(D1{u/x} | D2 | _) and A′′ = νr̃.(P1 | P2), the result holds.
• Case 3.c, u 6∈ Ch: In such a case, A′ νy.out(c,y)−−−−−−→c νr̃.(P1 | P2 | {u/y}) with y 6∈ fv(A′) ∪ v(u).
Note we can take y such that y 6∈ fv(C ′[A′])∪ bn(C ′[A′]). Note that B ≡ νk̃′.νr̃.(D1{u/x} |
D2 | P1 | P2). By definition of the structural equivalence and since we took y 6∈ fv(C ′[A′])∪
bn(C ′[A′]), we deduce that B ≡ νk̃′.νy.νr̃.(D1{y/x} | D2 | P1 | P2 | {u/y}). Lastly, since the
names and variables in r̃ are not in D′, we deduce that B ≡ νk̃′.νy.(D1{y/x} | D2 | νr̃.(P1 |
P2 | {u/y})). By denoting C ′′[_] = νk̃′.νy.(D1{y/x} | D2 | _) and A′′ = νr̃.(P1 | P2 | {u/y}),
the result holds.

Case 4, rule Comm between A′ (input) and C ′ (output), i.e. D′ = outat(c, u).D1 | D2, A′ =
νr̃.(inho(c, x).P1 | P2) and B ≡ νk̃′.νr̃.(D1 | D2 | P1{u/x} | P2) (We assume w.l.o.g. that the
names and variables in r̃ are not in D′). Note that in such a case, c 6∈ r̃. Moreover, we know
that the names and variables in r̃ are not in D′, meaning that the names and variables in r̃ does
not occur in u. Hence, A′ in(c,u)====⇒c νr̃.(P1{u/x} | P2). Once again due to the fact the names and
variables in r̃ are not in D′, we obtain that B′′ ≡ νk̃′.(D1 | D2 | νr̃.(P1{u/x} | P2)). By denoting
C ′′[_] = νk̃′.(D1 | D2 | _) and A′′ = νr̃.(P1{u/x} | P2), the result holds.

Babel et al. / On the semantics of communications when verifying equivalence properties 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We have concluded the proof of the property: for all Cc[A] →∗c B, there exist an evaluation
attacker context C ′[_] = νk̃′.(D′ | _) with D′ name-cleaned, an honest extended process A′ and
tr such that C ′[_] is c-closing for A′, B ≡ C ′[A′] and A

tr=⇒c A
′. It remains to prove this result

for s = e and s = p. Let us focus first on the case s = p. The proof is in fact similar to the case
s = c. Notice that the case of the rule C-Env correspond to either Case 2, 3.c or 4 when u is of
base type. Hence it remains the case of the rules C-Priv and C-Open.

Case 5, rule C-Open between C ′ (input) and A′ (output), i.e. D′ = inθ(c, x).D1 | D2, A′ =
νr̃.(outho(c, d).P1 | P2) and B ≡ νk̃′.νr̃.(D1{d/x} | D2 | P1 | P2 | ωd). Lets us do a case analysis
on whether (5.a) d ∈ r̃ or (5.b) d 6∈ r̃. Note that Case (5.a) is in fact almost identical to Case (3.a)
and that the result holds with C ′′[_] = νk̃′.νd.(D1{u/x} | D2 | ωd | _) and A′′ = νr̃′.(P1 | P2)
with νr̃ = νr̃′.νd. Furthermore, note that Case (5.b) is also very similar to Case (3.b) and that
the result holds with C ′′[_] = νk̃′.(D1{d/x} | D2 | ωd_) and A′′ = νr̃.(P1 | P2). Notice that in
both case C ′′[_] is indeed p-closing for A′′.

Case 6, rule C-Open between A′ (input) and C ′ (output), i.e. D′ = outθ(c, d).D1 | D2, A′ =
νr̃.(inho(c, x).P1 | P2) and B ≡ νk̃′.νr̃.(D1 | D2 | P1{d/x} | P2 | ωd). This case if very similar to
Case 4 when u is of channel type and the result holds with C ′′[_] = νk̃′.(D1 | D2 | ωd | _) and
A′′ = νr̃.(P1{d/x} | P2).

Case 7, rule C-Priv with a communication on a channel c. Notice that this rule is in fact partially
covered by the beginning of the proof. Indeed, Case 1 and 2 cover the cases where c is not in k̃′.
Therefore, we only need to focus on the case where the private channel is in k̃′, i.e. νk̃′ = νk̃′′.νc
for some k̃′′. We know that C ′[_] is p-closing for A′. Hence since c is a channel bound in C ′[_]
whose scope includes _, we deduce that if c ∈ fn(A) then ωc is also in the scope of c. But
according to the definition of the rule, we know that ωc is not in the scope of νc. Moreover, if
the output or input is done by A′ then it would implies that c ∈ fn(A). Thus, this allows us
to deduce that this both output and input are tagged with at, meaning that there exists D′′
such that νc.(D′ | A′) τ−→p νc.(D′′ | A′) and B ≡ νk̃′′.νc.(D′′ | A′). In such a case, by denoting
C ′′[_] = νk̃′′.νc.(D′′ | _) and A′′ = A′, the result directly holds.

We have concluded the proof of the property for s = p hence it remains the case s = e. Once,
again several cases are already covered since `−→p⊂

`−→e. Hence we only need to focus on the cases
of the rules C-Eav and C-OEav:

Case 8, rule C-Eav, i.e. A′ = νr̃.(outho(c, u).P1 | inho(c, x).P2 | P3), D′′ = eav(c, y).Q1 | Q2),
B ≡ νk̃′.νr̃.(Q1{u/y} | Q2 | P1 | P2{u/x} | P3) and u is of base type (We assume w.l.o.g. that the
names and variables in r̃ are not in D′). Note that in such a case c 6∈ r̃. Moreover, note this is the
only possible combinaison of input and output since C ′ is an attacker evaluation context and A′
is an honest extended process. Let us consider a variable z such that z 6∈ fv(C ′[A′])∪ bn(C ′[A′]).
Hence A′ νz.eav(c,z)−−−−−−→ νr̃.(P1 | P2{u/x} | P3 | {u/z}). But since z 6∈ fv(C ′[A′]) ∪ bn(C ′[A′]), we
deduce that B ≡ νk̃′.νz.νr̃.(Q1{u/y} | Q2 | P1 | P2{u/x} | P3 | {u/z}). Hence, by denoting
C ′′[_] = νk̃′.νz.(Q1{z/y} | Q2 | _) and A′′ = νr̃.(P1 | P2{u/x} | P3 | {u/z}), the result holds.

34 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Case 9, rule C-OEav, i.e. A′ = νr̃.(outho(c, d).P1 | inho(c, x).P2 | P3), D′′ = eav(c, y).Q1 | Q2),
B ≡ νk̃′.νr̃.(Q1{d/y} | Q2 | P1 | P2{d/x} | P3 | ωd) and d is of channel type (We assume w.l.o.g.
that the names and variables in r̃ are not in D′). We have to do a case analysis on d:

• Case d ∈ r̃: Let us denote νr̃ = νr̃′.νd. In such a case A′ νd.eav(c,d)−−−−−−→ νr̃′.(P1 | P2{u/x} | P3).
But we know that the names and variables in r̃ are not in D′ hence B′′ ≡ νk̃′.νd.(Q1{d/y} |
Q2 | νr̃′.(P1 | P2{d/x} | P3)). Therefore, by denoting C ′′[_] = νk̃′.νd.(Q1{u/y} | Q2 | ωd | _)
and A′′ = νr̃′.(P1 | P2{d/x} | P3), the result holds.
• Case d 6∈ r̃: In such a case A′ eav(c,u)−−−−→ νr̃.(P1 | P2{u/x} | P3) and so the result holds by
denoting C ′′[_] = νk̃′.(Q1{u/y} | Q2 | ωd | _) and A′′ = νr̃.(P1 | P2{u/x} | P3).

Note that in both case, C ′′[_] is indeed e-closing for A′′.

We have proved that for all s ∈ {c, p, e}, for all Cs[A]→∗s B, there exist an attacker evaluation
context C ′[_] = νk̃′.(D′ | _) with D′ name-cleaned, an honest extended process A′ and tr such
that C ′[_] is s-closing for A′, B ≡ C ′[A′] and A

tr=⇒s A
′. This property allows us to conclude

the main proof. Indeed, consider s ∈ {c, e, p} and Cs[_] an attacker evaluation context such that
Cs[A] ⇓s,ho

c . By definition, we deduce that Cs[A]→∗s C[outho(c, t).P] for some evaluation context
C that does not bind c, some t and some plain process P . By our property, we deduce that
there exists an attacker evaluation context C ′[_] = νk̃′.(D′ | _) with D′ name-cleaned, an honest
extended process A′ and tr such that C[outho(c, t).P] ≡ C ′[A′] and A

tr=⇒s A
′. More specifically,

since C ′[_] is an attacker evaluation context, C[outho(c, t).P] ≡ C ′[A′] and C does not bind c, we
deduce that A′ ≡ νr̃.(outho(c, t′).P ′ | Q′) for some t′, P ′, Q′, r̃ such that c 6∈ r̃. Therefore, if t′ ∈ Ch
but t′ 6∈ r̃ then A′ out(c,t

′)−−−−→s A
′′ for some A′′ meaning that A tr.out(c,t′)======⇒s A

′′; else A′ νz.out(c,z)−−−−−−→s A
′′

for some A′′ and some z fresh (z being either a base type variable or a channel), meaning that
A

tr.νz.out(c,z)=======⇒s A
′′. In both cases, we obtain that A tr′

=⇒ A′′, out(c, t) ∈ tr′ and c 6∈ bn(tr′) for some
tr′, A′′ and t. It allows us to conclude that A �sc. �

Appendix C. Proof of Theorem 1

We start by restating the a proposition from [19] that was used to prove that trace equivalence
implies may equivalence in the classical semantics. In order to prove the proposition for the
semantics private and eavesdrop, we will first write exactly the proof of from [19] for the classical
semantics and then highlight what changes are required to obtain the proofs for the private and
eavesdropping semantics.

Proposition 4. Let s ∈ {c, p, e}. Let A and B be two honest closed extended process with dom(A) =
dom(B), and C[_] = νñ.(D | _) be an attacker evaluation context s-closing for A. If C[A]→∗s A′′
for some process A′′, then there exist a closed extended process A′, an attacker evaluation context
C ′ = νñ′.(D′ | _) s-closing for A′, and a trace tr ∈ (Ar {τ})∗ such that A′′ ≡ C ′[A′], A tr=⇒s A

′,
and for all closed extended process B′, we have:

C[_] is s-closing for B and B tr=⇒s B
′ and φ(B′) ∼ φ(A′)

implies that
C ′ is s-closing for B′ and C[B]→∗s C ′[B′].

Babel et al. / On the semantics of communications when verifying equivalence properties 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Proof. We first focus on the case s = c. Let A and B be two extended processes with dom(A) =
dom(B) and C[_] = νñ.(D | _) be an evaluation context c-closing for A. Let A′′ be such that
C[A]→∗s A′′. We prove the result by induction on the length ` of the derivation.

Base case ` = 0: In such a case, we have that A′′ ≡ C[A]. Let A′ = A, C ′ = C and tr = ε, we
have that A′′ ≡ C ′[A′], and A tr=⇒c A

′. Let B′ be a closed extended process such that B ε=⇒c B
′ and

φ(B′) ∼ φ(A′) for some B′. Clearly, we have that C[B] →∗c C ′[B′] and C ′[_] is c-closing for B′
since C ′ = C and B →∗c B′.

Inductive case ` > 0: In such a case, we have that there exists a closed extended process A1 such
that C[A]→∗c A1 with a derivation whose length is smaller than `, and A1 →c A

′′. Thus, we can
apply our induction hypothesis allowing us to deduce that there exist an extended process A′1, an
evaluation context C ′1[_] = νñ′1.(D′1 | _) c-closing for A′1, and a trace tr1 ∈ (Ar {τ})∗ such that
A1 ≡ C ′1[A′1], A tr1=⇒c A

′
1, and for all closed extended processes B′1, we have that:

C[_] is c-closing for B and B tr=⇒s B
′
1 and φ(B′1) ∼ φ(A′1)

implies that
C ′1[_] is c-closing for B′1 and C[B]→∗s C ′1[B′1].

Since A1 ≡ C ′1[A′1] and A1 →c A
′′, we have that C ′1[A′1] →c A

′′. (internal reduction is closed
under structural equivalence). W.l.o.g., we can assume that D′1 is name-cleaned, the bound names
and variables in C ′1[A′1] are bound once and distinct from the free names. We do a case analysis
on the rule involved in this reduction.

Case 1: internal reduction in A′1, i.e. there exists A′ such that A′1 →c A
′ and A′′ ≡ C ′1[A′]. In

such a case, we have that C ′1[A′1] →c C ′1[A′]. Let C ′[_] = C ′1[_] and tr = tr1. We have that
A′′ ≡ C ′1[A′] = C ′[A′] and A

tr1=⇒c A
′
1 →c A

′, i.e. A tr=⇒c A
′. Lastly, let B′ be a closed extended

process such that B tr=⇒c B
′ and φ(B′) ∼ φ(A′). We have that B tr1=⇒c B

′ and φ(B′) ∼ φ(A′1) ≡
φ(A′), and thus relying on our induction hypothesis, we obtain that C ′1[_] is c-closing for B′ and
C[B]→∗c C ′1[B′]. Since C ′1[_] = C ′[_], we conclude.

Case 2.a: rule Then in D′1, i.e. D′1 = if u = v then P1 else P2 | P3 and A′′ ≡ νñ′1.(P1 | P3 | A′1).
In such a case, we have C ′1[A′1] →c νñ

′
1.(P1 | P3 | A′1). Let A′ = A′1, C ′[_] = νñ′1.(P1 | P3 | _)

and tr = tr1. We have that A′′ ≡ C ′[A′] and A tr=⇒c A
′. Lastly, let B′ be a closed extended process

such that B tr=⇒c B
′ and φ(B′) ∼ φ(A′). By renaming, we can assume that the bound names of B′

are distinct from the free names of C ′1. Moreover, we know that C ′1 is c-closing for A′1 meaning
that v(u, v) ⊆ dom(φ(A′1)). Furthermore, since the free names are distinct from bound names,
we obtain that fn(u, v) ∩ bn(A′1) = ∅. But φ(A′1) = φ(A′) ∼ φ(B′) and (u =E v)φ(A′) hence we
obtain (u =E v)φ(B′) meaning that C ′1[B′] → νñ′1.(P1 | P3 | B′) = C ′[B′]. By our inductive
hypothesis, we also have that C ′1 is c-closing for B′ and C[B]→∗c C ′1[B′]. Hence, we conclude that
C[B]→∗c C ′[B′] and C ′[_] is c-closing for B′.

Case 2.b: rule Else in D′1, i.e. D′1 = if u = v then P1 else P2 | P3 and A′′ ≡ νñ′1.(P2 | P3 | A′1).
Similar to case 2.a.

36 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Case 3: rule Comm in D′1, i.e. D′1 = outat(c, u).P1 | inat(c, x).P2 | P3 and A′′ ≡ νñ′1.(P1 |
P2{u/x} | P3 | A′1). In such a case, we have C ′1[A′1]→c νñ

′
1.(P1 | P2{u/x} | P3 | A′1). Let A′ = A′1,

C ′[_] = νñ′1.(P1 | P2{u/x} | P3 | _) and tr = tr1. We have that A′′ ≡ C ′[A′] and A tr=⇒c A
′. Lastly,

let B′ be a closed extended process such that B tr=⇒c B
′ and φ(B′) ∼ φ(A′). Since φ(A′) = φ(A′1)

then by our inductive hypothesis, we obtain C ′1 is c-closing for B′ and C[B] →∗c C ′1[B′]. But
C ′1[B′]→c νñ

′
1.(P1 | P2{u/x} | P3 | B′) = C ′[B′] and so the result holds.

Case 4: rule Comm between D′1 (output) and A′1 (input), i.e. D′1 = outat(c,M).P1 | P2, A′1 =
νr̃.(inho(c, x).Q1 | Q2) and A′′ ≡ νñ′1.νr̃.(P1 | P2 | Q1 | Q2) (recall that we assume that bound
names and variables are distinct from free names and variables and are only bound once). Note
that in such a case, c 6∈ r̃. Hence A′1

in(c,M)−−−−→ νr̃.(Q1{M/x} | Q2). Moreover, since r̃ are not
in P1, P2, we have A′′ ≡ νñ′1.(P1 | P2 | νr̃.(Q1{M/x} | Q2)). Let A′ = νr̃.(Q1{M/x} | Q2),
C ′[_] = νñ′1.(P1 | P2 | _) and tr = tr1.in(c,M). We have that A′′ ≡ C ′[A′] and A tr=⇒c A

′. Lastly
let B′ be a closed extended process such that B tr=⇒c B

′ and φ(B′) ∼ φ(A′). We have that there
exists B′1 such that B tr1=⇒c B

′
1

in(c,M)−−−−→c B
′
2 →∗c B′. By renaming, we can assume that the bound

names of B′1 are distinct from the names of C ′1 and are bound only once. Since φ(B′) ∼ φ(A′), we
have also that φ(B′1) ∼ φ(A′1). Thus, we can apply our induction hypothesis on B′1. This allows
us to deduce that C[B] →∗c C ′1[B′1] and C ′1 is c-closing for B′1. In order to conclude, it remains
to show that C ′1[B′1] →c C

′[B′2] and C ′[_] is c-closing for B′2 (since C ′[_] is c-closing for B′2 and
B′2 →∗c B′ implies C ′[B′2]→∗c C ′[B′] and C ′ is c-closing for B′).
We have seen that B′1

in(c,M)−−−−→ B′. Hence, we know that B′1 = νr̃′.(inho(c, x).Q′1 | Q′2) for
some r̃′, Q′1, Q′2 and B′2 ≡ νr̃′.(Q′1{M/x} | Q′2). But since we assumed that the bound names
of B′1 are distinct from the names of C ′1 and are bound only once, we obtain that C ′1[B′1] ≡
νñ′1.νr̃

′.(outat(c,M).P1 | P2 | inho(c, x).Q′1 | Q′2). Hence C ′1[B′1] →c νñ
′
1.νr̃

′.(P1 | P2 | Q′1{M/x} |
Q′2) ≡ C ′[νr̃′.(Q′1{M/x} | Q′2)] ≡ C ′[B′2]. Notice that C ′[_] is c-closing forB′2 since fv(C ′1[B′1]) = ∅.

Case 5: rule Comm between C ′1 (input) and A′1 (output), i.e. D′1 = inat(c, x).P1 | P2, A′1 =
νr̃.(outho(c,M).Q1 | Q2) and A′′ ≡ νñ′1.νr̃.(P1{M/x} | P2 | Q1 | Q2) (recall that we assume that
bound names and variables are distinct from free names and variables and are only bound once).
Note that in such a case, c 6∈ r̃. We do a case analysis on M .

• Case 5.a, M ∈ Ch ∩ r̃: Let us denote νr̃ = νr̃′.νM . Thus A′1
νM.out(c,M)−−−−−−−→c νr̃′.(Q1 |

Q2). Hence, since the names and variables in r̃ are not in D′1, we obtain that A′′ ≡
νñ′1.νM.(P1{M/x} | P2 | νr̃′.(Q1 | Q2)). Let A′ = νr̃′.(Q1 | Q2), C ′[_] = νñ′1.νM.(P1{M/x} |
P2 | _) and tr = tr1.νM.out(c,M). We have that A′′ ≡ C ′[A′] and A tr=⇒c A

′. Lastly let B′
be a closed extended process such that B tr=⇒c B

′ and φ(B′) ∼ φ(A′). We have that there
exists B′1 such that B tr1=⇒c B

′
1

νM.out(c,M)−−−−−−−→c B
′
2 →∗c B′. By renaming, we can assume that

the bound names of B′1 are distinct from the names of C ′1 and are bound only once. Since
φ(B′) ∼ φ(A′), we have also that φ(B′1) ∼ φ(A′1). Thus, we can apply our induction hypoth-
esis on B′1. This allows us to deduce that C[B]→∗c C ′1[B′1] and C ′1[_] is c-closing for B′1. In
order to conclude, it remains to show that C ′1[B′1] →c C

′[B′2] (since fv(C ′1[B′1]) and since
B′2 →∗c B′ implies C ′[B′2]→∗c C ′[B′]).

Babel et al. / On the semantics of communications when verifying equivalence properties 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We have seen that B′1
νM.out(c,M)−−−−−−−→ B′2. Hence, B′1 = νm̃.νM.(outho(c,M).Q′1 | Q′2)

for some m̃, Q′1, Q′2 and B′2 ≡ νm̃.(Q′1 | Q′2). But since we assumed that the bound
names of B′1 are distinct from the names of C ′1 and are bound only once, we obtain
that C ′1[B′1] ≡ νñ′1.νm̃.νM.(inat(c, x).P1 | P2 | outho(c,M).Q′1 | Q′2). Hence C ′1[B′1] →c
νñ′1.νm̃.νM.(P1{M/x} | P2 | Q′1 | Q′2) ≡ C ′[νm̃.(Q′1 | Q′2)] ≡ C ′[B′2].
• Case 5.b, M ∈ Ch but M 6∈ r̃: Thus A′1

out(c,M)−−−−−→c νr̃.(Q1 | Q2). Hence, since the names and
variables in r̃ are not in D′1, we obtain that A′′ ≡ νñ′1.(P1{M/x} | P2 | νr̃.(Q1 | Q2)). Let
A′ = νr̃.(Q1 | Q2), C ′[_] = νñ′1.(P1{M/x} | P2 | _) and tr = tr1.out(c,M). We have that
A′′ ≡ C ′[A′] and A tr=⇒c A

′. Lastly let B′ be a closed extended process such that B tr=⇒c B
′

and φ(B′) ∼ φ(A′). We have that there exists B′1 such that B tr1=⇒c B
′
1
out(c,M)−−−−−→c B

′
2 →∗c B′.

By renaming, we can assume that the bound names of B′1 are distinct from the names of C ′1
and are bound only once. Since φ(B′) ∼ φ(A′), we have also that φ(B′1) ∼ φ(A′1). Thus, we
can apply our induction hypothesis on B′1. This allows us to deduce that C[B] →∗c C ′1[B′1]
and C ′1[_] is c-closing for B′1. In order to conclude, it remains to show that C ′1[B′1]→c C

′[B′]
(since fv(C ′1[B′1]) and since B′2 →∗c B′ implies C ′[B′2]→∗c C ′[B′]).
We have seen that B′1

out(c,M)−−−−−→ B′2. Hence, B′1 = νm̃.(outho(c,M).Q′1 | Q′2) for some m̃,
Q′1, Q

′
2 such that M 6∈ m̃ and B′2 ≡ νm̃.(Q′1 | Q′2). But since we assumed that the

bound names of B′1 are distinct from the names of C ′1 and are bound only once, we ob-
tain that C ′1[B′1] ≡ νñ′1.νm̃.(inat(c, x).P1 | P2 | outho(c,M).Q′1 | Q′2). Hence C ′1[B′1] →c
νñ′1.νm̃.(P1{M/x} | P2 | Q′1 | Q′2) ≡ C ′[νm̃.(Q′1 | Q′2)] ≡ C ′[B′2].
• Case 5.c, M 6∈ Ch: Consider y a fresh variable. Thus A′1

νy.out(c,y)−−−−−−→c νr̃.(Q1 | Q2 | {M/y}).
Hence, since the names and variables in r̃ are not in D′1 and since y is fresh, we obtain
that A′′ ≡ νñ′1.νy.νr̃.(P1{y/x} | P2 | Q1 | Q2 | {M/y}) ≡ νñ′1.νy.(P1{y/x} | P2 | νr̃.(Q1 |
Q2 | {M/y})). Let A′ = νr̃.(Q1 | Q2 | {M/y}), C ′[_] = νñ′1.νy.(P1{y/x} | P2 | _) and
tr = tr1.νy.out(c, y). We have that A′′ ≡ C ′[A′] and A

tr=⇒c A
′. Lastly let B′ be a closed

extended process such that B tr=⇒c B
′ and φ(B′) ∼ φ(A′). We have that there exists B′1 such

that B tr1=⇒c B
′
1

νy.out(c,y)−−−−−−→c B
′
2 →∗c B′. By renaming, we can assume that the bound names

of B′1 are distinct from the names of C ′1 and are bound only once. Since φ(B′) ∼ φ(A′), we
deduce that dom(B′1) = dom(A′1) and φ(B′1) ∼ φ(A′1). Thus, we can apply our induction
hypothesis on B′1. This allows us to deduce that C[B]→∗c C ′1[B′1] and C ′1[_] is c-closing for
B′1. In order to conclude, it remains to show that C ′1[B′1] →c C

′[B′] (since fv(C ′1[B′1]) and
since B′2 →∗c B′ implies C ′[B′2]→∗c C ′[B′]).
We have seen that B′1

νy.out(c,y)−−−−−−→ B′2. Hence, B′1 = νm̃.(outho(c,N).Q′1 | Q′2) for some m̃,
N 6∈ Ch, Q′1, Q′2 and B′2 ≡ νm̃.(Q′1 | Q′2 | {N/y}). But since we assumed that the bound
names of B′1 are distinct from the names of C ′1 and are bound only once, we obtain that
C ′1[B′1] ≡ νñ′1.νm̃.(inat(c, x).P1 | P2 | outho(c,N).Q′1 | Q′2). Moreover, since y is fresh, we
obtain that νñ′1.νy.νm̃.(inat(c, x).P1 | P2 | outho(c, y).Q′1 | Q′2 | {N/y}). Hence C ′1[B′1] →c
νñ′1.νy.νm̃.(P1{y/x} | P2 | Q′1 | Q′2 | {N/y}) ≡ C ′[νm̃.(Q′1 | Q′2 | {N/y})] ≡ C ′[B′2].

This conclude the proof of the proposition for s = c. Therefore, it remains to take care of the
cases s = p and s = e. Let us focus first on the case s = p. The proof is in fact very similar to
the classical semantics. Considering that the differences between the classical semantics and the

38 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

private semantics are on the internal communication, we only need the rules that are not already
covered in the classical proof. Notice that the rule C-Env correspond to either Case 3 or Case
4 when M is of base type or Case 5.c. Moreover, the rules Then and Else are already covered
either Case 1 or 2.a or 2.b. Hence it remains the case of the rules C-Priv and C-Open.

Case 6, rule C-Open between C ′1 (input) and A′1 (output), i.e. D′1 = inθ(c, x).P1 | P2, A′1 =
νr̃.(outho(c, d).Q1 | Q2) and A′′ ≡ νñ′1.νr̃.(P1{d/x} | P2 | Q1 | Q2 | ωd). Lets us do a case analysis
on whether (6.a) d ∈ r̃ or (6.b) d 6∈ r̃. Note that Case (6.a) is in fact almost identical to Case
(5.a) and that the result holds with C ′[_] = νñ′1.νd.(P1{d/x} | P2 | ωd | _), A′ = νr̃′.(Q1 | Q2)
and tr = tr.νd with νr̃ = νr̃′.νd. Furthermore, note that Case (6.b) is also very similar to Case
(5.b) and that the result holds with C ′[_] = νñ′1.(P1{d/x} | P2 | ωd | _) and A′′ = νr̃.(Q1 | Q2).
Notice that in both cases C ′[_] is p-closing for A′ and B′ since ωd was added to C ′[_].

Case 7, rule C-Open between A′1 (input) and C ′1 (output), i.e. D′1 = outθ(c, d).P1 | P2, A′1 =
νr̃.(inho(c, x).Q1 | Q2) and A′′ ≡ νñ′1.νr̃.(P1 | P2 | Q1{d/x} | Q2 | ωd). This case if very similar to
Case 4 when M is of channel type and the result holds with C ′[_] = νñ′1.(P1 | P2 | ωd | _) and
A′ = νr̃.(Q1{d/x} | Q2). Notice that in both cases C ′[_] is p-closing for A′ and B′ since ωd was
added to C ′[_].

Case 8, rule C-Priv with a communication on a channel c. Notice that this rule is in fact partially
covered by the beginning of the proof. Indeed, Case 1 and 3 cover the cases where c is not in ñ′1.
Therefore, we only need to focus on the case where the private channel is in ñ′1, i.e. νñ′1 = νñ′′1.νc
for some ñ′′1. We know that C ′1[_] is p-closing for A′1. Hence since c is a channel bound in C ′1[_]
whose scope includes _, we deduce that if c ∈ fn(A1) then ωc is also in the scope of c. But
according to the definition of the rule, we know that ωc is not in the scope of νc. Moreover,
if the output or input is done by A′1 then it would implies that c ∈ fn(A1). Thus, this allows
us to deduce that this both output and input are tagged with at, meaning that there exists D′′1
such that νc.(D′1 | A′1) τ−→p νc.(D′′1 | A′1) and A′′ ≡ νñ′′1.νc.(D′′1 | A′1). In such a case, by denoting
C ′[_] = νñ′′1.νc.(D′′1 | _), A′ = A′1 and tr = tr1, we obtain A′′ ≡ C ′[A′] and A tr1=⇒p A

′. Lastly let B′

be a closed extended process such that B tr=⇒p B
′ and φ(B′) ∼ φ(A′). By our inductive hypothesis,

we know that C[B] →∗p C ′1[B′]. But C ′1[B′] = νñ′′1.νc.(D′1 | B′) →p νc.(D′′1 | B′) ≡ C ′[B′]. Hence
the result holds.

We have concluded the proof of the property for s = p hence it remains the case s = e. Once,
again several cases are already covered since `−→p⊂

`−→e. Hence we only need to focus on the cases
of the rules C-Eav and C-OEav:

Case 8, rule C-Eav, i.e. A′1 = νr̃.(outho(c, u).Q1 | inho(c, x).Q2 | Q3), D′1 = eav(c, y).P1 | P2),
A′′ ≡ νñ′1.νr̃.(P1{u/y} | P2 | Q1 | Q2{u/x} | Q3) and u is of base type (We assume w.l.o.g. that
the names and variables in r̃ are not in D′1). Note that in such a case c 6∈ r̃. Moreover, note this
is the only possible combinaison of input and output since C ′1 is an attacker evaluation context
and A′1 is an honest extended process. Let us consider a fresh variable z. Hence A′1

νz.eav(c,z)−−−−−−→
νr̃.(Q1 | Q2{u/x} | Q3 | {u/z}). But since z is fresh, we deduce that A′′ ≡ νñ′1.νz.νr̃.(P1{u/y} |
P2 | Q1 | Q2{u/x} | Q3 | {u/z}). Let C ′[_] = νñ′1.νz.(P1{z/y} | P2 | _), A′ = νr̃.(Q1 | Q2{u/x} |

Babel et al. / On the semantics of communications when verifying equivalence properties 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Q3 | {u/z}) and tr = tr1.νz.eav(c, z). We have A′′ ≡ C ′[A′] and A
tr=⇒p A

′. Let B′ be a closed
extended process such that B tr=⇒ B′ and φ(B′) ∼ φ(A′). We have that there exists B′1 such that
B

tr1=⇒e B
′
1

νz.eav(c,z)−−−−−−→e B
′
2 →∗e B′. By renaming, we can assume that the bound names of B′1 are

distinct from the names of C ′1 and are bound only once. Since φ(B′) ∼ φ(A′), we deduce that
dom(B′1) = dom(A′1) and φ(B′1) ∼ φ(A′1). Thus, we can apply our induction hypothesis on B′1.
This allows us to deduce that C[B]→∗e C ′1[B′1] and C ′1[_] is e-closing for B′1. In order to conclude,
it remains to show that C ′1[B′1] →e C

′[B′2] and C ′[_] is p-closing for B′2 (since C ′[_] is e-closing
for B′2 and B′2 →∗e B′ implies C ′[B′2]→∗e C ′[B′] and C ′[_] is p-closing for B′).
We have seen that B′1

νz.eav(c,z)−−−−−−→e B
′
2. Hence, B′1 = νm̃.(outho(c,N).Q′1 | in.(c, x)Q′2 | Q′3) for

some m̃, N is of base type, Q′1, Q′2, Q′3 and B′2 ≡ νm̃.(Q′1 | Q′2{N/x} | Q′3 | {N/y}). But since we
assumed that the bound names ofB′1 are distinct from the names of C ′1 and are bound only once, we
obtain that C ′1[B′1] ≡ νñ′1.νm̃.(eav(c, y).P1 | P2 | outho(c,N).Q′1 | in.(c, x)Q′2 | Q′3). Moreover, since
z is fresh, we obtain that νñ′1.νz.νm̃.(eav(c, y).P1 | P2 | outho(c, z).Q′1 | in.(c, x)Q′2 | Q′3 | {N/z}).
Hence C ′1[B′1] →e νñ′1.νy.νm̃.(P1{z/y} | P2 | Q′1 | Q′2{N/x} | Q′3 | {N/z}) ≡ C ′[νm̃.(Q′1 |
Q′2{N/x} | Q′3 | {N/z})] ≡ C ′[B′2]. Note that since the rule is focused on base type terms, we
directly have that C ′[_] is e-closing for B′2.

Case 9, rule C-OEav, i.e. A′1 = νr̃.(outho(c, d).Q1 | inho(c, x).Q2 | Q3), D′1 = eav(c, y).P1 | P2),
A′′ ≡ νñ′1.νr̃.(P1{d/y} | P2 | Q1 | Q2{d/x} | Q3 | ωd) and d is of channel type (We assume w.l.o.g.
that the names and variables in r̃ are not in D′). We have to do a case analysis on d:

• Case d ∈ r̃: Let us denote νr̃ = νr̃′.νd. In such a case A′1
νd.eav(c,d)−−−−−−→ νr̃′.(Q1 | Q2{d/x} | Q3).

But we know that the names and variables in r̃ are not in D′1 hence A′′ ≡ νñ′1.νd.(P1{d/y} |
P2 | ωd | νr̃′.(Q1 | Q2{d/x} | Q3)). Let C ′[_] = νk̃′.νd.(Q1{d/y} | Q2 | ωd | _), A′ =
νr̃′.(Q1 | Q2{d/x} | Q3) and tr = tr1.νd.eav(c, d). We have A′′ ≡ C ′[A′] and A tr=⇒e A

′. Let
B′ be a closed extended process such that B tr=⇒e B

′ and φ(B′) ∼ φ(A′). We have that there
exists B′1 such that B tr1=⇒e B

′
1

νd.eav(c,d)−−−−−−→e B
′
2 →∗e B′. By renaming, we can assume that

the bound names of B′1 are distinct from the names of C ′1 and are bound only once. Since
φ(B′) ∼ φ(A′), we deduce that dom(B′1) = dom(A′1) and φ(B′1) ∼ φ(A′1). Thus, we can apply
our induction hypothesis on B′1. This allows us to deduce that C[B]→∗e C ′1[B′1] and C ′1[_] is
e-closing for B′1. In order to conclude, it remains to show that C ′1[B′1]→e C

′[B′2] and C ′[_]
is e-closing for B′2 (since C ′[_] is e-closing for B′2 and B′2 →∗e B′ implies C ′[B′2] →∗e C ′[B′]
and C ′[_] is e-closing for B′).
We have seen that B′1

νd.eav(c,d)−−−−−−→e B
′
2. Hence, B′1 = νm̃.νd.(outho(c, d).Q′1 | in.(c, x)Q′2 | Q′3)

for some m̃, Q′1, Q′2, Q′3 and B′2 ≡ νm̃.(Q′1 | Q′2{d/x} | Q′3). But since we assumed that
the bound names of B′1 are distinct from the names of C ′1 and are bound only once, we
obtain that C ′1[B′1] ≡ νñ′1.νm̃.νd.(eav(c, y).P1 | P2 | outho(c, d).Q′1 | in.(c, x)Q′2 | Q′3). Hence
C ′1[B′1] →e νñ

′
1.νm̃.νd.(P1{d/y} | P2 | Q′1 | Q′2{d/x} | Q′3 | ωd) ≡ C ′[νm̃.(Q′1 | Q′2{d/x} |

Q′3)] ≡ C ′[B′2]. Note that d is possible a new free channel of B′2. However, since we have ωd
in C ′, we ensure that C ′ is e-closing for B′2
• Case d 6∈ r̃: In such a case A′1

eav(c,d)−−−−→ νr̃.(Q1 | Q2{d/x} | Q3). But we know that the names
and variables in r̃ are not inD′1 hence A′′ ≡ νñ′1.(P1{d/y} | P2 | ωd | νr̃.(Q1 | Q2{d/x} | Q3)).
Let C ′[_] = νk̃′.(Q1{d/y} | Q2 | ωd | _), A′ = νr̃.(Q1 | Q2{d/x} | Q3) and tr = tr1.eav(c, d).

40 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We have A′′ ≡ C ′[A′] and A tr=⇒e A
′. Let B′ be a closed extended process such that B tr=⇒e B

′

and φ(B′) ∼ φ(A′). We have that there exists B′1 such that B tr1=⇒e B
′
1
eav(c,d)−−−−→e B

′
2 →∗e B′.

By renaming, we can assume that the bound names of B′1 are distinct from the names of
C ′1 and are bound only once. Since φ(B′) ∼ φ(A′), we deduce that dom(B′1) = dom(A′1)
and φ(B′1) ∼ φ(A′1). Thus, we can apply our induction hypothesis on B′1. This allows us to
deduce that C[B]→∗e C ′1[B′1] and C ′1[_] is e-closing for B′1. In order to conclude, it remains
to show that C ′1[B′1]→e C

′[B′2] and C ′[_] is e-closing for B′2 (since C ′[_] is e-closing for B′2
and B′2 →∗e B′ implies C ′[B′2]→∗e C ′[B′] and C ′[_] is e-closing for B′).
We have seen that B′1

eav(c,d)−−−−→e B
′
2. Hence, B′1 = νm̃.(outho(c, d).Q′1 | in.(c, x)Q′2 | Q′3) with

d 6∈ m̃ for some m̃, Q′1, Q′2, Q′3 and B′2 ≡ νm̃.(Q′1 | Q′2{d/x} | Q′3). But since we assumed
that the bound names of B′1 are distinct from the names of C ′1 and are bound only once,
we obtain that C ′1[B′1] ≡ νñ′1.νm̃.(eav(c, y).P1 | P2 | outho(c, d).Q′1 | in.(c, x)Q′2 | Q′3). Hence
C ′1[B′1] →e νñ′1.νm̃.(P1{d/y} | P2 | Q′1 | Q′2{d/x} | Q′3 | ωd) ≡ C ′[νm̃.(Q′1 | Q′2{d/x} |
Q′3)] ≡ C ′[B′2]. Note that d is possible a new free channel of B′2 and b could be bound in ñ′1.
However, since we have ωd in C ′, we ensure that C ′ is e-closing for B′2.

�

Lemma 10. Let A and B be two closed extended processes such that A ≈st B. Let u be a name that
occurs in fn(A) ∪ fn(B) and not in bn(A) ∪ bn(B), and u′ be a fresh name. For all s ∈ {c, p, e},
we have A{u′

/u} ≈st B{u
′
/u}.

Proof. By induction on the derivation. �

The previous lemma indicates that the trace equivalence are preserved by replacement of free
names.
As for the previous proposition, the proof of Theorem 1 is taken from [19] for the classical

semantics and we adapt it for the private and eavesdropping semantics.

Theorem 1. ≈st (≈sm and ≈st = ≈sm on image-finite processes for s ∈ {c, e, p}.

Proof. We first prove that for all s ∈ {c, p, e}, ≈st ⊆ ≈sm. Since we already proved in the body of
the paper that there exists two closed honest extended processes such that A ≈sm B but A ≈st B,
we would thus obtain that ≈st (≈sm.
Let A,B be two closed extended processes such that A ≈st B. Let C[_] be an evaluation context

s-closing for A and B, and c be a channel name. We assume w.l.o.g. that C[_] = νñ.(D1 | νm̃.(_ |
D2)) for some extended processes D,D′ and for some sequences of names and variables ñ, and m̃.
We assume w.l.o.g. that m̃ ∩ (bn(A) ∪ bv(A)) = ∅ and m̃ ∩ (bn(B) ∪ bv(B)) = ∅.
Let A2 = A{m̃′

/m̃} and B2 = B{m̃′
/m̃} where m̃′ is a sequence of fresh names and variables.

Thanks to Lemma 10, we have that A2 ≈st B2. Hence, by structural equivalence, there exists
C2[_] = νk̃.(D | _) such that C[A] ≡ C2[A2] and C[B] ≡ C2[B2].
Assume now that C[A] ⇓sc. This means that there exist a evaluation context C1 that does

not bind c, a term M , and a plain process P , θ ∈ {at, ho} such that C[A] ≡ C2[A2] →∗s
C1[outθ(c,M).P]. Applying Proposition 4 on A2, B2 and C2[_], we know that there exist a closed
extended process A′2, an evaluation context C ′2[_] = νr̃.(E | _) s-closing for A′2 and tr ∈ (Ar{τ})∗

Babel et al. / On the semantics of communications when verifying equivalence properties 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

such that C1[outθ(c,M).P] ≡ C2[A′2], and A2
tr=⇒s A

′
2, and for all closed extended process B′2 such

that B2
tr=⇒s B

′
2 and φ(B′2) ∼ φ(A′2), we have that C2[B2]→∗s C ′2[B′2]. Moreover, we assume w.l.o.g.

that bn(()tr) ∩ fn(()B2) = ∅.
Since C ′2 = νr̃.(E|_), we can deduce from C1[outθ(c,M).P] ≡ C ′2[A′2] that the output outθ(c,M)

comes from the process E when θ = at or from A′2 when θ = ho. We distinguish these two cases:

• Case θ = at: Since, we have that A2 ≈st B2, we know that that there exists B′2 such that
B2

tr=⇒s B
′
2 and φ(A′2) ∼ φ(B′2). Therefore, we have that C2[B2] →∗s C ′2[B′2] ≡ νr̃.(E | B′2).

But by hypothesis, we know that the output outθ(c,M) comes from E and c 6∈ r̃. Hence we
have that C2[B2] ⇓sc, and since C[B] ≡ C2[B2], we conclude that C[B] ⇓sc.
• Case θ = ho: Thus, we have that A′2 ≡ νṽ.(outθ(c,M).P | A3) with c 6∈ ṽ, r̃. Thus, we
have that A′2

νz.out(c,z)−−−−−−→s νṽ.(P | A3 | {M/z}) where z is fresh (if M is a term of channel
type, the transition is different but the proof can be done in a similar way.) Let A′′ =
νṽ.(P | A3 | {M/z}) and tr′ = tr · νz.out(c, z), we have that A2

tr′
=⇒s A

′′. Since we have
that A2 ≈st B2, we have that there exists B′2 such that B2

tr′
=⇒s B

′
2 and φ(A′′) ∼ φ(B′2).

Since internal reduction rules do not modify the frame (modulo structural equivalence),
we can deduce w.l.o.g. that there exists B′ such that B2

tr=⇒s B
′ νz.out(c,z)−−−−−−→s B

′
2. Therefore,

we have that there exists a term N , an evaluation context C3 and a process Q such that
B′ ≡ C3[outho(c,N).Q] and c is not bind by C3. Furthermore, we have that φ(A′2) ∼ φ(B′)
which means that C2[B2]→∗s C ′2[B′], and thus C2[B2]→∗s C ′2[C3[outho(c,N).Q]]. Hence, we
have that C2[B2] ⇓sc, and since C[B] ≡ C2[B2], we conclude that C[B] ⇓sc.

This conclude the proof of ≈st ⊆ ≈sm. It remains to prove that on imagine-finite processes,
≈st = ≈sm for all s ∈ {c, e, p}. We first focus on s = c.
Assume that A 6≈c

t B. We assume w.l.o.g. that A 6vst B. In such a case, there exists a witness for
the non equivalence. This means that there exists A′, tr such that bn(()tr) ∩ fn(()B) = ∅, and for
all B′, B tr=⇒c B

′ implies φ(A′) 6∼ φ(B′). Moreover, we assume that no name in tr is bound twice
(i.e. νa. can not occur twice in tr) and bound names in tr are distinct from free names that occur
in A, B, and tr.
We build an evaluation context Cc[_] according to the trace tr and also the tests that witness

the fact that static equivalence does not hold. Let Str = {φ(B′) | B tr=⇒c B
′}. Since B is image-

finite, we know that Str/ ∼ is finite. Let {φ1, . . . , φm} = S/ ∼. Note that m can be equal to 0 if
there is no B′ such that B tr=⇒c B

′.

We know that {1, . . . ,m} = T+] T− with:

• for each i ∈ T+, there exist two terms Mi and Ni such that v(Mi) ∪ v(Ni) ⊆ dom(φ(A′)),
(Mi =E Ni)φ(A′), and (Mi 6=E Ni)φi; and
• for each i ∈ T−, there exist two terms Mi and Ni such that v(Mi) ∪ v(Ni) ⊆ dom(φ(A′)),

(Mi 6=E Ni)φ(A′), and (Mi =E Ni)φi.

Let bad be a fresh channel name that does not occur in A and B. Let P1, . . . , Pm, Pm+1 be the
plain processes defined as follows:

• Pm+1 =̂ outat(bad, bad).0

42 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• for 1 6 i 6 m, we define Pi as follows:

Pi =̂ if Mi = Ni then Pi+1 else 0 when i ∈ T+

Pi =̂ if Mi = Ni then 0 else Pi+1 when i ∈ T−

Let {a1, . . . , ak} be channel names that occur free in A, B, and tr. Let X 0
ch = {xa1 , . . . , xak

} be
a set of variables of channel type, and σ = {xa1 7→ a1, . . . , xak

7→ ak}. Moreover, for all channel
names {d1, . . . , dm} that are bound in tr, we also associate fresh variables xd1 , . . . , xdm .
We define Cc[_] such that Cc[_] = νz̃.(Qc(tr,X 0

ch) | _) where z̃ = dom(φ(A)) and Qc(tr,Xch) is
defined by recurrence on tr as follows:

• if tr = ε then Qc(tr,Xch) = P1;
• if tr = in(a,M).tr′ then Qc(tr,Xch) = outat(xaσ,M).Qc(tr′,Xch);
• if tr = νz.out(a, z).tr′ and z is of base type then Qc(tr,Xch) = inat(xaσ, x).Qc(tr′,Xch)
• it tr = out(a, c).tr′ then Qc(tr,Xch) = inat(xaσ, y).if y = xcσ then Qc(tr′,Xch) else 0 where y
is fresh variable of channel type; and
• if tr = νc.out(a, c) and c is of channel type then Qc(tr,Xch) = inat(xaσ, xc).if xc ∈
Xchσ then 0 else Qc(tr′,X ′ch) where X ′ch = Xch] {xc}.

We use the conditional if u ∈ {u1, . . . , uk} then 0 else P as a shortcut for

if u = u1 then 0 else (if u = u2 then 0 else (. . . (if u = uk then 0 else P) . . .)).

We can see that Cc[A] ⇓c
bad since A tr=⇒ A′ and φ(A′) satisfies by definition all the tests that are

tested in P1, . . . , Pm. However, by construction of Cc[_], we have that Cc[B] 6⇓c
bad.

This conclude the proof for the case s = c. The proof for s = p and e are very similar. We only
need to slightly modify the context Cc[_]. In fact since the possible labels in the private semantics
are the same as in the original semantics, we have Cp[_] = Cc[_]. However, for the eavesdropping
semantics, we define Ce[_] such that Ce[_] = νz̃.(Qe(tr,X 0

ch) | _) where z̃ = dom(φ(A)) and
Qe(tr,Xch) is defined by recurrence on tr as follows:

• if tr = ε then Qe(tr,Xch) = P1;
• if tr = in(a,M).tr′ then Qe(tr,Xch) = outat(xaσ,M).Qe(tr′,Xch);
• if tr = νz.out(a, z).tr′ and z is of base type then Qe(tr,Xch) = inat(xaσ, z).Qe(tr′,Xch)
• it tr = out(a, c).tr′ then Qe(tr,Xch) = inat(xaσ, y).if y = xcσ then Qe(tr′,Xch) else 0 where y
is fresh variable of channel type; and
• if tr = νc.out(a, c) and c is of channel type then Qe(tr,Xch) = inat(xaσ, xc).if xc ∈
Xchσ then 0 else Qe(tr′,X ′ch) where X ′ch = Xch] {xc}.
• if tr = eav(a, c).tr′ with c of channel-type then Qe(tr,Xch) = eav(xaσ, y).if y =
xcσ then Qe(tr′,Xch) else 0 where y is fresh variable of channel type;
• if tr = νz.eav(a, z).tr′ and z is of base type then Qe(tr,Xch) = eav(xaσ, z).Qe(tr′,Xch)
• if tr = νc.eav(a, c).tr′ and c is of channel type then Qe(tr,Xch) = eav(xaσ, xc).if xc ∈
Xchσ then 0 else Qe(tr′,X ′ch) where X ′ch = Xch] {xc}.

�

Babel et al. / On the semantics of communications when verifying equivalence properties 43

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Appendix D. Proof of Theorem 6

In this section, we want to prove that ≈e
m (≈p

m ∩ ≈c
m. In order to show that ≈e

m (≈c
m, we

need to build a transformation of context that would allows us to go from the classic semantics
to eavesdropping semantics, and vice versa.
Notice that in the definition of structural equivalence !A |!A is not equivalence to !A even

though they have the same behavior. In fact, for reachability, may equivalence, trace equivalence,
observational equivalence and labeled bissimilar, using the structural equivalence coincides with
using the struutural equivalence augmented with the equality !A |!A ≡!A. As such in this section,
we will consider the structural equivalence augmented with the equality !A |!A ≡!A.

Definition 13. Let P be an extended attacker process. We define P inductively as follows:

• 0 when P = 0
• P1 | P2 when P = P1 | P2
• P when P = {u/x}
• ωc when P = ωc

• νn.(P ′ |!eav(n, y) |!eav(n, z)) when P = νn.P ′, n is of channel type and y, z are variables of
base and channel type respectively.
• νk.P ′ when P = νn.P ′, n is of base type
• if u = v then P1 else P2 when P = if u = v then P1 else P2
• eav(c, x).P ′ when P = eav(c, x).P ′
• outat(c, u).P ′ when P = outat(c, u).P
• inat(c, x).P ′ when P = inat(c, x).P ′ and x is of base type
• inat(c, x).(P ′ |!eav(x, y) |!eav(x, z)) when P = inat(c, x).P ′,y, z are variables of base and
channel type respectively.

Let Tch be the terms of channel type, i.e. names and variables of channel type. Let C[_] = νñ.(D |
) be an attacker evaluation context and S a set of channel names. We define CS [] as follows:

νñ.(D | _ |
∏

a∈ñ∩Tch

!eav(a, y) |!eav(a, z) | ωa) |
∏
a∈S

!eav(a, y) |!eav(a, z) | ωa

where y and z are variables of base and channel type respectively.

In order to facilitate the readability of the proof, for a set S of names and variables, we will
denote P(S) =

∏
a∈S∩Tch

!eav(a, y) |!eav(a, z) and Po(S) =
∏
a∈S∩Tch

!eav(a, y) |!eav(a, z) | ωa.
Moreover, we will consider that P(S) | P(S) ≡ P(S).
Hence, CS [_] can now be written as νñ.(D | _ | Po(ñ)) | Po(S).
Note that from the definition, we have that for all A closed honest extended process, if C[_] =

νñ.(D | _) is c-closing for A then CS [_] is e-closing for A for all S.

Lemma 11. Let A be an extended process and νñ a sequence of names and variables. We have
νñ.A ≡ νñ.(A | P(ñ).

Proof. Direct from the definition. �

44 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Lemma 12. Let A be an closed honest extended process. Let C[_] = νñ.(νm̃.D | _) be an attacker
evaluation context c-closing for A such that D is named-cleaned and eavesdrop-free. Let S be a
set set of channel names such that fc(C[A]) ⊆ S.

(1) For all C[A]→c A0, there exist A′ closed honest extended process, C ′[_] = νñ′.(νm̃′.D′ | _)
an attacker evaluation context c-closing for A′ such that D′ is name-cleaned and eavesdrop-
free, C ′[A′] ≡ A0 and CS [A]→e C ′S [A′]

(2) For all CS [A]→e A0, there exist A′ closed honest extended process, C ′[_] = νñ′.(νm̃′.D′ | _)
an attacker evaluation context c-closing for A′ such that D′ is name-cleaned and eavesdrop-
free, C ′S [A′] ≡ A0 and C[A]→c C

′[A′]

Proof. We first start by proving the first property. Notice that by structural equivalence, we can
always assume that the bound names and variables in C[A] are only bound once and are distinct
from the free names in S. Indeed, for all C ′′[_], A′′, if C[A] ≡ C ′′[A′′] only by renaming of bound
names and variables then we obtain that CS [A] ≡ C ′′S [A′′].
We do a case analysis on the internal rule applied.

Case 1.a, rule Then on D, i.e. D = if u = v then D1 else D2 | D3 and A0 ≡ νñ.(D2 | D3 | A):
In such a case we have D →e D1 | D3 and so νm̃.(D | P(m̃)) →e νm̃.(D1 | D3 | P(m̃)). By
Lemma 11, we obtain that νm̃.D → νm̃.(D1 | D3). Let us denote C ′[_] = νñ.(νm̃.(D1 | D3) | _)
and A′ = A. Since C ′S [_] = νñ.(νm̃.(D1 | D3) | _ | Po(ñ)) | Po(S), we obtain that A0 ≡ C ′[A′]
and CS [A]→e C ′S [A′].

Case 1.b, rule Else on D: Similar to Case 1.a.

Case 2.a, rule Then on A, i.e. A ≡ νr̃.(if u = v then P1 else P2 | P3) and A0 ≡ C[νr̃.(P1 | P3)]:
In such a case, let us denote C ′[_] = C[_] and A′ = νr̃.(P1 | P3). Therefore, C ′[A′] = C[A′] ≡ A0.
Note that A→e A

′. Hence C[A]→e C[A′] and CS [A]→e CS [A′]. Thus the result holds.

Case 2.b, rule Else on A: Similar to Case 2.a.

Case 3, rule Comm on A, i.e. A ≡ νr̃.(outho(c, u).P1 | inho(c, x).P2 | P3) and A0 ≡ C[νr̃.(P1 |
P2{u/x} | P3)]: Note that even though A →c νr̃.(P1 | P2{u/x} | P3), we don’t necessarily have
that A→e νr̃.(P1 | P2{u/x} | P3). We have to do a case analysis on u and c:

• Case 3.a, c ∈ r̃: In such a case, we know from A being an honest processes that c 6∈ oc(P3).
Thus we can apply rule C-Priv to obtain that A →e νr̃.(P1 | P2{u/x} | P3). Hence, by
denoting C ′[_] = C[_] and A′ = νr̃.(P1 | P2{u/x} | P3), we obtain that C ′[A′] = C[A′] ≡ A0,
A→e A

′ and so C[A]→e C[A′] and CS [A]→e CS [A′]. Therefore, the result holds.
• Case 3.b, c 6∈ r̃ and u of base type: In such a case, outho(c, u).P1 | inho(c, x).P2 | P3 |

eav(c, y)→e P1 | P2{u/x} | P3 by the rule C-Eav. Let us denote A′ = νr̃.(P1 | P2{u/x} | P3).
Since c 6∈ r̃, we obtain that A | eav(c, y) →e A

′ and so A |!eav(c, y) →e A
′ |!eav(c, y). By

noticing that c is either in ñ or in fc(C[A]) and so in S, the structural equivalence gives us
that CS [A]→e CS [A′]. Hence the result holds with C ′[_] = C[_].

Babel et al. / On the semantics of communications when verifying equivalence properties 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• Case 3.c, c 6∈ r̃ and u of channel type: This case is very similar to Case 3.b. Indeed,
outho(c, u).P1 | inho(c, x).P2 | P3 | eav(c, z) →e P1 | P2{u/x} | P3 | ωc by the rule C-OEav.
Let us denote A′ = νr̃.(P1 | P2{u/x} | P3). Since c 6∈ r̃, we obtain that A | eav(c, z)→e A

′ |
ωc and so A |!eav(c, z) | ωc →e A

′ |!eav(c, z) | ωc. By noticing that c is either in ñ or in
fc(C[A]) and so in S, the structural equivalence gives us that CS [A]→e CS [A′]. Hence the
result holds with C ′[_] = C[_].

Case 4, rule Comm on D, i.e. D = outat(c, u).D1 | inat(c, x).D2 | D3 and A0 ≡ νñ.(νm̃.(D1 |
D2{u/x} | D3) | A): Let us do a case analysis on u:

• Case 4.a, u is of base type: In such a case, we have outat(c, u).D1 | inat(c, x).D2 | D3 →e D1 |
D2{u/x} | D3 by the rule C-Env. Hence, νm̃.(outat(c, u).D1 | inat(c, x).D2 | D3 | P(m̃))→e
νm̃.(D1 | D2{u/x} | D3 | P(m̃)). Let us denote D′ = (D1 | D2{u/x} | D3). By Lemma 11,
we obtain that νm̃.D →e νm̃.D′. Hence, we deduce that νñ.(νm̃.D | A | Po(ñ)) | Po(S)→e
νñ.(νm̃.D′ | A | Po(ñ)) | Po(S). Let us denote C ′[_] = νñ.(νm̃.D′ | _) and A′ = A. We
have A0 ≡ C ′[A′] and CS [A]→e C ′S [A′]. Hence the result holds.
• Case 4.b, u is of channel type and u 6∈ m̃ ∪ ñ: In such a case, u ∈ fv(C[A]) ⊆ S and we
have outat(c, u).D1 | inat(c, x).(D2 | P(x)) | D3 →e D1 | D2{u/x} | D3 | P(u) | ωu by the
rule C-Open. Since u 6∈ m̃, we obtain that νm̃.(outat(c, u).D1 | inat(c, x).(D2 | P(x)) | D3 |
P(m̃))→e νm̃.(D1 | D2{u/x} | D3 | P(m̃)) | Po(u). Let us denote D′ = (D1 | D2{u/x} | D3).
By Lemma 11, we obtain that νm̃.D →e νm̃.D′ | Po(u). Moreover, since u 6∈ ñ then
νñ.(νm̃.D | A | Po(ñ)) →e ñ.(νm̃.D′ | A | Po(ñ)) | Po(u). Lastly, since u ∈ S and Po(u) |
Po(u) ≡ Po(u), we obtain that νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e ñ.(νm̃.D′ | A | Po(ñ)) |
Po(S). Therefore, the result holds with A′ = A and C ′[_] = νñ.(νm̃.D′ | _).
• Case 4.c, u is of channel type and u ∈ ñ: This case is similar to Case 4.b. Since u 6∈ m̃,
we can apply the same reasoning and obtain νm̃.D →e νm̃.D′ | Po(u) where D′ = (D1 |
D2{u/x} | D3). Since u ∈ ñ and Po(u) | Po(u) ≡ Po(u), we deduce that νñ.(νm̃.D | A |
Po(ñ)) →e νñ.(νm̃.D′ | A | Po(ñ)). Therefore, we obtain that νñ.(νm̃.D | A | Po(ñ)) |
Po(S) →e νñ.(νm̃.D′ | A | Po(ñ)) | Po(S) and so the result holds with A′ = A and
C ′[_] = νñ.(νm̃.D′ | _).
• Case 4.d, u is of channel type and u ∈ m̃: First of all, note that since u ∈ m̃, νm̃.D ≡
νu.νm̃′.D for some m̃′ such that u 6∈ m̃′. Note that since u is bound, u 6∈ fv(A) ∪ fn(A).
Hence, by applying the same reasoning as in Case 4.b, we obtain that νm̃′.D →e νm̃′.D′ |
Po(u) where D′ = (D1 | D2{u/x} | D3). Since P(u) | Po(u) ≡ P(u) | ωu | P(u) ≡ Po(u),
we deduce that νu.(νm̃′.D | P(u)) →e νu.(νm̃′.D′ | Po(u)). First, notice that νu.(νm̃′.D |
P(u)) = νu.νm̃′.D = νm̃.D by Lemma 11. Second, since u does not appear in A, we deduce
that νñ.(νm̃.D | A | Po(ñ)) →e νñ.(νu.(νm̃′.D′ | Po(u)) | A | Po(ñ) ≡ νñ.νu.(νm̃′.D′ | A |
Po(ñ ∪ {u})). Hence, if we denote ñ′ = νñ.νũ then νñ.(νm̃.D | A | Po(ñ))→e νñ

′.(νm̃′.D′ |
A | Po(ñ′)). Therefore, by denoting C ′[_] = νñ′.(νm̃′.D′ |) and A′ = A, we deduce CS [A]→e
C ′S [A′]. Thus the result holds.

Case 5, rule Comm between A (input) and D (output), i.e. D = outat(c, u).D1 | D2, A ≡
νr̃.(inho(c, x).P1 | P2) and A0 ≡ νñ.νm̃.νr̃.(D1 | D2 | P1{u/x} | P2): Note that c 6∈ m̃ ∪ r̃.
Let us do a case analysis on u:

46 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• Case 5.a, u is of base type: In such a case, let us split r̃ and m̃ in r̃b.r̃c and m̃b.m̃c respectively,
such that r̃c and m̃c are of channel type, and r̃b and m̃b are of base type. Since u is of base
type, we deduce that A0 ≡ νñ.νm̃b.νr̃b.(νm̃c.(D1 | D2) | νr̃c.(P1{u/x} | P2)). Note that
outat(c, u).D1 | D2 | inho(c, x).P1 | P2 →e D1 | D2 | P1{u/x} | P2 by the rule C-Env. Hence
outat(c, u).D1 | D2 | inho(c, x).P1 | P2 | P(m̃) →e D1 | D2 | P1{u/x} | P2 | P(m̃). Therefore,
νm̃.νr̃.(outat(c, u).D1 | D2 | inho(c, x).P1 | P2 | P(m̃)) →e νm̃.νr̃.(D1 | D2 | P1{u/x} | P2 |
P(m̃)). But νm̃.νr̃.(outat(c, u).D1 | D2 | inho(c, x).P1 | P2 | P(m̃)) ≡ νm̃.D | A thanks
to Lemma 11 and since we assume that bound names and variables are bound once and
distinct from free names and variables. Moreover, νm̃.νr̃.(D1 | D2 | P1{u/x} | P2 | P(m̃)) ≡
νm̃b.νr̃b.(νm̃c.(D1 | D2 | P(m̃c)) | νr̃c.(P1{u/x} | P2)). Therefore, let us denote ñ′ = ñ.m̃b.r̃b,
D′ = D1 | D2 and A′ = νr̃c.(P1{u/x} | P2). Notice that m̃b and r̃b being of base type implies
that Po(ñ) = Po(ñ′). Hence νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e νñ

′.(νm̃c.D′ | A′ | Po(ñ′)) |
Po(S). Hence, the result holds with C ′[_] = νñ′.(νm̃c.D

′ | _).
• Case 5.b, u is of channel type and u 6∈ m̃∪ ñ: Notice that in such a case A0 ≡ νñ.(νm̃.(D1 |
D2) | νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar reasoning as in Case 4.b and
the result will hold with C ′[_] = νñ.(νm̃.D′ | _), D′ = D1 | D2 and A′ = νr̃.(P1{u/x} | P2).
• Case 5.c, u is of channel type and u ∈ ñ: Notice that in such a case A0 ≡ νñ.(νm̃.(D1 | D2) |
νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar reasoning as in Case 4.c and the
result will hold with C ′[_] = νñ.(νm̃.D′ | _), D′ = D1 | D2 and A′ = νr̃.(P1{u/x} | P2).
• Case 5.d, u is of channel type and u ∈ m̃: Note that since u ∈ m̃, νm̃.D ≡ νu.νm̃′.D for
some m̃′ such that u 6∈ m̃′. Hence, A0 ≡ νñ.νu.(νm̃′.(D1 | D2) | νr̃.(P1{u/x} | P2)). The
rest of the proof follows a similar reasoning as in Case 4.d and the result will hold with
C ′[_] = νñ′.(νm̃′.D′ | _), D′ = D1 | D2, ñ′ = ñ.u and A′ = νr̃.(P1{u/x} | P2).

Case 6, rule Comm between A (output) and D (input), i.e. D = inat(c, x).D1 | D2, A ≡
νr̃.(outho(c, u).P1 | P2) and A0 ≡ νñ.νm̃.νr̃.(D1{u/x} | D2 | P1 | P2): Note that c 6∈ m̃ ∪ r̃.
Let us do a case analysis on u:

• Case 6.a, u is of base type: In such a case, let us split r̃ and m̃ in r̃b.r̃c and m̃b.m̃c respectively,
such that r̃c and m̃c are of channel type, and r̃b and m̃b are of base type. The rest of the proof
follows a similar reasoning as in Case 5.a and the result holds with C ′[_] = νñ′.(νm̃c.D

′ | _),
ñ′ = ñ.m̃b.r̃b, D′ = D1{u/x} | D2 and A′ = νr̃c.(P1 | P2).
• Case 6.b, u is of channel type and u 6∈ m̃ ∪ ñ: Notice that in such a case A0 ≡
νñ.(νm̃.(D1{u/x} | D2) | νr̃.(P1 | P2)). The rest of the proof follows a similar reasoning
as in Case 4.b and the result will hold with C ′[_] = νñ.(νm̃.D′ | _), D′ = D1{u/x} | D2
and A′ = νr̃.(P1 | P2).
• Case 6.c, u is of channel type and u ∈ ñ: Notice that in such a case A0 ≡ νñ.(νm̃.(D1 | D2) |
νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar reasoning as in Case 4.c and the
result will hold with C ′[_] = νñ.(νm̃.D′ | _), D′ = D1{u/x} | D2 and A′ = νr̃.(P1 | P2).
• Case 6.d, u is of channel type and u ∈ m̃: Note that since u ∈ m̃, νm̃.D ≡ νu.νm̃′.D for
some m̃′ such that u 6∈ m̃′. Hence, A0 ≡ νñ.νu.(νm̃′.(D1 | D2) | νr̃.(P1{u/x} | P2)). The
rest of the proof follows a similar reasoning as in Case 4.d and the result will hold with
C ′[_] = νñ′.(νm̃′.D′ | _), D′ = D1{u/x} | D2, ñ′ = ñ.u and A′ = νr̃.(P1 | P2).

Babel et al. / On the semantics of communications when verifying equivalence properties 47

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

This conclude the proof of the first property. The second property is in fact easy to prove:
All rules in the eavesdropping semantics other than Then and Else will be mapped by the
rule Comm in the classical semantics. One can notice that since we know that A and C do not
contain eavesdrop processes and since the transformation from A to A and C[_] to CS [_] only
adds processes of the form eav(c, y).0, the communication rules all becomes instances of the rule
Comm. For instance, an application of rule C-Eav would result into the following

outho(c, u).P | inho(c, x).Q | eav(c, y).0 τ−→e P | Q{u/x}

which is typically the rule Comm when we remove the transformation and so the process
eav(c, y).0. Lastly, since any instance of ωd has no impact on the classical semantics, every rules
thus corresponds to the rule Comm once the transformation removed. �

Corollary 3. Let A be an closed honest extended process. Let C[_] = νñ.(νm̃.D | _) be an attacker
evaluation context c-closing for A such that D is named-cleaned and eavesdrop-free. Let S be a
set set of channel names such that fc(C[A]) ⊆ S. For all channel c, C[A] ⇓c

c iff CS [A] ⇓e
c.

Theorem 6. ≈e
m (≈p

m ∩ ≈c
m.

Proof. Consider two closed honest extended process A and B. We assume A ≈e
m B. We first show

that A ≈c
m B.

Let C[_] be an attacker evaluation context c-closing for A and B. Notice that in the classical
semantics, a process eav(c, x).P as the same behaviour as the process 0. Hence, there exists C1[_]
an attacker evaluation context eavesdrop-free and c-closing for A and B such that for all c,
C[A] ⇓c

c⇔ C1[A] ⇓c
c and C[B] ⇓c

c⇔ C1[B] ⇓c
c (1). Moreover, relying on the structural equivalence,

we deduce that there exists C2 = νñ.(νm̃.D | νr̃.(_ | E)) attacker evaluation context eavesdrop-
free and c-closing for A and B such that D is named-cleaned, C1[A] ≡ C2[A] and C1[B] ≡ C2[B].
Lastly, by renaming r̃ through the structural equivalence, we deduce that there exist A′, B′
two closed honest extended process and C3[_] = νñ′.(νm̃′.(D′ | _)) attacker evaluation context
eavesdrop-free and c-closing for A and B such that D is named-cleaned, C2[A] ≡ C3[A′] and
C2[B] ≡ C3[B′]. Therefore, we have C1[A] ≡ C3[A′] and C1[B] ≡ C3[B′]. Lastly, let us denote
S = fc(C3[A′]) ∪ fc(C3[B′]), relying on Lemma 11 and Definition 13, one can note that there
exists C4 attacker evaluation context e-closing for A and B such that C3

S [A′] ≡ C4[A] and
C3

S [B′] ≡ C4[B].
We can conclude the proof as follows: Let S = fc(C[A]) ∪ fc(C[B]). For all channel c,

C[A] ⇓c
c

iff C1[A] ⇓c
c by (1)

iff C3[A′] ⇓c
c since C1[A] ≡ C3[A′]

iff C3
S [A′] ⇓e

c by Corollary 3
iff C4[A] ⇓e

c since C3
S [A′] ≡ C4[A]

iff C4[B] ⇓e
c since A ≈e

m B

iff C3
S [B′] ⇓e

c since C3
S [B′] ≡ C4[B]

iff C3[B′] ⇓c
c by Corollary 3

iff C1[B] ⇓c
c since C1[B] ≡ C3[B′]

iff C[B] ⇓c
c by (1)

48 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Let us now prove that A ≈p
m B. Let C[_] be an attacker evaluation context p-closing for A

and B. As for the classical semantics, notice that in the private semantics, a process eav(c, x).P
as the same behaviour as the process 0. Hence, there exists C1[_] an attacker evaluation context
eavesdrop-free and p-closing for A and B such that for all c, C[A] ⇓p

c⇔ C1[A] ⇓p
c and C[B] ⇓p

c⇔
C1[B] ⇓p

c . Moreover, notice that →p ⊆ →e. Hence, for all c, C1[A] ⇓p
c implies C1[A] ⇓e

c and
C1[B] ⇓p

c implies C1[B] ⇓e
c. Furthermore, since C1[_] is eavesdrop-free and A,B are both honest,

we deduce that rules C-Eav and C-OEav can never be applied in a derivation of C1[A] or C1[B].
Hence, we obtain that for all c, C1[A] ⇓p

c⇔ C1[A] ⇓e
c and C1[B] ⇓p

c⇔ C1[B] ⇓e
c. Lastly, A ≈e

m B
implies that for all channel c, C1[A] ⇓e

c⇔ C1[B] ⇓e
c. We can conclude the proof by combining all

these statements as follows: for all channel c,

C[A] ⇓p
c ⇔ C1[A] ⇓p

c ⇔ C1[A] ⇓e
c ⇔ C1[B] ⇓e

c ⇔ C1[B] ⇓p
c ⇔ C[B] ⇓p

c

We have concluded the proof of ≈e
m ⊆ ≈p

m∩≈c
m. Therefore, it remains to show that this inclusion

is not strict. In Figure 7, we have provided two processes A and B such that A ≈c
` B, A ≈p

` B
but A 6≈e

t B. Notice that these processes do not contain replication and so are imagine-finite.
Thus, by Theorem 1, A 6≈e

t B implies A 6≈e
m B. Moreover, by Proposition 3, A ≈c

` B and A ≈p
` B

implies A ≈c
t B, A ≈p

t B. Once again by Theorem 1, we deduce that A ≈c
m B, A ≈p

m B. Hence,
we conclude that ≈e

m (≈p
m ∩ ≈c

m. �

Appendix E. Proof of Theorem 2

Theorem 2. For all ground, closed honest extended processes A, for all channels d, we have that
A �p

d iff A �c
d iff A �e

d.

Proof. We will prove that the following three implications: (1) A �c
d ⇒ A �p

d, (2) A �
p
d ⇒ A �e

d

and (3) A �e
d ⇒ A �c

d.
Given a trace tr, let us denote S(tr) = {c | tr1out(c, t)tr2 = tr and tr1 does not bind c}.

Implication 1, A �c
d ⇒ A �p

d: Since A is honest, the only rules that differs are the rules Comm
and C-Priv. Furthermore, since A is honest we also know that c 6∈ oc(A).
We show that for all A tr=⇒c A

′, there exist νñ.A′′ ≡ A′, tr′ and a frame φ such that S(tr) ⊆ S(tr′)
and A tr′

=⇒p νñ.(A′′ | φ) such that . We prove this result by induction on the length of the derivation
A

`1...`m−−−−→c A
′ with tr being `1 . . . `m without the τ actions.

Base case m = 0: Hence tr = ε and so the result directly holds with φ = 0.
Inductive step m > 0: In such a case, by our inductive hypothesis, there exists νr̃.B ≡ Am−1 and a
frame φ such that S(tr) ⊆ S(tr′) and A tr′

=⇒p νr̃.(B | φ). W.l.o.g. we can assume that bound names
and variables in r̃.(B | φ) are bound once and distinct from free names and variables. We can also
assume that B is name-cleaned. We do a case analysis on the rule applied in Am−1

`m−→ Am.

• Case 1, any rule but the rule Comm: In such a case, by definition of the semantics, the
result directly holds

Babel et al. / On the semantics of communications when verifying equivalence properties 49

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• Case 2, rule Comm: In such a case, B = inho(c, x).P1 | outho(c, u).P2 | P3 and Am =
νr̃.(P1{u/x} | P2 | P3). We do a case analysis on c and u:

∗ c ∈ r̃: then since c 6∈ oc(A) (Am−1 is honest) and by applying rule C-Priv we obtain
that r̃.(B | φ) ε=⇒p r̃.(P1{u/x} | P2 | P3 | φ). Hence the result holds.
∗ c 6∈ r̃ and u is of base type: By applying Out-T followed by In, we obtain that
νr̃.(B | φ) νz.out(c,z).in(c,z)−−−−−−−−−−→p νr̃.(P1{u/x} | P2 | P3 | φ | {u/z}) with z fresh. Hence the
result holds.
∗ c 6∈ r̃ and u is of channel type: By applying Out-Ch followed by In, we obtain that
νr̃.(B | φ) out(c,u).in(c,u)=========⇒p νr̃.(P1{u/x} | P2 | P3 | φ | {u/x}). Hence the result holds.

We conclude by noticing that if A �c
d then there exist Ac, trc such that A trc=⇒c Ac and d ∈ S(trc).

Thus by our property, we obtain that there exist Ap, trp such that A trp=⇒p Ap and S(trc) ⊆ S(trp)
and so d ∈ S(trp) which implies A �p

d.

Implication 2, A �p
d ⇒ A �e

d: As A �
p
d, there exists tr, A′ such that A tr=⇒p A

′ and d ∈ S(tr). Since
`−→p ⊂

`−→e, A
tr=⇒e A

′ and so A �e
d.

Implication 3, A �e
d ⇒ A �c

d: Since A is honest, the only rules that differ are the rules Comm,
C-Priv, Eav-OCh, Eav-Ch, Eav-T.
We show that for all A tr=⇒e A

′, there exist tr′ such that A tr′
=⇒c A

′ and S(tr) ⊆ S(tr′). We prove
this result by induction on the length of the derivation A `1...`m−−−−→c A

′ with tr being `1 . . . `m without
the τ actions.

Base case m = 0: Hence tr = ε and so the result directly holds with tr′ = ε.
Inductive step m > 0: In such a case, by our inductive hypothesis, there exists tr′′ such that
A

tr′′
=⇒e Am−1. W.l.o.g. we can assume that bound names and variables in Am−1 are bound once

and distinct from free names and variables. Moreover we can assume that Am−1 = νñ.B with B
name-cleaned. We do a case analysis on the rule applied in Am−1

`m−→ Am.

• Case 1, rule C-Priv: In such a case, B = outho(c, u).P | inho(c, x).Q | R, c ∈ ñ and
Am ≡ νñ.(P | Q{u/x} | R). Notice that B τ−→c νñ.(P | Q{u/x} | R) by rule Comm hence
the result holds with tr′ = tr′′.
• Case 2, rule Eav-OCh: In such a case, B = outho(c, u).P | inho(c, x).Q | R, ` = νu.eav(c, u),
u is of channel type, u ∈ ñ and Am ≡ νñ′.(P | Q{u/x} | R) with ñ = ñ′.u. By applying rule
Open-Ch followed by rule In, we obtain that Am−1

νu.out(c,u).in(c,u)===========⇒c Am. Hence the result
holds with tr′ = tr′′.νu.out(c, u).in(c, u).
• Case 3, rule Eav-Ch: In such a case, B = outho(c, u).P | inho(c, x).Q | R, ` = eav(c, u),
u is of channel type, u 6∈ ñ and Am ≡ νñ.(P | Q{u/x} | R). By applying rule Out-Ch
followed by rule In, we obtain that Am−1

out(c,u).in(c,u)=========⇒c Am. Hence the result holds with
tr′ = tr′′.out(c, u).in(c, u).

50 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• Case 4, rule Eav-T: In such a case, B = outho(c, u).P | inho(c, x).Q | R, ` = νz.eav(c, z),
u is of base type and Am ≡ νñ.(P | Q{u/x} | R | {u/z}). By applying rule Out-T
followed by rule In, we obtain that Am−1

νz.out(c,z).in(c,z)==========⇒c Am. Hence the result holds with
tr′ = tr′′.νz.out(c, z).in(c, z).
• Case 5, any other rule : In such a case, by definition of the semantics, the result directly
holds.

We conclude by noticing that if A �e
d then there exist A′, tre such that A tre=⇒e A

′ and d ∈ S(tre).
Thus by our property, we obtain that there exist trc such that A trc=⇒c A

′ and S(tre) ⊆ S(trc) and
so d ∈ S(trc) which implies A �c

d. �

Appendix F. Proof of Theorem 7

Lemma 13. When restricted to D(p), we have ≈p
r = ≈e

r (≈c
r for r ∈ {`, t}.

Proof. By Lemma 3, we only need to consider the case r = `.
Before proving the main result, we show the following preliminary result: For all honest processes

A,B, if B ∈ D(p), A ≈p
` B, A ≡ νñ.(outho(c, u).P | inho(c, x).Q | R) and c 6∈ ñ then B ε=⇒p B

′ with
B′ = νm̃.(outho(c, v).P ′ | inho(c, x).Q′ | R′) and νñ.({u/z} ∪ φ(R)) ∼ νm̃.({v/z} ∪ φ(R′)) where z
is fresh.
Note that A in(c,a)−−−−→ νñ.(outho(c, u).P | Q{a/x} | R) for any a. As A ≈p

` B, there exists B ε=⇒p

B1
in(c,a)−−−−→p B

′
1

ε=⇒p B
′′
1 with B1 = νm̃.(in(c, x).Q′ | R′′). Since B ∈ D(p), we deduce that B ≈p

` B1

and so B1 ≈p
` A. But A

νz.out(c,z)−−−−−−→p A′′ for some A′′. Thus, B1 ≈p
` A implies that there exists

B1
ε=⇒p B2

νz.out(c,z)−−−−−−→p B
′
2

ε=⇒p B
′′
2 with B2 = νk̃.(in(c, x).Q′ | out(c, v).P ′ | R′) for some P ′, R′ and

φ(A′′) ∼ φ(B′′2). Second, note that the subprocess in(c, x).Q′ in B1 is also in B2 since no internal
communication can be applied on the public channel c. Hence we consider the result with B′ = B2.
Second, notice that φ(B′′2) = φ(B′2) and v is the term output in the transition B2

νz.out(c,z)−−−−−−→p B
′
2.

Hence, we obtain νñ.({u/z} ∪ φ(R)) ∼ νk̃.({v/z} ∪ φ(R′)) for some fresh variable z. Thus the
result holds.

Let us now focus on the main result. We start by proving ≈p
` = ≈e

`. By Theorem 5 we have that
≈e
` ⊆ ≈

p
` . It remains to show that ≈p

` ⊆ ≈e
`.

Let A,B ∈ D(p) such that A ≈p
` B. We show that ≈p

` is also a labelled bisimulation in the
eavesdrop semantics.

• Since A ≈p
` B, we have that φ(A) ∼ φ(B).

• if A τ−→e A
′ then, as B is a honest process, no C-Eav or C-OEav transition is possible.

Thus A τ−→p A
′. As A ≈p

` B, there exists B ε=⇒p B
′ such that A′ ≈p

` B
′. Since τ−→p ⊆

τ−→e, we
have B ε=⇒e B

′.
• if A `−→e A

′ with ` = νx.out(c, x) or ` = in(c,M) then A `−→p A
′. As A ≈p

` B, there exists
B

`=⇒p B
′ such that A′ ≈p

` B
′. Once again since τ−→p ⊆

τ−→e, we have B `=⇒e B
′.

Babel et al. / On the semantics of communications when verifying equivalence properties 51

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• if A νz.eav(c,z)−−−−−−→e A
′ then A ≡ νñ.(outho(c, u).P | inho(c, x).Q | R) and A′ = νñ.(P | Q{u/x} |

R | {u/z}). Note that A νz.out(c,z).in(c,z)==========⇒p A
′. As A ≈p

` B, there exists B νz.out(c,z).in(c,z)==========⇒p B
′

and A′ ≈p
` B

′. Thanks to our preliminary result, we know that there exists B ε=⇒p B2 with
B2 = νm̃.(outho(c, v).P ′ | inho(c, x).Q′ | R′) and νñ.({u/z} ∪ φ(R)) ∼ νm̃.({v/z} ∪ φ(R′))
where z is fresh. Thus, B ε=⇒e B2

νz.eav(c,z)−−−−−−→e B3, φ(B3) ∼ φ(A′) and B νz.out(c,z).in(c,z)==========⇒p B3
for some B3. Recall that A′ ≈p

` B
′ meaning that φ(A′) ∼ φ(B′) and so φ(B′) ∼ φ(B3). As

B ∈ D(p), φ(B′) ∼ φ(B3), B νz.out(c,z).in(c,z)==========⇒p B3 and B νz.out(c,z).in(c,z)==========⇒p B
′ imply B3 ≈p

` B
′.

As A′ ≈p
` B

′, A′ ≈p
` B3. Hence, we showed that B νz.eav(c,z)======⇒e B3 and A′ ≈p

` B3 which allows
us to conclude the proof of ≈p

` ⊆ ≈e
`.

Let us now prove that ≈p
` ⊆ ≈c

`. We showed above that ≈p
` = ≈e

`. Moreover, we have that
≈e
` ⊆ ≈c

` by Theorem 5, which allows us to conclude.

We conclude our proof by showing that the inclusion ≈p
` ⊆ ≈c

` is strict. Consider the processes
P and Q displayed in Figure 9b. First notice that P 6≈p

` Q since Q νx.out(d,x)======⇒p Q
′ for some Q′ but

the process P cannot output on d directly. We can also easily show that P,Q ∈ D(p) and P ≈c
` Q.

Indeed, first the frame of any transition consists only of multiple outputs of the public name a.
Therefore the static equivalence always holds. Second, any action on P , i.e. output on c or d and
input on c can always be matched on Q by unfolding a replication. Similarly, any output or input
on c from Q can be matched P by unfolding a replication. Finally, any output on d from Q can be
matched on P by unfolding unfolding the replications and applying an internal communication
on c. Therefore P ≈c

` Q. The proof of Q ∈ D(p) is similar. To prove that P ∈ D(p), one must
notice that in P tr=⇒p P

′, the number of output transitions on d available on P ′ is uniquely defined
by tr. Thus, when considering P tr=⇒p P1 and P

tr=⇒p P2, an output on d is possible on P1 if and
only if an output on d is possible on P2. Hence P1 ≈p

` P2 and so P ∈ D(p). �

Lemma 4. D(p) = D(e), D(c) 6⊆ D(p) and D(p) 6⊆ D(c).

Proof. We start by showing that D(p) 6⊆ D(c). Consider the process A displayed in Figure 9a.
A ∈ D(c) since A τ−→c outho(c, a) by the rule Comm and outho(c, a) 6≈c

` A. Moreover, A ∈ D(p)
since for all tr, there is a unique A′ such that A tr=⇒p A

′. Hence D(p) 6⊆ D(c).
We now show that D(c) 6⊆ D(p). Consider the process B displayed in Figure 9b. Intuitively, the

use of the private channel s in B encodes a non determinist choice between the two processes P
and Q. We already showed in the proof of Lemma 13 that P 6≈p

` Q ands P ≈c
` Q. With a similar

proof, we can also show that P,Q ∈ D(c) which allows us to deduce that B ∈ D(c). However,
B

ε=⇒p P , B
ε=⇒p Q and P 6≈p

t Q imply B 6∈ D(p).
Let us show D(e) ⊆ D(p). Consider an honest closed process A such that A ∈ D(e). Let

A
tr=⇒p A1 and A tr=⇒p A2. By definition of the semantics, A tr=⇒p Ai implies A tr=⇒e Ai, for i = 1, 2.

Since A ∈ D(e), we deduce A1 ≈e
` A2. By applying Theorem 5, we obtain A1 ≈p

` A2 which
concludes the proof of D(e) ⊆ D(p).
Finally, let us show that D(p) ⊆ D(e). Let A ∈ D(p), A tr=⇒e A1 and A tr=⇒e A2. We can define tr′

from tr by replacing all instances of νz.eav(c, z) by νz.out(c, z).in(c, z) to obtain A tr′
=⇒p A1 and

52 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A
tr′
=⇒p A2. As A ∈ D(p), A1 ≈p

` A2. Moreover, by definition of D(p), A ∈ D(p) also implies that
A1, A2 ∈ D(p). By Lemma 13, A1 ≈p

` A2 implies A1 ≈e
` A2 which allows us to conclude. �

The following theorem now follows directly from Lemmas 4 and 13

Theorem 7. When restricted to D(p), we have ≈s1
r1 = ≈s2

r2 (≈c
r3 for s1, s2 ∈ {p, e}, r1, r2, r3 ∈

{`, t}.

Appendix G. Proof of Theorem 8

Theorem 8. When restricted to BD(p), we have that ≈p
r = ≈e

r (≈c
r for r ∈ {`, t}.

Proof. Thanks to Lemma 13, we already know that ≈p
` = ≈e

` and ≈p
` ⊆ ≈c

`. We will show in
Lemma 15 the stronger result that the implication is strict for the class AD of action determinate
processes which is a subset of BD(p) (Lemma 14). �

Appendix H. Proof of Lemma 14

Lemma 14. AD (BD(p).

Proof. Let P ∈ AD. We will show that P ∈ D(p) which allows us to conclude as processes in
AD do not use replication. Let us define the following transition rule if−→ such that P if−→ P ′ iff
P

τ−→∗p P ′ with only application of the rules Then or Else, and these two rules cannot be applied
on P ′. Since bn(P)∩ Ch = ∅, we deduce that the rule C-Priv cannot be applied (all channels are
public). Hence the only possible τ transitions are the applications of the rules Then and Else.
Notice that P if−→ P ′ implies P ≈p

` P
′. Moreover for all traces P tr=⇒ P ′, we can always swap the

internal transitions in the trace so that they are always applied before visible actions when possible.
Hence we can always obtain a trace of the form P

if−→ P1
`1−→p P

′
1

if−→ P2
`2−→p . . .

if−→ Pn
`n−→p P

′
n

such that P ′n ≈
p
` P

′ and tr = `1 . . . `n.
To prove that P ∈ D(p), we show the following property: for all P if−→ P1

`1−→p P
′
1

if−→ P2
`2−→p

. . .
if−→ Pn

`n−→p P
′
n, for all P if−→ Q1

`1−→p Q
′
1

if−→ Q2
`2−→p . . .

if−→ Qn
`n−→p Q

′
n, we have Qi ≡ Pi

and Q′i ≡ P ′i for all i ∈ {1, . . . , n}. This property can be proved by induction on n. The base case
n = 0 being trivial, we focus on the inductive case n > 0. In such a case, by applying our inductive
hypothesis, we deduce that Q′n−1 ≡ P ′n−1. Note that Q′n−1

if−→ Qn, P ′n−1
if−→ Pn and Q′n−1 ≡ P ′n−1

implies that P ′n−1
if−→ Qn. As mentioned in the previous paragraph, it entails Pn ≡ Qn. Thus, it

remains to show that P ′n ≡ Q′n. If `n = in(c, t) then in such a case, P ′n ≡ νk̃.(in(c, x).R | U) for
some R and U . But by definition of an action determinate process, we know that U does not have
an input on c at top-level, i.e. U 6≡ in(c, y).R′ | V . Hence, there is only one possible transition `n
on Pn meaning that P ′n ≡ Q′n. A similar reasoning holds for the case `n = νz.out(c, z).
To see that the inclusion is strict, simply observe that for the process P =̂ outho(c, a) | outho(c, a),

we have P ∈ D(p), but P 6∈ AD. �

Babel et al. / On the semantics of communications when verifying equivalence properties 53

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Appendix I. Proof of Theorem 9

Lemma 15. There exist P,Q ∈ AD such that P ≈c
` Q but P 6≈p

t Q.

Proof. Consider the processes P and Q displayed in Figure 10. Notice that an input transition
with channel d in the private semantics is possible on P but not on Q. Therefore, we directly
deduce that P 6≈p

t Q. Let us now prove that P ≈c
` Q. We do an analysis on the transitions on P

and Q.

• P τ−→c P
′: Note that from P , the only possible τ action is an internal communication on the

channel c. More specifically,

P ′ = νk1, . . . , k7.(R1(k1) | inho(d, x2).if x2 = k2 then outho(c, k3))

We can also apply an internal communication onQ to obtain the same process, i.e., Q τ−→c P
′.

Note that we trivially have P ′ ≈c
` P
′.

• Q τ−→c Q
′: Once again the only possible τ action is an internal communication on the channel

c. In fact, we have Q′ = P ′ where P ′ was defined in the previous case with P ε−→c P
′.

• P νz.out(c,z)−−−−−−→c P
′: In such a case, P ′ = νk1, . . . , k5.(inho(c, x1).R1(x1) | inho(d, x2).if x2 =

k2 then outho(c, k3) | {k1/z}). Moreover, notice that Q νz.out(c,z)−−−−−−→c P
′ too. Hence the result

holds.
• P in(c,t)−−−→c P ′: Since k1, . . . , k5 are all bound and there is no frame in P , we know that
t 6= ki for all i = 1 . . . 5. Thus, P ′ = νk1, . . . , k5.(R1(t) | outho(c, k1) | inho(d, x2).if x2 =
k2 then outho(c, k3)). We can make two observations on the process P ′: The first one being
that the only possible transition on R1(t) is the execution of the conditional leading to the
nil process. The second one being that in k2 does not appear anymore in P ′ other than
in the test x2 = k2. Therefore, k2 cannot be deducible from P ′ and so we deduce that
P ′ ≈c

` νk1.(outho(c, k1) | inho(d, x2)).
For sake of readability, we denote by τ(c)−−→c a τ action corresponding to an internal communi-
cation on a channel c. Moreover, we denote by if−→c a τ action corresponding to a conditional
(i.e. rules Then or Else) and we denote by τ(c)==⇒c the transition if−→

∗
c
τ(c)−−→c

if−→
∗
c . Finally, we

denote by k̃ = k1, . . . , k5. Let us execute Q as follows:

Q
τ(c)−−→c νk̃.(R1(k1) | inho(d, x2).if x2 = k2 then outho(c, k3))
τ(d)==⇒c νk̃.(inho(c, x3).if x3 = k3 then R3 else inho(d, x) | outho(c, k3))

in(c,t)−−−→c
if−→c νk̃.(inho(d, x) | outho(c, k3))

Let us denote Q′ = k̃.(inho(d, x) | outho(c, k3)). We trivially have that Q′ ≈c
`

νk1.(outho(c, k1) | inho(d, x2)) and so P ′ ≈c
` Q
′.

• Q in(c,t)−−−→c Q
′: Once again, we know that t 6= ki for all i = 1 . . . 5. Thus Q′ = νk̃.(R1(t) |

outho(c, k1).inho(d, x2).if x2 = k2 then outho(c, k3)). With t 6= k1 and the fact that k2 is no
longer deducible in Q′, we obtain that Q′ ≈c

` νk1.outho(c, k1).inho(d, x2).

54 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Let us execute P as follows:

P
τ(c)−−→c νk̃.(R1(k1) | inho(d, x2).if x2 = k2 then outho(c, k3))
τ(d)==⇒c νk̃.(inho(c, x3).if x3 = k3 then R3 else inho(d, x) | outho(c, k3))
τ(c)==⇒c νk̃.R3

in(c,t)−−−→c
if−→c νk̃.(outho(c, k4).inho(d, x5).R5(x5))

Let us denote P ′ = νk̃.(outho(c, k4).inho(d, x5).R5(x5)). Note that k5 is not deducible in
P ′ meaning that P ′ ≈c

` νk4.outho(c, k4).inho(d, x5). Since we already showed that Q′ ≈c
`

νk1.outho(c, k1).inho(d, x2), we conclude that P ′ ≈c
` Q
′.

• P in(d,t)−−−−→c P
′: In such a case, we have P ′ = νk̃.(inho(c, x1).R1(x1) | outho(c, k1) | if t =

k2 then outho(c, k3)). Note that t 6= k2 and that so k3 is not deducible in P ′. Thus, we obtain
the following:

P ′≈c
`νk̃.(inho(c, x1).if x1 = k1 then outho(d, k2).inho(c, x3).inho(d, x) | outho(c, k1))

Let us execute Q as follows:

Q
τ(c)−−→c νk̃.(R1(k1) | inho(d, x2).if x2 = k2 then outho(c, k3))
τ(d)==⇒c νk̃.(inho(c, x3).if x3 = k3 then R3 else inho(d, x) | outho(c, k3))
τ(c)==⇒c νk̃.R3
τ(c)==⇒c νk̃.(inho(d, x5).R5(x5) | outho(d, k5))
τ(d)−−→c νk̃.R5(k5)

if−→c
in(c,t)−−−→c νk̃.(inho(c, x6).if x6 = k6 then outho(d, k7).inho(c, x3).inho(d, x)

| outho(c, k6))

As we already proved P ′ ≈c
` νk̃.(inho(c, x1).if x1 = k1 then outho(d, k2).inho(c, x3).inho(d, x) |

outho(c, k1)), we conclude that P ′ ≈c
` Q
′.

We conclude that P ≈c
` Q.

It remains to prove that P,Q ∈ D(p). We show in fact that P and Q are both action-determinate
and we conclude by applying Lemma 14.

We do a case analysis on the trace of P .
Case 1: P in(c,t)−−−→c P1. In such a case,

P1 = νk̃.(R1(t) | outho(c, k1) | inho(d, x2).if x2 = k2 then outho(c, k3))

Since t 6= k1, R1(t) can only be reduced into the nil process. Moreover, k2 is not deducible in P1,
meaning that outho(c, k3) can never be executed. Thus, P1 is action-determinate.

Babel et al. / On the semantics of communications when verifying equivalence properties 55

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Case 2: P in(d,t)−−−−→c P1. In such a case,

P1 = νk̃.(inho(c, x1).R1(x1) | outho(c, k1) | if t = k2 then outho(c, k3))

Since t 6= k2, outho(c, k3) can never be executed meaning that k3 is not deducible in P1. As such,
we deduce that proving that P1 is action-determinate is equivalent to proving that the following
process is action-determinate:

νk̃.(inho(c, x1).if x1 = k1 then outho(d, k2).inho(c, x3).inho(d, x) | outho(c, k1))

Since there is no common actions between the two parallel processes in the previous process, we
conclude that it is action-determinate.

Case 3: P νz.out(c,z)−−−−−−→c P1. In such a case,

P1 = νk̃.(inho(c, x1).R1(x1) | inho(d, x2).if x2 = k2 then outho(c, k3) | {k1/z})

We have to consider two possible actions next, that are either an input on c or an input on
d. If we consider P1

in(d,t)−−−−→c P2 then once again, t 6= k2 meaning that outho(c, k3) can never be
executed. Thus proving P2 is action-determinate is equivalent to proving that the following process
is action-determinate:

νk̃.(inho(c, x1).if x1 = k1 then outho(d, k2).inho(c, x3).inho(d, x) | {k1/z})

This process is trivially action-determinate. Thus, let us consider P1
in(c,t)−−−→ P2, i.e.

P2 = νk̃.(R1(t{k1/z}) | inho(d, x2).if x2 = k2 then outho(c, k3) | {k1/z})

If t 6= z, i.e. t{k1/z} 6= k1, then R1(t{k1/z}) can only be reduced to the nil process and so P2
would be trivially action-determinate. Thus, let us assume that t = z.
Note that the determinacy of P2 can only be broken if R3 can be executed but after the following

transitions P2
νz2.out(d,z2)−−−−−−−→c

in(d,z2)−−−−→c
νz3.out(c,z3)−−−−−−−→c

in(c,z3)−−−−→c P3 = νk̃.(R3 | {k1/z |k2 /z2 |k3 /z3}).
Therefore, we only need to show that R3 is action-determinate. Once again, this may not

be the case only if R5(k5) is executed. However, this is only possible with transitions as fol-
lows : P3

νz4out(c,z4)−−−−−−−→c
in(c,z4)−−−−→c

νz3.out(d,z5)−−−−−−−→c
in(d,z5)−−−−→c νk̃.R5(k5). Since R5(k5) is trivially action-

determinate, we conclude that P is an action-determinate process.
The proof of Q being action-determinate is similar. �

Theorem 9. When restricted to AD, we have that ≈p
r = ≈e

r (≈c
r for r ∈ {`, t}.

Proof. Thanks to Lemmas 13 and 14, we already know that ≈p
` = ≈e

` and ≈p
` ⊆ ≈c

`. The fact
that the implication is strict follows from Lemma 15. �

56 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Appendix J. Proof of Theorem 10

Lemma 16. Let P,Q ∈ SAD such that P ≈c
` Q. If there exists c such that P νx.out(c,x)======⇒p P1 then

there exists d such that:

• P νx.out(d,x)======⇒p P
′

• Q νx.out(d,x)======⇒p Q
′

• P ′ ≈c
` Q
′.

Proof. Consider the maximal trace P νx.out(d,x)======⇒c P2
tr=⇒c P3 of P that starts with an output.

Note that in fact P νx.out(d,x)======⇒p P2. Indeed, if P
νx.out(d,x)======⇒c P2 contains an internal communica-

tion transition, the we can transform this transition into two transitions νz.out(c,z)−−−−−−→c
in(c,z)−−−−→c which

would contradicts the maximality hypothesis on P
νx.out(d,x)======⇒c P2

tr=⇒c P3. Since P ≈c
` Q, we

know that Q νx.out(d,x)======⇒c Q2
tr=⇒c Q3 with P2 ≈c

` Q2 and P3 ≈c
` Q3. If Q

νx.out(d,x)======⇒p Q2 then
the result holds. Otherwise, there is an internal communication transition on some channel c in
Q

νx.out(d,x)======⇒c Q2. Once again, we can replace this transition into two transitions νz.out(c,z)−−−−−−→c
in(c,z)−−−−→c

with tr′ = νz.out(c, z).in(c, z), yielding Q
tr′
=⇒c

νx.out(d,x)======⇒c
tr=⇒c Q

′
3 or Q νx.out(d,x)======⇒c

tr′
=⇒c

tr=⇒c Q
′
3 for

some Q′3. In both case, tr′.νx.out(d, x).tr and νx.out(d, x).tr′.tr start with an output. As P ≈c
` Q,

tr′.νx.out(d, x).tr or νx.out(d, x).tr′.tr is also a trace of P which contradicts the maximality of
νx.out(d, x).tr. �

Lemma 17. Let P,Q ∈ SAD such that P ≈c
` Q. If

• for all d, P ′, P 6 νx.out(d,x)======⇒p P
′

• for all d,Q′, Q 6 νx.out(d,x)======⇒p Q
′

then for all c,M , for all P in(c,M)====⇒p P
′, there exists Q in(c,M)====⇒p Q

′ such that P ′ ≈c
` Q
′.

Proof. Since P in(c,M)====⇒p P
′ and P ≈c

` Q then there exists Q in(c,M)====⇒c Q
′ and P ′ ≈c

` Q
′. Thanks

to our hypothesis on Q we know that Q in(c,M)====⇒p Q′′
τ−→∗c Q′ (No internal communication are

possible directly on Q since not output is available). But P ≈c
` Q and Q

in(c,M)====⇒p Q′′ implies
that P in(c,M)====⇒c P

′′ with P ′′ ≈c
` Q
′′. Once again by our hypothesis on P , we have that P in(c,M)====⇒p

P ′′′
τ−→∗c P ′′. As P ∈ SAD, P ∈ D(p). As P in(c,M)====⇒p P

′′′ and P in(c,M)====⇒p P
′, we deduce P ′′′ ≈p

` P
′

which implies P ′′′ ≈c
` P
′ by Lemma 13. To summarize, we have:

• P ′′ ≈c
` Q
′′

• P ′ ≈c
` Q
′

• Q′′ ε−→∗c Q′

• P ′′′ ε−→∗c P ′′
• P ′′′ ≈c

` P
′

Babel et al. / On the semantics of communications when verifying equivalence properties 57

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

If in fact Q′′ ε−→∗p Q′ then the result directly holds. Else there exists an internal communication
transition in Q′′ ε−→∗c Q′. Hence, Q′′

νz.out(d,z).in(d,z)===========⇒p Q
′ | φ for some φ.

Take Q′ tr=⇒c Q1 a maximal trace of Q′, we deduce that νz.out(d, z).in(d, z).tr is a trace of Q′′.
Since P ′′ ≈c

` Q
′′, we know that νz.out(d, z).in(d, z).tr is a trace of P ′′. With P ′′′ ε−→∗c P ′′, we deduce

that νz.out(d, z).in(d, z).tr is a trace of P ′′′. As P ′′′ ≈c
` P
′ ≈c

` Q
′, νz.out(d, z).in(d, z).tr is also a

trace of Q′ which gives a contradiction with tr being a maximal trace of Q′. �

Lemma 18. Let P,Q ∈ SAD such that P ≈c
` Q. If there exists c such that

• P νx.out(c,x)−−−−−−→p P
′,

• Q νx.out(c,x)−−−−−−→p Q
′, and

• P ′ ≈p
` Q

′

then for all d, P νy.out(d,y)−−−−−−→p P1 implies Q νy.out(d,y)======⇒p Q1 and P1 ≈c
` Q1.

Proof. Consider P νy.out(d,y)−−−−−−→p P1. If c = d then P being strongly action determinate implies that
P1 = P ′ and so the result trivially holds. Therefore, let us consider that c 6= d.
In such a case, we deduce P = νñ.(outho(c, u).R1 | outho(d, v).R2 | R3) and Q =

νñ′.(outho(c, u′).S1 | S). Since P νx.out(c,x)−−−−−−→p P ′ and Q
νx.out(c,x)−−−−−−→p Q′, we deduce that P ′ =

νñ.(R1 | outho(d, v).R2 | R3 | {u/x}) and Q′ = νñ′.(S1 | S | {u
′
/x}). Note that P ′ ≈p

` Q
′ implies

that one of the following two cases:

(1) S = outho(d, v′).S2 | S3
(2) S1 = outho(d, v′).S2 | S3

As P ′ ≈p
` Q

′, we know that P νx.out(c,x)−−−−−−→p
νy.out(d,y)−−−−−−→p νñ.P2 and Q νx.out(c,x)−−−−−−→p

νy.out(d,y)======⇒p νñ′.Q2
where

• P2 = R1 | R2 | R3 | {u/x;v /y}
• Q2 = S1 | S2 | S3 | {u

′
/x;v

′
/y}

• νñ.P2 ≈p
` νñ

′.Q2.

Moreover, by P ≈c
` Q, we deduce that Q νy.out(d,y)======⇒c Q4

νx.out(c,x)======⇒c νñ′.Q3 with νñ.P2 ≈c
` νñ

′.Q3

and P1 ≈c
` Q4. If Q

νy.out(d,y)======⇒p Q4 then the result trivially holds. Therefore, let us for now assume
that Q νy.out(d,y)======⇒c Q4 contains some internal communication transitions.
In both cases 1 and 2, since Q is strongly action determinate, the outputs outho(c, u′) and

outho(d, v′) in Q are necessarily executed either within an internal communication or with the
output rule in the transition Q νy.out(d,y)======⇒c Q4

νx.out(c,x)======⇒c νñ′.Q3. In both case, we can make ap-
parent the internal communications in Q νy.out(d,y)======⇒c

νx.out(c,x)======⇒c νñ′.Q3 and output first outho(d, v′)
and outho(c, u′) giving us the following trace:

Q
νx′.out(c,x′)−−−−−−−→p

νy′.out(d,y′)=======⇒p νñ′.Q
′
2
tr=⇒c νñ′(Q3 | Φ)

58 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

for some Φ, x′, y′ such that νy.out(d, y) and νx.out(c, x) are included in νy′.out(d, y′).νx′.out(c, x′).tr
and Q′2 = S1 | S2 | S3 | {u

′
/x′ ;v′

/y′}
Since we assumed that Q νy.out(d,y)======⇒c Q4 contains some internal communications, we deduce that

tr 6= ε. To summarized, we showed that:

• νñ.P2 ≈p
` νñ

′.Q2
• νñ.P2 ≈c

` νñ
′.Q3

• νñ′.Q′2
tr=⇒c νñ′(Q3 | Φ)

• tr 6= ε

• Q′2 is the process Q2 where x and y in the domain of the frame have been replaced by x′
and y′ respectively.

Consider now a maximal trace of νñ′.Q3, i.e. νñ′.Q3
tr′
=⇒c Q5. Hence, tr′ is a trace of νñ′.(Q3 | Φ).

Hence, tr.tr′ is a trace of νñ′.Q′2. Thus, tr.tr′{x/x′ ; y/y′} is a trace of νñ′.Q2. As νñ.P2 ≈p
` νñ

′.Q2
implies νñ.P2 ≈c

` νñ
′.Q2 (Lemma 13), tr.tr′{x/x′ ; y/y′} is a trace of νñ.P2 and so a trace of νñ′.Q3

thanks to νñ.P2 ≈c
` νñ

′.Q3. Since we assumed that tr 6= ∅, we obtain a contradiction with tr′

being a maximal trace of νñ′.Q3. �

Corollary 4. Let P,Q ∈ SAD such that P ≈c
` Q. Assume that for all P ′, Q′, |P ′|+ |Q′| < |P |+ |Q|

and P ′ ≈c
` Q
′ implies P ′ ≈p

` Q
′.

For all d, P νy.out(d,y)−−−−−−→p P1 implies Q νy.out(d,y)======⇒p Q1 and P1 ≈p Q1.

Proof. Let P νy.out(d,y)−−−−−−→p P0. By Lemma 16, we know that there exists c such that P νx.out(c,x)======⇒p P
′,

Q
νx.out(c,x)======⇒p Q

′ and P ′ ≈c Q′. Since |P ′|+ |Q′| < |P |+ |Q|, we deduce that P ′ ≈p Q′. Note that
P,Q ∈ D(p). Hence, there exists P1, P2, Q1, Q2 such that P ε=⇒p P1

νx.out(c,x)−−−−−−→p P2
ε=⇒p P ′ and

Q
ε=⇒p Q1

νx.out(c,x)−−−−−−→p Q2
ε=⇒p Q

′ such that P ≈p
` P1, P2 ≈p

` P
′, Q ≈p

` Q1 and Q2 ≈p
` Q

′. Note
that by Lemma 13, P ≈p

` P1 and Q ≈p
` Q1 implies P ≈c

` P1 and Q ≈c
` Q1. Hence P1 ≈c

` Q1 and
P2 ≈p

` Q2. We conclude by application Lemma 18. �

Lemma 19. Let P,Q ∈ SAD such that P 6 τ−→p, Q 6 τ−→p and P ≈c
` Q. Assume that for all P ′, Q′,

|P ′|+ |Q′| < |P |+ |Q| and P ′ ≈c
` Q
′ implies P ′ ≈p

` Q
′. We have skel(P) = skel(Q).

Proof. Consider first that for all d, P 6 νx.out(d,x)−−−−−−→p and Q 6 νx.out(d,x)−−−−−−→p. By applying Lemma 17,
we deduce that skel(P) = skel(Q). By applying Corollary 4, we also deduce that {out(d) ∈
skel(P) | d ∈ Ch} = {out(d) ∈ skel(Q) | d ∈ Ch}. Therefore, it only remains to prove that
{in(d) ∈ skel(P) | d ∈ Ch} = {in(d) ∈ skel(Q) | d ∈ Ch}.
Consider P in(d,M)−−−−→c P

′ such that in(d) 6∈ skel(Q). Since P ≈c
` Q, then Q in(d,M)====⇒c Q

′ for some
Q′. As in(d) 6∈ skel(Q) and Q 6 νx.out(d,x)−−−−−−→p, we deduce that Q τ−→c Q

′′ in(d,M)====⇒c Q
′ where Q τ−→c Q

′′

is an internal communication on some public channel c. Since {out(d) ∈ skel(P) | d ∈ Ch} =
{out(d) ∈ skel(Q) | d ∈ Ch}, we deduce that:

• P = νk̃.(outho(c, u).R1 | inho(d, x).R2 | R3).

Babel et al. / On the semantics of communications when verifying equivalence properties 59

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• Q = νk̃′.(outho(c, v).S1 | inho(c, x).S2 | S3)

Moreover, Corollary 4 also tells us that P1 = νk̃.(R1 | inho(d, x).R2 | R3 | {u/z}) ≈p
` νk̃

′.(S1 |
inho(c, x).S2 | S3 | {v/z}) = Q1. Since P,Q ∈ D(p), we can assume w.l.o.g. that P1 6

τ−→p, Q1 6
τ−→p.

As P1 ≈p
` Q1, skel(P1) = skel(Q1). Hence in(d) ∈ skel(S1) or in(d) ∈ skel(S3). As we as-

sumed in(d) 6∈ skel(Q), in(d) ∈ skel(S1). Therefore, Q = νk̃′.(outho(c, v).(inho(d, y).S′1 | S′′1) |
inho(c, x).S2 | S3).
Note that Q in(c,N)−−−−→c Q2 = νk̃′.(outho(c, v).(inho(d, y).S′1 | S′′1) | S2{N/y} | S3). As Q ≈c

` P , there
exists P in(c,N)====⇒c P2 and Q2 ≈c

` P2 for some P2. Since |Q2| + |P2| < |P | + |Q|, Q2 ≈c
` P2 implies

Q2 ≈p
` P2. Note that in Q2, outho(c, v) and inho(d, y) are sequential. As Q2 ≈p

` P2, P2 should also
contain a similar sequence of outho(c, u′) and inho(d, y′) for some u′ and y′. Since P in(c,N)====⇒c P2,
we deduce that this sequence should appear either in outho(c, u).R1 or in inho(d, x).R2 or in R3.
However, by definition of strong action determinate, there cannot be any instance of inho(d, y)
in R1 or R3 because of inho(d, x).R2. Similarly, there cannot be any instance of outho(c, u′) for
some u′ in inho(d, x).R2 or R3 because of outho(c, u).R1. Thus we obtain a contradiction and so
in(d) ∈ skel(Q). �

Lemma 20. Let P,Q ∈ SAD such that P 6 τ−→p and Q 6 τ−→p. If P ≈c
` Q and skel(P) = skel(Q) then

P ≈p
` Q.

Proof. Thanks to Lemma 17, we know that the result trivially holds if skel(P) contains only
inputs. Thus, let us consider P = νk̃.(outho(c, u).R1 | R2). Note that by Corollary 4 and since
P ∈ D(p), we know that Q = νk̃′.(outho(c, v).S1 | S2) with νk̃.(R1 | R2 | {u/z}) ≈p

` νk̃
′.(S1 | S2 |

{v/z}).
Therefore, let us define the relation R such that P ′ R Q′ iff either P ′ ≈p

` Q
′ or the following

properties hold:

• skel(P ′) = skel(Q′),
• P ′ = νk̃.(outho(c, u).R1 | R′2), Q = νk̃′.(outho(c, v).S1 | S′2) for some R′2, S′2, and
• νk̃.(R1 | R′2 | {u/z}) ≈

p
` νk̃

′.(S1 | S′2 | {v/z}).

Note that P R Q. We show that R ⊆ ≈p
` . Consider P ′ R Q′. By definition of R, if P ′ ≈p

` Q
′

then the result trivially holds. Therefore, we consider the other part of the definition of R and we
prove the P ′, Q′ satisfies the definition of ≈p

`

• We know that νk̃.(R1 | R′2 | {u/z}) ≈
p
` νk̃′.(S1 | S′2 | {v/z}). Hence we deduce that

φ(P ′) ∼ φ(Q′).
• Assume P ′ νz.out(c,z)−−−−−−→ P ′′. Since P ′ is strongly action determinate, we deduce that P ′′ =
νk̃.(R1 | R′2 | {u/z}). We also have Q′ νz.out(c,z)−−−−−−→ Q′′ = νk̃′.(S1 | S′2 | {v/z}) and we also have
P ′′ ≈p

` Q
′′. Hence P ′′ R Q′′.

• Assume P ′ a−→ P ′′ with a different from νz.out(c, z). In such a case, P ′′ = νk̃.(outho(c, u).R1 |
R′′2) for some R′′2 . Note that P ′ νz.out(c,z).a−−−−−−−→p P

′′′ = νk̃.(R1 | R′′2 | {u/z}). Since νk̃.(R1 | R′2 |
{u/z}) ≈p

` νk̃
′.(S1 | S′2 | {v/z}) and skel(P ′) = skel(Q′), we deduce that Q′ νz.out(c,z).a=======⇒p

Q′′′ = νk̃′.(S1 | S′′2 | {v/z}) for some S′′2 and P ′′′ ≈p
` Q

′′′. However, note that we also have

60 Babel et al. / On the semantics of communications when verifying equivalence properties

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Q′
a.νz.out(c,z)=======⇒p Q

′′′ with Q′ a=⇒p νk̃′.(outho(c, v).S1 | S′′2) = Q′′. As skel(P ′) = skel(Q′) and
P ′′′ ≈p

` Q
′′′, we deduce that skel(S′′2) = skel(R′′2) and so skel(P ′′) = skel(Q′′). We conclude

that P ′′ R Q′′.

�

Theorem 10. When restricted to SAD, we have ≈c
` ⊆ ≈

p
` .

Proof. Consider P,Q ∈ SAD such that P ≈c
` Q. We prove this property by induction on |P |+|Q|.

The base case (|P |+ |Q| = 0) being trivial, we focus on the inductive step.
Assume P τ−→p P

′. Since P ∈ D(p), we know that P ≈p
` P

′. By Lemma 13, P ≈p
` P

′ implies
P ≈c

` P
′. Hence P ′ ≈c

` Q. Since |P ′| + |Q| < |P | + |Q|, we can apply our inductive hypothesis
which gives us P ′ ≈p

` Q. As P ≈p
` P

′, we conclude P ≈p
` Q. By symmetry, the same proof holds

when Q τ−→p Q
′.

Therefore, assume that P 6 τ−→p and Q 6 τ−→p. Thanks to Lemma 19, we deduce that skel(P) =
skel(Q). We conclude by applying Lemma 20. �

Appendix K. Proof of Theorem 11

Theorem 11. When restricted to I/O-unambiguous processes, we have that ≈p
r=≈e

r but ≈e
r(≈c

r

for r ∈ {`, t}.

Proof. From Theorems 5, 6 and 4, we already know that ≈e
r ⊆ ≈p

r ∩≈e
r for r ∈ {lbl,m, t}. Hence,

for r ∈ {lbl,m, t}, we only need to prove that ≈p
r ⊆ ≈e

r and ≈e
r ⊆ ≈c

r to obtain the result.

Proof of ≈p
t ⊆ ≈e

t : Let A and B to honest I/O-unambiguous processes such that A ≈p
t B. Let

A
tr=⇒e A

′. By definition, we know that there exist `1, . . . , `n and extended processes A0, . . . , An
such that:

• tr is `1 . . . `n where the τ are removed
• A0 = A, An = A′

• A0
`1−→e A1

`2−→e . . .
`n−→e An.

Note that since A is honest, the rules C-Env, C-Open, C-Eav, C-OEav are never applied in
the derivation. The idea is to
≈s1
r =≈s2

r for r ∈ {`, o,m, t} and s1, s2 ∈ {c, p, e}
We first focus on the proof of ≈s1

r =≈s2
r for r ∈ {`, o,m, t} and s1, s2 ∈ {c, p, e} �

	Introduction
	Model
	Syntax
	Operational semantics
	Reachability and behavioural equivalences
	Labelled semantics

	Comparing the different semantics
	Subclasses of processes for which (some of) the semantics coincide
	Determinate processes
	Defining classes of determinate processes and their relations
	Relations between semantics for determinate processes

	Determinacy for bounded processes
	Bounded determinate processes

	I/O-unambiguous processes

	Different semantics in practice
	Conclusion
	References
	Appendix A. Refining Theorem 3
	Appendix B. Proof of Proposition 2
	Appendix C. Proof of Theorem 1
	Appendix D. Proof of Theorem 6
	Appendix E. Proof of Theorem 2
	Appendix F. Proof of Theorem 7
	Appendix G. Proof of Theorem 8
	Appendix H. Proof of Lemma 14
	Appendix I. Proof of Theorem 9
	Appendix J. Proof of Theorem 10
	Appendix K. Proof of Theorem 11

