
A decision procedure for proving observational equivalence

(Work in progress)

Vincent Cheval
LSV, ENS Cachan

Hubert Comon-Lundh
AIST, Tokyo

and INRIA Saclay

Stéphanie Delaune
LSV, ENS Cachan

June 11, 2009

1 Introduction

We need to increase our confidence in security protocols. One of the important directions
towards this goal is the formal analysis of protocol specifications. Elaborating strategies and
algorithms to build such formal security proofs has been the subject of active research in the
past two decades.

Most existing results focus on trace properties like secrecy (expressed as a reachability
property) or authentication. There are however several security properties, which cannot
be defined (or cannot be naturally defined) as trace properties and require the notion of
observational equivalence. Typical examples are anonymity, privacy related properties or
statements closer to security properties used in cryptography.

B. Blanchet, M. Abadi and C. Fournet in [2] show how an approximation of observational
equivalence (the so-called “diff-equivalence”) can be simulated using bi-processes and included
in the automatic tool ProVerif. This allows for instance to get observational equivalence proofs
for an unbounded number of sessions and for (some) equational theories.

Another approach consists in bounding the number of sessions (copies of each process)
and trying to find decision procedures for the equivalence. In case an attack is found, this
is really an attack (which is not always the case in ProVerif). On the other hand, when no
attack is found, we only get a security proof for a fixed number of sessions. An advantage
of this approach is also the termination of the algorithm. Along this line of research, the
most significant result is due to M. Baudet [1]. It is shown there that the diff-equivalence is
decidable for a bounded number of sessions and any attacker theory that can be represented by
a subterm convergent rewriting system. Furthermore, in a recent paper [5], it is shown that, for
finite and deterministic processes without else branches, the observational equivalence of two
processes can be reduced to the diff-equivalence of finitely many pairs of processes. Altogether,
we get a decision procedure for observational equivalence, for this class of processes.

It is not clear how the results of [1, 5] could be extended to processes that contain else
branches or to other attacker’s theories. Moreover, the proof of M. Baudet is very complicated.
The goal of the present work is to revisit Baudet’s result and provide with another decision
algorithm that would be hopefully more amenable to extensions and implementation.

Even in the case of a bounded number of sessions, there are infinitely many possible pro-
cess executions, because of the unbounded possible attacker’s actions. It is however possible

1

to represent all possible traces using a symbolic representation thanks to deducibility con-
straints, that have been introduced in [6]. The observational equivalence of finite determin-
istic processes can be reduced to the symbolic equivalence of the traces that are represented
by deducibility constraints [5] (extended with disequalities in case of negative tests).

The decidability of deducibility constraints is proved to be in NP in [7] for a standard
attacker theory. But the existence of a solution is not what we need for the decision of
equivalence. Another recent work [4] shows how it is possible to simplify the deducibility
constraints into solved forms without loosing any solution. In other words, this shows how to
get a simplified representation of the set of possible traces. This is used in [4] to decide other
trace properties than reachability.

In the present work, we extend this result to equivalence properties: we will preserve not
only the set of solutions, but also all witnesses (attacker’s recipes) that they are solutions
indeed. For instance if the attacker has two ways to get a given message in the first exper-
minents, he must have the very same two ways to obtain the corresponding message in the
second experiment.

We do not simply decide the symbolic equivalence of deducibility constraints, but actually
show that the problem can be simplified to the equivlence of finitely many solved forms. There
is then a hope to extend the procedure to processes that contain negative tests or timing
constraints for instance. At least in this respect, we believe that our procedure improved over
[3].

We only completed the proofs in case of the classical encryption/decryption and pair-
ing/projection primitives (not assuming atomic keys), but our algorithm is simply reflecting
the intruder capabilities and we also hope that it can be extended to more primitives.

2 Deducibility constraints

We consider the set T of terms, that are built on an unbounded number of constants, the
pairing function symbol 〈 , 〉, and a symmetric encryption symbol { } . T (X) is the set of
terms that are built using an additional set X of variable symbols (written x, y, z, x1, ... in
what follows). A recipe is a term built with the function symbols { } , 〈 , 〉, dec(,), π1, π2

and a special set of variable symbols AX, that will be written ax1, ax2, Recipes typically
represent attacker’s actions and do not make use of the constants, but only the public function
symbols.

We use the standard convergent rewrite system that consists of the three rules:

dec({x}y, y)→ x π1(〈x, y〉)→ x π2(〈x, y〉)→ y

The normal form of a term u w.r.t. this system is written u ↓.
If ζ is a recipe, and T is a finite sequence of terms u1, . . . , un, ζ[T] is the term ζ in which

the variables axi have been respectively replaced with ui. This notations always assumes that
any axi that occurs in ζ is such that i ≤ |T |.

A deducibility constraint is a sequence T1 u1, . . . , Tn un such that

• each Ti is a sequence of terms in T (X) and Ti is a prefix of Ti+1

• each ui is a term in T (X).

• if x is a variable occurring in some Ti, there is an index j < i such that x occurs in uj .

2

A constraint system is a deducibility constraints system, together with a set of equations
(and possibly disequations).

A solution of a constraint system (T1 u1, . . . , Tn un, E) is a tuple (σ, ζ1, . . . , ζn) such
that

• σ is a substitution that maps every variable of the constraint system to a term in T ,
and that is a solution of E

• for every i, and every j, if axj occurs in ζi, then |Ti| ≥ j

• for every i, ζi[Tiσ] ↓= uiσ.

Two pairs (C1, S1), (C2, S2) where Ci is a constraint system and Si is a sequence of terms,
are symbolically equivalent if

1. |S1| = |S2|

2. For every solution (σ1, ζ1, . . . , ζn) of C1, there is a solution (σ2, ζ1, . . . , ζn) of C2 such
that, for every recipes ξ1, ξ2,

ξ1[S1σ1] ↓= ξ2[S1σ1] ↓⇔ ξ1[S2σ2] ↓= ξ2[S2σ2] ↓

3. For every solution (σ2, ζ1, . . . , ζn) of C2, there is a solution (σ1, ζ1, . . . , ζn) of C1 such
that, for every recipes ξ1, ξ2,

ξ1[S1σ1] ↓= ξ2[S1σ1] ↓⇔ ξ1[S2σ2] ↓= ξ2[S2σ2] ↓

In words, for any attackers computations (the recipes ζ1, . . . , ζn) that yield a feasible
trace (the substitution σ1) there is a feasible trace in the second system (the substitution
σ2) corresponding to the same computations and such that any observation that can be
performed on the first sequence of messages (the recipes ξ1, ξ2 and the first equality) can also
be performed on the second sequence of messages, and conversely.

Example 1 Consider the two systems

a, 〈a, b〉 x a, b x
S1 = {x} S2 = {x}

They are not symbolically equivalent since, choosing the substitution x 7→ b and the recipe
ζ1 = π1(ax2), we get a solution of the first system (ζ2[a, 〈a, b〉] ↓= b), while there is no
substitution σ′ that maps x to a term in T and such that ζ2[a, b] ↓= xσ′.

Example 2

a x b b
a, {x}b {a}b b, {b}c {x}c
S1 = (x, {a}b) S2 = (b, {x}c)

are two equivalent systems since the only possible solution of the first deducibility constraint is
({x 7→ a}, ax1, ax2) and the only possible solution of the second system is ({x 7→ b}, ax1, ax2)
and there is no observable (non-trivial) equality on (a, {a}b) as well as on (b, {b}c).

A solved form is a pair of a constraint system (T1 x1, . . . , Tn xn, E) and a sequence
of terms S such that x1, . . . , xn are distinct variables and E is a set of equations y = u such
that y has no other occurrence in the constraint (E may also contain in addition disequations,
timing constraints... provided they do not entail any equation).

3

3 The main result

Theorem 1 There is an algorithm that, given two pairs (C, S), (C ′, S′) of a constraint system
and a sequence of terms outputs either “fail” or a finite sequence of pairs of solved forms
((C1, S1), (C ′

1, S
′
1)), . . . , ((Cn, Sn), (C ′

n, S
′n)) such that:

• When the output is “fail”, then (C, S) and (C ′, S′) are not symbolically equivalent

• Otherwise, (C, S) and (C ′, S′) are symbolically equivalent if and only if, for every i,
(Ci, Si) and (C ′

i, S
′
i) are symbolically equivalent.

We have no space for the proof of the theorem, but we display now an example showing how
the algorithm works: it simplifies successively the pairs of constraints, possibly by splitting
the constraints into two constraints, always keeping the same solutions of both constraints.
(We omit the sequence of terms for simplicity).

d, e < x, y >
d, e z
d, e, z w
d, e, z, {c}<d,e> c
d, e, z, {c}<d,e>, {z}h {{d}e}h
d, e, z, {c}<d,e>, {z}h, {e}h {w}h

a, b < x, y >
a, b z
a, b, {a}b w
a, b, {a}b, {c}<a,b> c
a, b, {a}b, {c}<a,b>, {z}f {{a}b}f
a, b, {a}b, {c}<a,b>, {z}f , {b}f {w}f

First split the pairs on both sides, yielding:

d, e x
d, e y
d, e z
d, e, z w
d, e, z, {c}<d,e> c
d, e, z, {c}<d,e>, {z}h {{d}e}}h
d, e, z, {c}<d,e>, {z}h, {e}h {w}h

a, b x
a, b y
a, b z
a, b, {a}b w
a, b, {a}b, {c}<a,b> c
a, b, {a}b, {c}<a,b>, {z}f {{a}b}f
a, b, {a}b, {c}<a,b>, {z}f , {b}f {w}f

We now split into two cases, depending on whether the key 〈d, e〉 (resp. 〈a, b〉) is deducible.
The other branch, that yields a failure in both systems, is not displayed. From now on, we also
omit the two first deducibility constraints, that remain always unchanged in both systems.

d, e z
d, e, z w
d, e, z, {c}<d,e> < d, e >
d, e, z, {c}<d,e>, c c
d, e, z, {c}<d,e>, c, {z}h {{d}e}}h
d, e, z, {c}<d,e>, c, {z}h, {e}h {w}h

a, b z
a, b, {a}b w
a, b, {a}b, {c}<a,b> < a, b >
a, b, {a}b, {c}<a,b>, c c
a, b, {a}b, {c}<a,b>, c, {z}f {{a}b}f
a, b, {a}b, {c}<a,b>, c, {z}f , {b}f {w}f

We observe now an identity in the first system (the two occurrences of z) that must hold
in the second system (unless there exists a solution of the second contraints system where
z 6= {a}b, which is considered in another branch, that is not displayed here because it yields

4

a failure due to the fifth constraint):

d, e z
d, e, z w
d, e, z, {c}<d,e> < d, e >
d, e, z, {c}<d,e>, c c
d, e, z, {c}<d,e>, c, {z}h {{d}e}}h
d, e, z, {c}<d,e>, c, {z}h, {e}h {w}h

a, b {a}b
a, b, {a}b w
a, b, {a}b, {c}<a,b> < a, b >
a, b, {a}b, {c}<a,b>, c c
a, b, {a}b, {c}<a,b>, c, {{a}b}f {{a}b}f
a, b, {a}b, {c}<a,b>, c, {{a}b}f , {b}f {w}f

Now, we observe an identity on the last but one constraint on the right, that must hold on
the left, yielding:

d, e {d}e
d, e, {d}e w
d, e, {d}e, {c}<d,e> < d, e >
d, e, {d}e, {c}<d,e>, c c
d, e, {d}e, {c}<d,e>, c, {{d}e}}h {{d}e}}h
d, e, {d}e, {c}<d,e>, c, {{d}e}}h, {e}h{w}h

a, b {a}b
a, b, {a}b w
a, b, {a}b, {c}<a,b> < a, b >
a, b, {a}b, {c}<a,b>, c c
a, b, {a}b, {c}<a,b>, c, {{a}b}f {{a}b}f
a, b, {a}b, {c}<a,b>, c, {{a}b}f , {b}f{w}f

We now split into two cases, depending on whether we deduce {w}h (resp. {w}f) from {e}h
(resp. {b}f), yielding :

d, e {d}e
d, e, {d}e e
d, e, {d}e, {c}<d,e> < d, e >
d, e, {d}e, {c}<d,e>, c c
d, e, {d}e, {c}<d,e>, c, {{d}e}}h {{d}e}}h
d, e, {d}e, {c}<d,e>, c, {{d}e}}h, {e}h{e}h

a, b {a}b
a, b, {a}b b
a, b, {a}b, {c}<a,b> < a, b >
a, b, {a}b, {c}<a,b>, c c
a, b, {a}b, {c}<a,b>, c, {{a}b}f {{a}b}f
a, b, {a}b, {c}<a,b>, c, {{a}b}f , {b}f{b}f

Those two constraints systems are equal through renaming and so equivalent. We now have
to check on the second branch where {w}h (resp. {w}f) isn’t deduce from {e}h (resp. {b}f).
In this case, the only choice we have is to deduce {w}h (resp. {w}f) from {{d}e}h (resp.
{{a}b}f), yielding :

d, e {d}e
d, e, {d}e {d}e
d, e, {d}e, {c}<d,e> < d, e >
d, e, {d}e, {c}<d,e>, c c
d, e, {d}e, {c}<d,e>, c, {{d}e}}h {{d}e}}h
d, e, {d}e, {c}<d,e>, c, {{d}e}}h, {e}h{{d}e}}h

a, b {a}b
a, b, {a}b {a}b
a, b, {a}b, {c}<a,b> < a, b >
a, b, {a}b, {c}<a,b>, c c
a, b, {a}b, {c}<a,b>, c, {{a}b}f {{a}b}f
a, b, {a}b, {c}<a,b>, c, {{a}b}f , {b}f{{a}b}f

Again those two constraints systems are equivalent. Now because all the branches lead to a
couple of equivalent constraints systems, the algorithm will output ”success”.

References

[1] Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In
Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’05), pages 16–25, Alexandria, Virginia, USA, November 2005. ACM Press.

5

[2] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification of selected
equivalences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, February–March 2008.

[3] Yannick Chevalier and Michael Rusinowitch. Decidability of symbolic equivalence of
derivations. Unpublished draft, 2009.

[4] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zlinescu. Deciding security proper-
ties of cryptographic protocols. application to key cycles. Transaction on Computational
Logic, 2009. To appear. A preminary verion is available at http://arxiv.org/abs/0708.
3564.

[5] Véronique Cortier and Stéphanie Delaune. A method for proving observational equiv-
alence. In Proceedings of the 22nd IEEE Computer Security Foundations Symposium
(CSF’09), Port Jefferson, NY, USA, July 2009. IEEE Computer Society Press. To ap-
pear.

[6] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic proto-
col analysis. In Proc. 8th ACM Conference on Computer and Communications Security,
2001.

[7] Michael Rusinowitch and Mathieu Turuani. Protocol insecurity with finite number of
sessions is np-complete. In Proc.14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia, June 2001.

6

