
Symbolic protocol verification with dice:
process equivalences in the presence of probabilities

Vincent Cheval
Inria Paris

Raphaëlle Crubillé
Aix-Marseille Université

LIS, CNRS

Steve Kremer
Université de Lorraine

Inria Nancy Grand-Est & LORIA

Abstract—Symbolic protocol verification generally abstracts
probabilities away, considering computations that succeed only
with negligible probability, such as guessing random numbers
or breaking an encryption scheme, as impossible. This ab-
straction, sometimes referred to as the perfect cryptography
assumption, has shown very useful as it simplifies automation
of the analysis. However, probabilities may also appear in
the control flow where they are generally not negligible. In
this paper we consider a framework for symbolic protocol
analysis with a probabilistic choice operator: the probabilistic
applied pi calculus. We define and explore the relationships
between several behavioral equivalences. In particular we show
the need for randomized schedulers and exhibit a counter-
example to a result in a previous work that relied on non-
randomized ones. As in other frameworks that mix both
non-deterministic and probabilistic choices, schedulers may
sometimes be unrealistically powerful. We therefore consider
two subclasses of processes that avoid this problem. In par-
ticular, when considering purely non-deterministic protocols,
as is done in classical symbolic verification, we show that
a probabilistic adversary has—maybe surprisingly—a strictly
superior distinguishing power for may testing, which, when
the number of sessions is bounded, we show to coincide with
purely possibilistic similarity.

Index Terms—Security protocols, symbolic verification, proba-
bilistic process equivalences.

1. Introduction

Automated symbolic protocol verification, based on the
seminal work of Dolev and Yao [1], has nowadays reached
a level of maturity enabling successful use on complex real-
world security protocols, including TLS [2], [3], Signal [4],
authentication protocols of the 5G standard [5], or EMV’s
secure payment protocols [6] to name only a few. In the
symbolic model, a non-deterministic, computationally un-
bounded attacker is assumed to have complete control of
the network, being able to intercept any messages, and forge
new ones. As a counterpart, cryptography is idealized and
the attacker can only use predefined rules to manipulate
messages that are represented by terms, e.g., expressed by
an equation dec(enc(m, k), k) = m stating that a message

m encrypted with k can be decrypted with the same key.
This treatment of cryptography is in opposition to computa-
tional models where we assume a probabilistic polynomial
time attacker, messages are represented by bitstrings and
assumptions that an arbitrary such attacker has at most
negligible probability of breaking a cryptographic primitive.
Similarly, in the symbolic model, random values, such as
keys or nonces, are chosen freshly from an infinite do-
main, rather than chosen randomly from a sufficiently large
domain. These symbolic abstractions of cryptography and
randomness have even been shown sound [7] (under rather
strong assumptions) and significantly ease the automation of
proofs. Hence, symbolic modeling of messages is arguably
useful for formally analyzing cryptographic protocols.

However, the above-described abstractions of random-
ness only apply to the messages, and not to the control
flow. Typical examples which crucially rely on random-
ized control flow are mechanisms for providing anonymity,
such as the dining cryptographers protocol [8], mix-nets [9]
or Crowds [10]. In this paper, we will investigate indis-
tinguishability properties, expressed as equivalences in a
cryptographic process calculus, the applied π-calculus [11],
extended with a probabilistic choice operator. Typically, the
testing equivalence expresses that two processes are equiva-
lent if they exhibit the same behaviour when put in parallel
with an arbitrary attacker process. Our work presents foun-
dations for a model that (i) extends the scope of symbolic
protocol analysis to probabilistic protocols, and (ii) allows to
consider a probabilistic attacker (even on non-probabilistic
protocols). In particular, when we consider purely concur-
rent processes–without probabilistic behavior–the equiva-
lence we obtain is strictly stronger than the standard testing
equivalence on such purely concurrent processes; in other
terms, probabilistic adversaries are–for good reasons, as
we will argue–more powerful in order to distinguish such
processes than the purely concurrent adversaries considered
in existing works and tools.

Our contributions. Our contributions can be split into three
parts.

In a first part we introduce a probabilistic applied π-
calculus and its semantics, which has similarities to [12],
with two major differences. (i) We express our semantics in
terms of general non-deterministic probabilistic transition

≤tr≤nr
tr

Lemma 1

≤may≤nr
may

Lemma 1

T
he

or
em

1 T
heorem

3
M
P

p
p,det.adv.

≤sim
by def.

≤nr
sim6=

Lemma 2

≤obs
by def.

Proposition 5
MP<∞,np

≤nr
obs6=

Lemma 3
+ Theorem 2

T
heorem

2

6=
Lemma 3

strict implication equivalence equivalence with
additional hypotheses

≤nr denotes a preorder with non-randomized schedulers.

Figure 1: Summary of the relationship between preorders.

systems (NPLTS)–also called probabilistic automata in the
literature–which allows us to benefit from a large body
of existing results on these systems [13], [14], [15], [16],
[17], [18], [19]. (ii) More importantly, we differ in the
way non-determinism is resolved: unlike [12] we allow for
randomized schedulers—rather than choosing one particular
non-deterministic choice, we allow the scheduler to choose
an arbitrary distribution on the available non-deterministic
choices.

Second, we define several notions of preorders and
equivalences and study their relations. The main results are
also summarized in Figure 1, focusing on preorders (with
similar relations between corresponding equivalences). We
show, in particular, that
• unlike in the purely non-deterministic case, the may-

testing preorder (≤may) is strictly stronger than the
trace equivalence preorder (≤tr) (Theorem 1);

• simulation (≤sim) and observational pre-order (≤obs),
respectively bisimilarity and observational equivalence,
coincide for randomized schedulers (Theorem 2);

• for non-randomized schedulers, these equivalences
(≤nr

sim and ≤nr
obs) do not coincide (Lemma 3), which

provides a counter-example to one of the main results
in [12].

Third, a well-known phenomenon [20], [21] in process
calculi that are both probabilistic and non-deterministic is
the existence of some nonrealistic schedulers that are able
to use the internal probabilistic choices done by an agent in
order to schedule another agent’s non-deterministic choices,
i.e., the scheduler leaks the probabilistic choices. Therefore,
we study two important subclasses of processes that avoid
this phenomenon.

We first consider the classical class of non-probabilistic
processes (denoted MPnp), as in the original applied π-
calculus, but in the presence of probabilistic adversaries. We
show that, if we additionally bound the number of sessions
(denoted MP<∞,np),
• may-testing with probabilistic adversaries coincides

with the classical, purely possibilistic notion of similar-
ity (Proposition 5 and Theorem 2). This also provides

a contextual characterization of the notion of similarity
which is reminiscent of [17] in the setting of CSP;

• verification of testing equivalence with probabilistic
adversaries is co-NEXPTIME complete for a large
class of cryptographic primitives, relying on results
from [22].

We next consider a class of purely probabilistic pro-
cesses with a bounded number of sessions (denotedMPpp),
which is reminiscent of a probabilistic version of simple
processes in [23], [24], and a slight generalization of the
processes in [25]. We show that trace equivalence as con-
sidered in [25], is
• weaker than may-testing, but
• coincides with a version of may-testing with determi-

nate attackers: attacker processes are restricted dis-
allowing replication, parallel, and non-deterministic
choice, but allowing probabilistic choices (Theorem 3).

Finally, we briefly discuss how the algorithm for deciding
trace equivalence in the DeepSec verifier [22] could be
adapted to this fully probabilistic case, providing a more
general setting than Bauer et al. [26] who additionally bound
the size of input messages.

A full version with detailed proofs is available at [27].

2. Probabilistic Applied π-calculus

In this section we introduce the probabilistic applied π-
calculus, a probabilistic variant of the applied π-calculus
introduced by Goubault-Larrecq et al. [12].

2.1. Message as terms

Atomic values such as keys and nonces are modelled
by names. We assume an infinite set of such names N =
{a, b, . . . , } and partition it into two disjoint infinite sets
Npub and Npriv. The set of private names Npriv is a priori
unknown to the attacker and models, e.g., honest keys in
a protocol. The set of public names Npub models public
values, known to the attacker. The distinction between public
and private names is analogous to the distinction between

2

free and bound names in the original applied pi calculus.
We also define an infinite set of variables X . Finally, we
consider a finite set of function symbols each equipped with
their arity F = {f/n, g/m, . . .}. Function symbols model
cryptographic operations, e.g., enc/2 is a binary symbol
that could be used to model encryption. Terms are defined
as names, variables, and function symbols applied to other
terms. For instance, given two names a, k ∈ N , enc(a, k)
represents the encryption of a with the key k. For any
F ⊆ F , N ⊆ N and V ⊆ X , the set of terms built from
N and V by applying function symbols in F is denoted by
T (F,N ∪ V).

We also suppose that terms are equipped with a binary
relation .

= that expresses that two terms evaluate to the
same result, and a predicate Msg(·) that is intended to hold
when evaluation succeeds. How .

= and Msg(·) are precisely
defined is not relevant for the results of this paper and
we wish to capture several formalisms. .

= can for instance
be defined by an equational theory, as in the applied π-
calculus [11] (where Msg(·) would evaluate to true on any
term), by a constructor-destructor rewrite system, allowing
evaluation to fail when a destructor application does not
reduce, as in the DeepSec tool [22], or a combination of
these as in the ProVerif tool [28].

Formally, we require that .= is symmetric, transitive, and
closed under substitution of names and variables by other
terms and application of function symbols. Moreover, for all
a, b ∈ N , a = b if and only if a .

= b. Msg(·) is supposed to
hold on any names, be closed under renamings and t1

.
= t2

implies that Msg(t1) and Msg(t2). Finally, we require that
Msg(t) implies t .= t.

For example, the .
= relation could capture that

dec(enc(m, k), k)
.
= m for any m, k modelling that de-

cryption cancels out encryption when the same key k is
used; one may also define Msg(dec(n, k)) as false to express
that decryption fails if the ciphertext argument is not an
encryption with the matching key.

2.2. Syntax of the process calculus

The syntax for processes is defined as follows:

P, Q ::= processes
0 nil
in(u, x);P output
out(u, v);P input
P | Q parallel composition
!P replication
new a;P restriction
if u = v then P else Q conditional
P + Q non-deterministic choice
P +p Q probabilistic choice

where u, v ∈ T (F ,N ∪ X), x ∈ X , a ∈ N and p ∈]0; 1[.
As usual, in examples we will omit trailing 0 processes and
else 0 branches. A process P is closed when all variables
in P are bound by an input.

Example 1. As an example, consider the process P :

(out(c, k) + 1
3
out(c, a)) | in(c, x); if x = k then out(c, ok)

P consists of two parallel processes. The left process outputs
on a channel c with probability 1

3 the name k and with
probability 2

3 the name a. The right process inputs a value
on channel c and binds this value to x. If x equals k then
it outputs the constant ok.

We denote by SP the set of all processes in the prob-
abilistic applied π-calculus, and by MP the set of all
multisets over SP .

2.3. Operational semantics

We will now define the semantics of the probabilistic
applied π-calculus. We opt for a different presentation of
the semantics than Goubault-Larrecq et al. [12] relying on
existing formalisms for transition systems. Moreover, we
allow for a more general class of schedulers.

Notation 1. Let S be an arbitrary set. We denote by D(S)
the set of all finitely supported probability distributions over
S and by D≤1(S) the set of all sub-probability distributions
over S (observe that D(S) ⊆ D≤1(S)). For p, q ≥ 0, and
D,E two sub-distributions, we define the measure

(p ·D + q · E)(x) = p ·D(x) + q · E(x).

When q = 0, the resulting sub-distribution does not depend
on E, and we simply write p ·D instead of p ·D + 0 · E.

If D ∈ D(S), we denote by supp(D) the support of
D, i.e., the set of all elements s ∈ S such that D(s) > 0.
If S ′ ⊆ S, we define D(S ′) =

∑
s∈S′ D(s). Finally, we

denote by δx the Dirac distribution on x.

The operational semantics of processes is defined by
a relation between multisets of processes and probability
distributions on multisets of processes, denoted P →τ µ.
This relation is defined in Figure 2.

Remark 1. One may note that our calculus offers a non-
deterministic choice operator that is resolved internally. This
differs from the standard pi-calculus [29] where the non-
deterministic choice operator is resolved externally. Note
that the original applied pi calculus [11] does not contain
non-deterministic choice.

In the following, we define the operational semantics of
our calculus using well studied probabilistic systems. We
choose the formalism of non-deterministic probabilistic la-
belled transition systems (NPLTS) used for instance in [16].
A NPLTS allows to represent states that allow both internal
and external non-deterministic behavior. It can be noted that
it coincides with the notion of simple probabilistic automata
of Segala et al. [13].

Definition 1. A NPLTS is a triple (S,A, trans), where
• S is a set of states,
• A = {τ} t Aext is a set of labels, and

3

P ∪ {{0}} →τ δP

P ∪ {{if u = v then P else Q}} →τ δP∪{{P}} if u .
= v

P ∪ {{if u = v then P else Q}} →τ δP∪{{Q}} if u 6 .= v

P ∪ {{out(u, t).P, in(v, x).Q}} →τ δP∪{{P,Q{x7→t}}}
if Msg(t) ∧ u .

= v

P ∪ {{P | Q}} →τ δP∪{{P,Q}}
P ∪ {{!P}} →τ δP∪{{!P,P}}
P ∪ {{new a;P}} →τ δP∪{{P{a′/a}}}

where a′ ∈ Npriv is fresh
P ∪ {{P + Q}})→τ δP∪{{P}}
P ∪ {{P + Q}} →τ δP∪{{Q}}
P ∪ {{P +p Q}} →τ p · δP∪{{P}} + (1− p) · δP∪{{Q}}

Figure 2: Semantics of the calculus

• trans : S → A → P(D(S)) is a transition function:
for each state in S, and each label in A, trans(s)(a) is
a set of (finitely supported) distributions.

The label τ is the internal action and the labels in Aext are
the external actions. For s ∈ S, a ∈ A, we write s a−→ D
when D ∈ trans(s, a).

In the remaining of this paper, we may define a NPLTS
by only its transition function, i.e., we will say that trans :
S → A → P(D(S)) is the NPLTS (S,A, trans).

We now express our operational semantics as a NPLTS
without external actions, i.e., Aext = ∅. External actions
will be used to express our labeled semantics in Section 4.1.

Definition 2. The operational semantics is the NPLTS
No = (MP, {τ}, transo) where for every s ∈ MP ,
transo(s)(τ) = {D | s→τ D}.

Note that the states of the NPLTS No contain all possible
multisets of processes and how they are executed. Obviously,
No is thus an infinite transition system. In examples illustrat-
ing transitions of a multiset of processes P , we only show
the relevant fragment of No that contains P .

Example 2. The complete execution of the process P ,
introduced in Example 1 is given in Figure 3.

3. Behavioral equivalences

In this section we define probabilistic versions of two
classical equivalences: may-testing and the stronger obser-
vational equivalence. In order to do so we first introduce
the notion of resolution (also known as scheduler), i.e., how
internal non-determinism is resolved, and the notion of barb,
which models an observational action.

3.1. Resolving the internal non-determinism

Resolutions express how internal non-determinism of
a NPLTS is resolved. Intuitively, resolving the non-

{{P}}

{{A,B}}

τ

{{out(c, k), B}}

{{out(c, a), B}}

1/3

2/3

τ

{{0, B1}}
τ {{0, 0}}τ

{{B1}}

τ

{{0}}τ

τ

∅τ

{{0, B2}}
τ {{B2}}

τ

{{0, B3}}

τ

{{B3}}

τ

τ

A = out(c, k) + 1
3
out(c, a)

B = in(c, x); if x = k then out(c, ok)

B1 = if a = k then out(c, ok)

B2 = if k = k then out(c, ok)

B3 = out(c, ok)

Figure 3: Semantics of the process P from Example 2

determinism means restricting the transition system by
choosing for each state either one particular internal tran-
sition or leave the choice of a non-deterministic external
action. The resulting transition system is called a Reactive
Probabilistic Labelled Transition System (RPLTS) and has
still external, but no internal, non-determinism. It can be
noted that this model is equivalent to Labelled Markov
Chains when extended with internal actions.

Definition 3. A RPLTS is a triple (S,A, trans), where
• S is a set of states,
• A = {τ} t Aext a set of labels, and
• trans : S → D(S) t (Aext → D(S) ∪ {?}) is a

transition function that assigns to each state in S
– either a unique distribution for the label τ (the de-

terministic internal action);
– or a function mapping labels in Aext to a failure

(?) or a distribution over S (the non deterministic
external actions).

States s ∈ S such that trans(s) : Aext → D(S) ∪ {?} are
called external states, while the ones such that trans(s) :
D(S) are called internal states. Given a RPLTS R, we
denote by Sext(R) and Sint(R) the sets of external and
internal states of R respectively. For a more homogeneous
notation, when s is an internal state, we sometimes write
trans(s)(τ) = D instead of trans(s) = D.

Remark 2. In the particular case of a NPLTS N with
no external action, resolving the internal non-determinism
results in a RPLTS without any non-determinism. This is
the case of the operational semantics No. Such a purely
probabilistic system is typically equivalent to the notion of
Markov Chain. By abuse of notation, the transition function

trans : S → D(S) t (∅→ D(S) ∪ {?})

of such RPLTS is rewritten as

trans : S → D(S) t {?}

as for any set X , the cardinality of the set (∅→ X) is 1.

Before defining the notion of resolution–or schedulers–,
we need to introduce two classical notions in probabilistic

4

models: the convex hull of a set of distributions and the
probabilistic lifting of a function.

Notation 2. Let S be a set of states. The convex hull of
∆ ⊆ D(S), denoted conv(∆), is the set of distributions
D ∈ D(S) such that ∃α1, . . . , αn ∈ R.∃D1, . . . , Dn ∈ ∆.

n∑
i=1

αi = 1 and D =

n∑
i=1

αi ·Di

Intuitively, rather than choosing one distribution in ∆,
each element in conv(∆) corresponds to a distribution over
the distributions in ∆. This will be useful for defining
randomized schedulers.

Next, we lift functions to distributions: applying a func-
tion f to a distribution simply defines a new distribution that
transfers, according to f , the probability weight of elements
in the domain of f to its image, possibly summing these
weights when f maps several inputs to a same output.

Notation 3. Let S,S ′ be two sets of states and f : S →
S ′. We define the function f : D(S) → D(S ′) to be the
probabilistic lifting of f , where

f(D) =
∑
s∈S

D(s) · δf(s)

When obvious from context, we will overload the nota-
tion and write f instead of f .

We now define resolutions for a NPLTS that allow to
solve the internal, but not external, non-determinism: a
resolution describes one of the possible ways of turning
an NPLTS into a RPLTS. It means that for each state s,
a resolution should choose whether s is an internal state
or external state; in the first case, a unique post-transition
distribution must be chosen; in the second case, for each
external action a, the resolution must choose to either stop
(i.e., trans(s) = ?) or a unique distribution D such that
s
a−→ D (i.e., trans(s) = D). Due to the possible existence

of cycles in the NPLTS, a scheduler that visit multiple times
a certain state s must be able to choose differently how to
resolve the non determinism every time it visits s. This leads
to the notion of correspondence function.

Definition 4 ([16]). A randomized resolution for a NPLTS
N = (S,A, trans) is a pair (corr, R) where
• R = (S ′,A, trans′) is a RPLTS, and
• corr : S ′ → S is the correspondence function such

that for all states s′ ∈ S ′, trans′(s′)(a) = D implies
corr(D) ∈ conv(trans(corr(s′))(a)).

Given a NPLTS N we denote by Rr(N) the set of ran-
domized resolutions. Additionally, we denoteRor = Rr(N

o).
Figure 4 shows an example of a resolution from Ror for the
process P from Example 2.

3.2. Computing the probability to reach a barb

The notion of barb is a classical way of expressing
observables. Intuitively a state of No, i.e., a multiset of

{{P}}

{{A,B}}

τ

{{out(c, k′), B}}

{{out(c, a), B}}

1/3

2/3

τ

{{0, B1}}
τ {{0, 0}}

{{B1}} {{0}}τ

τ

∅τ

1/43/4

τ

{{0, B2}}
τ {{B2}}

τ {{B3}}
τ

Figure 4: Example of a randomized resolution for process
P from Example 2 where the correspondence function corr
is the identity.

processes, exhibits a barb c whenever an output on channel
c is possible.

Definition 5. For c ∈ Npub and P ∈ MP , we say that P
exhibits barb c when there exists a process out(u, t).Q in
P where c .= u and Msg(t). We denote by ↓c the set of all
multisets of processes that exhibit the barb c.

We next define the probability of reaching a state in a set
of target states, in a fully probabilistic transition system, i.e.,
in a transition system where all non-determinism–internal
or external–has already been resolved. We first define the
probability of reaching such a state in at most n steps, and
then we take the probability of reaching them eventually as
the limit of the n-step reaching probabilities.

Definition 6. Let R = (S,A, trans) be a RPLTS, T ⊆ S
a set of states, and s an initial state. For every n ∈ N we
define the probability of reaching T from s in at most n
steps as:

RProb≤0R (s, T) =

{
1 if s ∈ T
0 otherwise.

RProb≤n+1
R (s, T) =

1 if s ∈ T
0 if s 6∈ T ∧ s ∈ Sext(R)∑

u∈supp(D)D(u) · RProb≤nR (u, T)

if s 6∈ T ∧ trans(s)(τ) = D

We define the probability of reaching T from s as:

RProbR(s, T) = lim
n→+∞

RProb≤nR (s, T).

Note that, as RProb≤nR (s, T) is an increasing function
in n we can replace the limit by the supremum on n ∈ N.

Given N = (SN,A, transN), we denote by
RProbRr(N)(s, T) the probability:

sup

{
RProbR(s′, corr−1(T))

∣∣∣∣ (corr, R) ∈ Rr(N),
corr(s′) = s

}
3.3. Defining May Testing Equivalence

Intuitively, two processes are may-testing equivalent if
they exhibit the same observations when executed in the
presence of any attacker process. This models the inability
of an arbitrary process to distinguish them. More formally,

5

two multisets of processes P and Q are may testing equiv-
alent when the attacker has the same probability over all
schedulers to exhibit the barb c in both P and Q.

Definition 7 (May testing equivalence). Let P,Q ∈ MP .
We say that P ≤may Q iff:

∀Adv ∈MP s.t. fn(Adv) ⊆ Npub. ∀c ∈ Npub.
RProbRor (P ∪Adv, ↓c) ≤ RProbRor (Q∪Adv, ↓c)

We say that P,Q are may testing equivalent, denoted
P ≈may Q, when P ≤may Q and Q ≤may P .

One could also consider a more fine-grained definition
of may testing pre-order that guarantees the equality of
probabilities between two schedulers rather than comparing
the probabilities over all schedulers. Formally, this pre-order,
denoted ≤′may, requires that for all resolutions (corr, R) ∈
Rr(N) and state s of R such that corr(s) = P ∪Adv, there
exist a resolution (corr′, R′) and a state s′ of R′ such that
corr′(s′) = Q∪Adv and

RProbR(s, corr−1(↓c)) = RProbR′(s′, corr′−1(↓c))

However, the resulting relation is counter-intuitive and
distinguishes processes

P := {{out(a, 0)}} and

Q := {{out(a, 0) + 1
2

(out(a, 0) + 1
2
out(a, 0))}}.

Indeed, we can show that Q 6≤′may P: for Adv = {{0}},
there exists a resolution (corr, R) such that

corr(s) = P ∪Adv and RProbR(Q, ↓a) =
1

2

but for every resolution (corr′, R′) such that corr′(s′) =
Q∪Adv,

RProbR′(P, ↓a) = 1.

3.4. Defining Observational Equivalence

In this section, we define observational preorders and
equivalence which are stronger than may testing. When
studying cryptographic protocols we suppose that internal
actions are not observable and therefore only study weak
equivalences hiding whether such internal actions take place
or not. To define the observational preorder we need to
introduce a weak relation for internal actions. In a purely
non-deterministic system this simply corresponds to the
reflexive, transitive closure τ−→

∗
. However, in our setting we

need to compute the corresponding distributions.

Definition 8. Let N be a NPLTS and D,E ∈ D≤1(SN).
We write D

τ
==⇒Rr(N) E when there exists (corr, R) ∈

Rr(N) and D′, E′ ∈ D≤1(SR) such that
• corr(D′) = D, corr(E′) = E, supp(E′) ⊆ Sext(R),
• ∀u ∈ Sext(R). E′(u) =

∑
s′∈SR

D′(s′)·RProbR(s′, {u}).

To define the observational preorder, we additionally
need to lift relations defined on a given set to relations on
sub-distributions over this set.

Definition 9 (Lifting of a relation). Let R be a binary
relation on a discrete set S. We define the lifting of R to
sub-distributions as the binary relation on D≤1(S), denoted
R̂, defined as:

D R̂ E when ∀S ′ ⊆ S, D(S ′) ≤ E(R(S ′))

where R(S ′) = {s ∈ S | s′ ∈ S ′ ∧ s′ R s}.

Using these notions of weak transition and lifting of
relations to sub-distributions we can define observational
equivalence.

Definition 10. The observational preorder ≤obs is the
largest relation R on MP such that P R Q implies :
• ∀c ∈ Npub. RProbRor (P, ↓c) ≤ RProbRor (Q, ↓c);
• if P τ

==⇒Ror D and D ∈ D(SNo) then Q τ
==⇒Ror E,

E ∈ D(SNo) and D R̂ E;
• ∀ closed Adv ∈ MP such that fn(Adv) ⊆ Npub.
{Adv} ∪ P R {Adv} ∪ Q.

The observational equivalence ≈obs is defined by addition-
ally requiring R to be symmetric.

Remark 3. Note that we slightly diverge from the origi-
nal definition of observational equivalence [11] where an
evaluation context C[] is of the form

new n1; . . . ; new nk; (| A)

In our definition we simply consider a parallel process, and
no additional name restriction. However, we prove in the
full version that these two definitions coincide. Intuitively,
restricting names whose scope includes the adversarial pro-
cess A corresponds to making previously public channels
invisible to the attacker at later steps, hence it does not
provide additional distinguishing power.

4. Labelled semantics and equivalences

As usual in π calculi, and in the applied π-calculus,
we define a labelled semantics. The intent of the labels
is to capture adversarial actions and avoid the universal
quantification over processes in equivalence definitions.

4.1. Labelled semantics

A state in this labeled semantics is defined by associ-
ating a multiset of processes with a frame, modeling the
adversary’s knowledge. We consider a new set of variables
AX = {ax1, ax2, . . .} distinct from X that will act as
pointers to messages that were previously output.

Definition 11. An extended process is a pair (P, φ), where
P ∈MP and φ is a ground substitution

{ax1 7→ t1; . . . ; axn 7→ tn}

such that axi ∈ AX , ti ∈ T (F ,N) and Msg(ti) for 1 ≤
i ≤ n.

We denote by SP` the set of all extended processes.

6

A recipe is a term from T (F ,Npub∪AX} representing
how an attacker can deduce a message.

Notation 4. If D is a distribution overMP , and φ a frame,
we write (D,φ) for the distribution over extended processes
defined as (D,φ) =

∑
P∈supp(D)D(P) · δ(P,φ).

We now define the NPLTS N` for the labelled semantics.
External actions model interactions with the attacker.

Definition 12. The labelled semantics is the NPLTS N` =
(SP`, {τ} ∪ A`ext, trans`) where

• A`ext is the set of labels in(ξ, ζ), out(ξ, ax), (ξ
?
= ζ)

and (ξ 6 ?= ζ) with ξ, ζ recipes and ax ∈ AX ;
• trans`((P, φ))(a) = {D | (P, φ)→a D} where →a is

defined in Figure 5.

Note that when we lift →τ to extended processes we
suppose that the freshness requirement of a new name a′ in
the (NEW) rule of Figure 2 also applies to the frame φ, i.e.,
a′ must not appear in φ.

Remark 4. It should be noted that we deal with static
equivalence in a different way as done usually in the ap-
plied π-calculus, or implicitly in the probabilistic applied π-
calculus [12]: we encode static equivalence into the NPLTS
N` by a countable set of actions–all the tests (ξ

?
= ζ)

and their negations– instead of just one action testing static
equivalence. The motivation behind this choice is to be able
to represent every action from the NPLTS by an elementary
action of the adversary. As shown later, this choice has no
effect on the definition of the simulation pre-orders or on
bisimulation, but it leads to a slightly different notion of
trace equivalence, that is closer to may testing equivalence.

4.2. Defining Trace Equivalence

We first define the probability of executing a trace for
a given resolution. As we are interested in weak trace
preorder (where internal actions cannot be observed), traces
are sequences of external actions only. Our definition uses
the previously introduced notation RProbR(s, {t}): recall
that this denotes the probability of reaching state t from state
s using only internal actions for some resolution (corr, R).

Definition 13. Let R = (S, {τ}tAext, trans) be a RPLTS.
Let w ∈ Aext∗ be a trace, i.e., a finite word on the alphabet
Aext. For all states s ∈ S, we define the probability of
executing w starting from s in R as:
• ProbR(s, ε) = 1

• ProbR(s, a.w) =
∑
t∈S

trans(t)(a)=D

RProbR(s, {t})·

∑
s′∈supp(D)

D(s′) · ProbR(s′, w)

Given a NPLTS N = (S,A, trans), we denote by
ProbRr(N)(s, w) the probability:

sup{ProbR(s′, w) | (corr, R) ∈ Rr(N), corr(s′) = s}

This allows us to define trace equivalence of (P, φ) and
(P ′, φ′): intuitively any trace that can be executed in (P, φ)
can be executed with at least the same probability in (P ′, φ′)
and vice-versa.

Definition 14 (trace equivalence). Let (P, φ), (P ′, φ′) ∈
SP`. We say that (P, φ) ≤tr (P ′, φ′) iff for all w ∈ A`ext

∗,

ProbRr(N`)((P, φ), w) ≤ ProbRr(N`)((P
′, φ′), w)

(P, φ) and (P ′, φ′) are trace equivalent, denoted (P, φ) ≈tr
(P ′, φ′), when

(P, φ) ≤tr (P ′, φ′) and (P ′, φ′) ≤tr (P, φ).

Observe that in the NPLTS No, even though s
τ−→ D

implies that D has finite support, it is possible to have
δs

τ
==⇒R E, where the sub-distribution E has infinite

support.
Unlike, in the purely possibilistic case, in our proba-

bilistic setting trace preorder is strictly weaker than the may
testing preorder.

Theorem 1. Let P,Q ∈MP be two processes.

P ≤may Q ⇒ (P,∅) ≤tr (Q,∅)

Moreover, processes P,Q ∈ MP defined in Figure 6 are
such that (P,∅) ≤tr (Q,∅) and P 6≤may Q.

Figure 6 witnesses that the implication is strict. P and Q
output each 3 encrypted bits (in a non-deterministic order).
P outputs twice the encryption of 0; Q twice the encryption
of 1. The (randomized) encryption ensures that these three
values are indeed indistinguishable. We give the adversary
a single access to a decryption oracle Pdec. Intuitively, trace
equivalence holds, as the scheduler can ensure that matching
encryptions are sent to Pdec. However, may-testing does not
hold: the attacker chooses uniformly at random one of the
three encryptions to submit. The probability to hit 0 will be
2
3 in P and only 1

3 in Q.
Observe that Theorem 1 holds for any processes and

does not require them to be image-finite, contrary to usual
results in the literature, e.g., [23]. This discrepancy comes
from our choice of labelled actions for static equivalence
(see Remark 4): a trace cannot test directly static equiva-
lence, but can only do a finite numbers of recipe tests. We
believe this variant definition of trace equivalence to be of
independent interest as it provides an exact characterization
of may testing in the purely non-deterministic case.

4.3. Defining Bisimulation

In this section, we define simulations on probabilistic
processes and corresponding equivalences. Our definition of
simulation preorder is similar to the definition of randomized
weak simulation preorder introduced by Segala and Lynch
for probabilistic automata [13]. We reuse the lifting of a
relation and the weak relation for internal actions defined
in Section 3.4 but applied to the NPLTS N`. In particular,
given an action a ∈ A`ext and two distributions D,D′ ∈

7

(P, φ)→τ (D,φ) if P →τ D

({{in(u, x);P}} ∪ P, φ)→in(ξ,ζ) δ({{P{ζφ/x}}}∪P,φ) if u .
= ξφ,Msg(ζφ) and vars(ξ, ζ) ⊆ dom(φ)

({{out(u, t);P}} ∪ P, φ)→out(ξ,axn+1) δ({{P}}∪P,φ{axn+1 7→t}) if u .
= ξφ,Msg(t), vars(ξ) ⊆ dom(φ) and |φ| = n

(P, φ)→(ξ∼ζ) δ(P,φ) if vars(ξ, ζ) ⊆ dom(φ) and ξφ ∼ ζφ where ∼ ∈ { .=, 6 .=}

Figure 5: Labelled semantics: definition of →a

P = {{new k; (P (0) | P (0) | P (1) | Pdec)}}
Q = {{new k; (P (0) | P (1) | P (1) | Pdec)}}

and

P (x) = new r; out(c, enc(x, r, k))

Pdec = in(d, y); out(d, dec(y, k))

Figure 6: P,Q such that (P,∅) ≤tr (Q,∅) and P 6≤may Q

D(S), we write D a
==⇒R`r D

′ when D τ
==⇒R`r E1, E1

a−→ E2

and E2
τ

==⇒R`r D
′ for some E1, E2 and where R`r denotes

Rr(N
`). Here E1

a−→ E2 is the natural lifting of the transition
function of N`, i.e., E2 =

∑
sE1(s) ·D with s a−→ D.

Definition 15. A relation R ⊆ (SN` × SN`) is
• a simulation if s1 R s2 implies that for all a ∈ A`ext ∪
{τ}, D1 ∈ D(SN`)

if s1
a−→ D1 then

s2
a

==⇒R`r D2, D2 ∈ D(SN`)

and D1 R̂ D2

• a bisimulation if R is a simulation and R is symmetric.
The simulation preorder, denoted ≤sim, is the largest simu-
lation and bisimilarity, denoted ≈bi, is the largest bisimula-
tion. We define similarity, denoted ≈sim, as ≤sim ∩ ≤

−1
sim.

As usual in the field of (bi)simulation, it can be shown
that ≤sim, respectively ≈bi, exists [19] and that it is a pre-
order, i.e., a reflexive and transitive relation, respectively
an equivalence, i.e., a reflexive, symmetric and transitive
relation [18].

The following proposition from [18] states that, as usual
in the non-probabilistic case, the weak arrow a

==⇒R`r can
replace the single arrow a−→ in the definition of simulation.

Proposition 1. Let R be the largest binary relation on SN`
such that s1 R s2 implies that for every a ∈ Aext ∪ {τ},

if s1
a

==⇒R`r D1 then
s2

a
==⇒R`r D2, D2 ∈ D(SN`)

and D1 R̂ D2

We have R = ≤sim.

We now show that observational preorder and equiva-
lence are exactly characterized by the simulation preorder
and bisimilarity.

Theorem 2. Let P,Q two processes in MP .

P ≤obs Q iff (P,∅) ≤sim (Q,∅) and
P ≈obs Q iff (P,∅) ≈bi (Q,∅)

Proof sketch. We here provide the main intuitions of the
proof that P ≤obs Q iff (P,∅) ≤sim (Q,∅).

(⇒). To show that observational preorder implies
simulation, we need to represent the frame of an extended
process (P, φ) as a process: we output in parallel the terms
axiφ, with axi ∈ dom(φ), on a public channel ci, distinct
for each i and not occurring anywhere in (P, φ). Thus, we
build the relation R such that (P, φ)R(Q, φ′) if

P ∪ {{out(ci, axiφ); 0}}ni=1 ≤obs Q∪ {{out(ci, axiφ′).0}}ni=1

with |dom(φ)| = |dom(φ′)| = n and c1, . . . , cn ∈ Npub
pairwise distinct and not occurring in P,Q, φ, φ′.

As the public channels ci do not occur anywhere else,
any internal transition on

P1 = P ∪ {{out(ci, axiφ); 0}}ni=1

must correspond to an internal transition on P; and similarly
for Q.

For all visible actions, we rely on ≤obs being closed
by composition with an adversarial process. For example,
when the action is the test ξ ?

= ζ, we compose with the
adversarial process that (i) reads the frame, (ii) applies the
test, and (iii) outputs on a fresh public channel ok if the test
succeeds:

Adv = in(c1, xi); . . . ; in(cn, xn);
if ξρ = ζρ then out(ok, ok); 0 else 0

where x1, . . . , xn are fresh variables and ρ = {xi/axi}ni=1.
We then consider the transition

{{Adv}} ∪ P1
τ

==⇒Ror δP∪out(ok,ok)
and the fact that

RProbRr(P ∪ out(ok, ok), ↓ok) = 1

to conclude. Indeed, for

{{Adv}} ∪ Q ∪ {{out(ci, axiφ′).0}}ni=1
τ

==⇒r E

to exist with δP∪out(ok,ok) R̂ E, {{Adv}} ∪ Q ∪
{{out(ci, axiφ′); 0}}ni=1 must also have passed the test ξρ =
ζρ in the conditional branching. Hence ξφ′ = ζφ′ and so

(Q, φ′) ξ
?
=ζ−−→ δ(Q,φ′).

When the visible action is an output or an input, the
process is more complicated. The adversarial process starts
by reading the frame as before and executing the action.
The last part of the adversarial process consists in outputting
again the frame so that we re-enter the relation R. Assume

8

for instance the action in(ξ, ζ). By definition, P = P1 ∪
{{in(c, x);P}} with ξφ

.
= c, (P, φ)

in(ξ,ζ)−−−−→ δP1∪{{Pσ}} and
σ = {ζφ/x}.

We consider the following adversarial process Adv:

Adv = in(c1, xi); . . . ; in(cn, xn);
out(ξρ, ζρ);
(out(ok, ok) +0.5 (out(c′1, x1); 0 | out(c′n, xn); 0))

where c′1, . . . , c
′
n are fresh public names pairwise distinct not

occurring anywhere else. We will conclude by considering
the transition

{{Adv}} ∪ P ∪ {{out(ci, axiφ); 0}}ni=1
τ

==⇒r D

where

D = 0.5 · δP1∪{{P{ζφ/x},out(ok,ok).0}}
+ 0.5 · δP1∪{{P{ζφ/x}}}∪{{out(c′i,axiφ);0}}ni=1

Indeed, for

{{Adv}} ∪ Q ∪ {{out(ci, axiφ′); 0}}ni=1
τ

==⇒r E

to exist with D R̂ E, {{Adv}} ∪ Q ∪ {{out(ci, axiφ′); 0}}ni=1
must also have applied an internal transition executing the
construct out(ξρ, ζρ) which allows for the labeled action
in(ξ, ζ) to be executed on (Q, φ′).

(⇐). Showing that simulation implies observational
preorder is more straightforward. We build a relation R
such that P RQ when there exist two extended processes
(P1, φ), (Q1, φ

′) with compatible frames (i.e. dom(φ) =
dom(φ′)), a renaming ρ from Npub to Npriv, and a multiset
of adversarial processes PAtt such that:
• names in img(ρ) do not occur in P1, φ,Q1 and φ′;
• P = P1ρ ∪ PAtt{axiφ/xi}ni=1ρ;
• Q = Q1ρ ∪ PAtt{axiφ

′
/xi}ni=1ρ;

• (P1, φ) ≤sim (Q1, φ
′).

The renaming ρ replaces the private names that are gen-
erated by the processes in PAtt (through the construct
new a;P) with public names that are chosen fresh (i.e. not
in P1, φ,Q1 and φ′).

4.4. Randomized vs non-randomized schedulers

All our equivalence notions are based on randomized
schedulers where the non-determinism is solved by picking
a distribution from the convex hull of the available distri-
butions. In the literature, more restrictive non-randomized
schedulers have also been considered when defining ob-
servational equivalence and bisimilarity [12]. A non-
randomized scheduler solves the non-determinism by choos-
ing directly one of the available distributions. Formally,
in Definition 4, instead of requiring that trans′(s′)(a) =
D implies corr(D) ∈ conv(trans(corr(s′))(a)), a non-
randomized resolution requires that trans′(s′)(a) = D im-
plies corr(D) ∈ trans(corr(s′))(a) and corr is injective on
the support of D.

Denoting by Rnr(N) the set of all non-randomized
schedulers of N, we can naturally update the notions used to
define behavioural equivalences to non-randomized sched-
ulers. For instance, we denote by RProbRnr(N)(s, T) the
probability of reaching T from s over all non random-
ized schedulers Rnr(N). Similarly, ProbRnr(N)(s, w) denotes
the probability of executing the trace w from s over all
schedulers from Rnr(N). Updating the definitions results
into may-testing and trace preorder for non-randomized
schedulers, denoted ≤nr

may and ≤nr
tr respectively. We now

show that ≤may and ≤tr do not depend on the whether
schedulers are randomized or not (unlike simulation based
notions as we will see below).

Lemma 1. May testing and trace preorders with randomized
and non-randomized resolutions coincide:

≤may = ≤nr
may and ≤tr = ≤nr

tr

Proof sketch. The core of the proof is the following fact:
when we fix a randomized resolution R, an initial state s,
and n ∈ N, it is possible to decompose the behaviour of R
from state s and during the n first execution steps into a
weighted family of non-randomized resolution (αi, Ri)i∈I
(where the weight αi is a coefficient in [0, 1], in the
sense that for every set of processes P , RProb≤nR (s,P) =∑

i∈I αiRProb≤nRi (s,P). The construction of this decompo-
sition is defined inductively on n.

This result is of interest as it is often easier to manip-
ulate non-randomized schedulers, and we expect automated
verification to be more convenient as well.

When considering observational equivalence, simulation
and bisimulation, non-randomized schedulers raise a number
of issues. First, as highlighted for instance in [19], [30],
when considering bisimulation or simulation on general
NPLTSs, non-randomized resolutions result into relations
that are not transitive. We show that even on the specific
NPLTS N`, simulation is not transitive.

Simulation for non-randomized scheduler is naturally
defined by extending the notation D

τ
==⇒Rr(N) E to non-

randomized scheduler, denoted D τ
==⇒Rnr(N) E: from Defi-

nition 8, we require (corr, R) to be in Rnr(N) and addition-
ally require an injectivity property on the correspondence
function, i.e., corr is injective on the support of D′. We
denote the resulting simulation with non-randomized sched-
ulers by ≤nr

sim (and similarly for ≤nr
obs, ≈nr

obs and ≈nr
bi).

Lemma 2. ≤nr
sim is not transitive.

Proof sketch. Consider processes

P = out(a, c) +0.5 out(b, c)

Q = (out(a, c) +0.9 out(b, c)) + (out(a, c) +0.1 out(b, c))

Q′ = if c = c then Q else 0

R = Q +0.5 Q
′

9

({{R}},∅)

α ({{Q}},∅)

α

({{Q′}},∅)

α

0.5

0.5

τ

(Pab(0.9),∅)
τ

τ

α

(Pab(0.1),∅)

τ

α

(out(a, c),∅)

(out(b, c),∅)0.1

0.9
τ

(out(a, c),∅)

(out(b, c),∅)

0.1

0.9

τ

α

α

α

α

For readability, α stands for all labels (ξ ∼ ξ′), with closed
recipes ξ, ξ′ such that ξ ∼ ξ′ (∼ ∈ { .=, 6 .=}) and

Pab(p) = {{out(a, c) +p out(b, c)}}

(a) The fragment of N` corresponding to ({{Q}},∅) and ({{R}},∅).

sR

sQ,1

sQ′ sQ,2

0.5

0.5

τ

sab,0.9
τ

τ sab,0.1
τ

sa,1

sb,10.1

0.9
τ

sa,2

sb,2

0.1

0.9

τ

(b) The resolution for ({{R}},∅)
τ

==⇒Rnr 0.5 ·δout(a,c)+0.5 ·δout(b,c).

Figure 7: Fragments of N` showing ({{P}},∅) ≤nr
sim

({{R}},∅) ≤nr
sim ({{Q}},∅) but ({{P}},∅) 6≤nr

sim ({{Q}},∅)

The corresponding fragment of N` is displayed in Figure 7a.
We will show that

({{P}},∅) ≤nr
sim ({{R}},∅) and ({{R}},∅) ≤nr

sim ({{Q}},∅)

but ({{P}},∅) 6≤nr
sim ({{Q}},∅)

It is easy to see that ({{Q}},∅) ≈nr
bi ({{Q′}},∅) and so

({{R}},∅) ≤nr
sim ({{Q}},∅). The difficult part of the proof

of ({{P}},∅) ≤nr
sim ({{R}},∅) is to match

({{P}},∅)
τ−→ 0.5 · δ({{out(a,c)}},∅) + 0.5 · δ({{out(b,c)}},∅)

This is achieved by the scheduler displayed in Figure 7b.
Finally, we prove ({{P}},∅) 6≤nr

sim ({{R}},∅) by show-
ing that the transition ({{P}},∅)

τ−→ 0.5 · δ({{out(a,c)}},∅) +
0.5 · δ({{out(b,c)}},∅) cannot be simulated in ({{Q}},∅).

Note that the definitions of bisimilarity in [12] rely
on non-randomized schedulers. Even though this does not
necessarily imply that their relation is not transitive (as they
focus directly on the semantics of processes) we show in
the next lemma that ≈nr

bi and ≈nr
obs do not coincide, hence

disproving [12, Theorem 2]. This reenforces our belief that it
is preferable to use randomized schedulers in our definition.

Lemma 3. There exist processes P,Q ∈ SP such that
• ({{Q}},∅) ≈bi ({{P}},∅),
• ({{Q}},∅) ≈nr

bi ({{P}},∅), and
• {{Q}} 6≤nr

obs {{P}}.

Proof sketch. We consider the following processes:

P = out(d, c); (out(a, c) +0.9 0) +
out(d, c); (out(b, c) +0.9 0)

P ′ = if c = c then P else 0

Q = P + 1
2
P ′

Both ({{Q}},∅) ≈nr
bi ({{P}},∅) and ({{Q}},∅) ≈nr

bi
({{P}},∅) are proved by showing that the binary relation
R, defined as the reflexive, symmetric and transitive closure
of {(({{Q}},∅), ({{P}},∅)), (({{P}},∅), ({{P ′}},∅))}, is a
bisimulation (see Figure 8a).

To prove that {{Q}} 6≤nr
obs {{P}}, we show that

{{Q; in(d, x).0}} 6≤nr
obs {{P ; in(d, x).0}}. In particular

(see Figure 8b), we build a non-randomized scheduler such
that {{Q; in(d, x).0}} τ

==⇒Rnr(No) D where D = 0.45 · δPa +
0.45 ·δPb+0.1 ·δ∅. However, there is no distribution E such
that {{P ; in(d, x).0}} τ

==⇒Rnr(No) E, and D ≤̂nr
obs E.

Remark that we have cast the definitions of [12] in
our own framework. In the full version [27] we show that
processes P,Q in Lemma 3 can be adapted to obtain the
counterpart of Lemma 3 in the exact framework of [12].
The failure of the proof of [12, Theorem 2] can be traced
back to the auxilliary lemma [12, Lemma 3] that states that
bisimilarity is closed under application of closing evaluation
contexts. No proof of this lemma is however provided,
and it is actually false: as shown in the proof of (our)
Lemma 3, the extended processes ({{Q}},∅) and ({{P}},∅)
defined there are bisimilar (with respect to non-randomized
schedulers), but it is not the case of the extended processes
({{Q | in(d, x).0}},∅) and ({{P | in(d, x).0}},∅).

5. Well behaved subclasses of protocols

It is a well-known phenomenon that non-determinism
and probabilistic choices do not interact well: a particular
scheduler may for instance leak a secret probabilistic choice.
Such schedulers are generally deemed unrealistic, and sev-
eral papers aim at restricting schedulers, e.g., [20], [21]. We
illustrate this phenomenon on the following example.

Example 3. Consider the processes

P := (in(c, x). if x = 0 then out(ok, 1) else out(bad, 1)) + 1
2

(in(c, x). if x = 0 then out(bad, 1) else out(ok, 1))

Q := in(c, x).(out(ok, 1) + 1
2
out(bad, 1))

One may, intuitively, consider that these two processes
exhibit the same behaviour. Q takes an input and then with
probability 1

2 decides to either output on ok or on bad. P
on the other hand first choses a branch with probability 1

2 .
Each branch performs an input and, depending on the input
value, outputs either on ok or on bad. As the two branches
make opposite choices on the output according to the input
value, one might expect the probability to output on ok to
be 1

2 .

10

({{Q}},∅)

α(∅)

({{P}},∅)

α(∅)

({{P ′}},∅)

α(∅)

0.5

0.5τ

τ

(Pda,∅)

α(∅)

τ
(Pa+, φ)

α(φ)

out(d, ax1)
(Pa, φ)

α(φ)

(∅, φ) α(φ)
0.1

0.9τ

(∅, φ′)

out(a, ax2)

α(φ′)

(Pdb,∅)

α(∅)

τ

(Pb+, φ)

α(φ)

out(d, ax1)
(Pb, φ)

α(φ)

out(b, ax2)

0.1

0.9

τ

For readability, α(φ) stands for all labels ξ ∼ ξ′ with ξ, ξ′ closed recipes such that ξφ ∼ ξ′φ and ∼ ∈ { .=, 6 .=}.
(a) The fragment of N` corresponding to ({{Q}},∅) and ({{P}},∅)

Pda = out(d, c); (out(a, c) +0.9 0)
Pdb = out(d, c); (out(b, c) +0.9 0)

Pa+ = {{out(a, c) +0.9 0}}
Pb+ = {{out(b, c) +0.9 0}}

Pa = {{out(a, c)}}
Pb = {{out(b, c)}}

φ = {ax1 → c}
φ′ = {ax1 → c, ax2 → c}

{{Q; in(d, x).0}} {{P ; in(d, x).0}}

{{P ′; in(d, x).0}}
0.5

0.5τ

τ

Pda ∪ {{in(d, x).0}}τ Pa+
τ Pa

∅0.1

0.9τ

(Pdb ∪ {{in(d, x).0}}

τ

Pb+
τ Pb

0.1

0.9

τ

(b) The fragment of No corresponding to {{P ; in(d, x).0}} and {{Q; in(d, x).0}}

Figure 8: Fragments of NPLTS showing ({{Q}},∅) ≈nr
bi ({{P}},∅) and {{Q}} 6≤nr

obs {{P}}.

However, P and Q are not may testing equiva-
lent and can be distinguished by the adversary Adv =
{{out(c, 0) | out(c, 1)}}. Indeed, we can show that:

RProbRor (P∪Adv, ↓ok) = 1 RProbRor (Q∪Adv, ↓ok) =
1

2

Intuitively, this results from the fact that the resolution may
leak the probabilistic choice through the non-deterministic
choice of the attacker to output 0 or 1. The resolution
chooses the attacker to output 0 in the first probabilistic
branch of P and 1 in the second.

In this section we identify two subclasses of processes
that avoid this problem. The first such subclass is that of
non-probabilistic processes, i.e., without the +p operator
(we denote by MPnp all the multisets of such processes).
This is the class of the original applied π-calculus which
also enjoys good tool support. Figure 6 already illustrated
that even on non-probabilistic processes, probabilistic ad-
versaries have a stronger distinguishing power for the may
testing equivalence. We formally characterize this distin-
guishing power when restricting protocols to a bounded
number of sessions (denoted MP<∞,np), i.e., considering
processes without replication: for this subclass, may-testing
coincides with similarity. We therefore inherit from [22] the
fact that deciding may-testing is coNEXP complete for a
large class of cryptographic primitives.

The second subclass considers purely probabilistic pro-
cesses with (nearly) no non-determinism. We show that trace
equivalence in this class (as considered for instance in [25])
corresponds to may-testing with a restricted, determinate
adversary process. We also sketch how the algorithms of

the DeepSec prover [22] could be adapted to check trace
equivalence in this probabilistic setting.

5.1. Non-probabilistic processes

May-testing with non-probabilistic adversaries and trace
equivalence coincide. Our definitions of may testing and
trace equivalence coincide with the classical definitions of
the original, purely non-deterministic applied π-calculus
when all processes are non probabilistic. As a first step,
we observe that the weak operational semantics we defined
in Section 4.3 is a conservative extension of the weak (non-
probabilistic) operational semantics: indeed, when consid-
ering non-probabilistic processes, all distributions in the
(labeled) operational semantics are Dirac distributions.

Notation 5. We write SPnp
` for the set of all non-

probabibilistic extended processes We write −→np, respec-
tively a−→np, for the one-step reduction relation we obtain
when we restrict the NPLTS No to MPnp, respectively N`

to SPnp
` . For P,Q ∈ MPnp, we write P ⇒np Q when

there exists a sequence P = P0 −→np . . . −→np Pn = Q.

Lemma 4. Let P,Q ∈MPnp.

P ⇒np Q iff RProbRnr(No)(P, {Q}) = 1

We look now at preorder relations between non-
probabilistic processes. We first recall formally how may
testing, trace equivalence and bisimulation are defined for
non-probabilistic processes (Definition 16 below). Those
definitions are coherent with those from the literature,

11

e.g [23], (up to the difference on static equivalence, dis-
cussed in Remark 4).

Notation 6. If b is a barb, we write P ⇓b when there exists
Q such that P ⇒np Q, and Q ↓b. For a ∈ A`ext, we write
(P, φ)

a
==⇒np (Q, ψ) when (P, φ)

τ−→np . . .
a−→np . . .

τ−→np

(Q, ψ). If α = a1, . . . , an is a trace, we write (P, φ)
α

==⇒np

(Q, ψ) when there exists a sequence (P, φ)
a1==⇒np . . .

an==⇒np

(Q, ψ).

Definition 16. We define the binary relations ≤np
may, ≤np

tr ,
≤np
sim on MPnp as follows:
• P ≤np

may Q when ∀Adv ∈ MPnp s.t. fn(Adv) ⊆
Npub. ∀c ∈ Npub. Adv ∪ P ⇓c implies Adv ∪Q ⇓c;

• (P, φ) ≤np
tr (Q, ψ) when for every trace α,

(P, φ)
α

==⇒np (P ′, φ′) implies (Q, ψ)
α

==⇒np (Q′, ψ′);
• ≤np

sim is the largest reflexive and transitive relation
R such that (P, φ) R (Q, ψ) implies that for every
a ∈ A`ext ∪ {τ}, and (P, φ)

a−→np (P ′, φ′), there
exists (Q′, ψ′) such that (Q, ψ)

a
==⇒np (Q′, ψ′) and

(P ′, φ′) R (Q′, ψ′).

The preorders ≤sim and ≤tr–and the corresponding
equivalence relations–are conservative extensions of ≤np

sim
and ≤np

tr . As expected, the preorder ≤may is not a con-
servative extension of ≤np

may, because of the additional ex-
pressive power of probabilistic adversaries. Nonetheless, we
can recover ≤np

may when we restrict the adversaries in the
definition of ≤may to non-probabilistic adversaries.

Proposition 2. Let P,Q ∈MPnp.
• (P,∅) ≤np

sim (Q,∅) iff (P,∅) ≤sim (Q,∅);

• (P,∅) ≤np
tr (Q,∅) iff (P,∅) ≤tr (Q,∅);

• (P,∅) ≤np
may (Q,∅) iff

∀Adv ∈MPnp s.t. fn(Adv) ⊆ Npub. ∀c ∈ Npub.
RProbRnr(No)(P ∪Adv, ↓c) ≤ RProbRnr(No)(Q∪Adv, ↓c)

Proof sketch. For may-testing and trace preorder, the proof
uses crucially the fact that it is enough to consider non-
randomized distributions (thanks to Lemma 1), and from
there, we conclude using Lemma 4. Since it is not possible
to consider only non-randomized schedulers in the definition
of simulation, the proof of the first point in Proposition 2 is
more subtle, and uses well-structured properties of the lifting
of a relation from Definition 9. We need to show (1) that
the (non-probabilistic) simulation ≤np

sim is a probabilistic
simulation in the sense of Definition 15, and (2) that
≤sim is also a non-probabilistic simulation in the sense of
Definition 16.
• Suppose that P ≤np

sim Q for P,Q ∈ SPnp
` . Let

a ∈ A`ext ∪ {τ}, D ∈ D(SN`) such that P a−→r D.
Looking at the way we defined a−→r (and since P is non-
probabilistic), we also see that P a−→np P ′i for every P ′i
is the support of D. From there, we obtain that for each
i, there exists Q′i such that Q a

==⇒np Q′i, and P ′i ≤
np
sim

Q′i. At that point, we build E =
∑

iD(P ′i) · δQ′
i
,

and we can see that Q a
==⇒r E. Moreover, the struc-

tural properties of the lifting allows us to go from
(∀i, P ′i ≤

np
sim Q′i) to D ≤̂np

sim E. Hence, we have
shown that ≤np

sim is indeed a probabilistic simulation
in the sense of Definition 15.

• Suppose that P ≤sim Q for P,Q ∈ SPnp
` . Let a ∈

A`ext ∪{τ}, and P ′ ∈ SPnp
` such that P a−→np P ′. This

transition carries over to N`, i.e., P a−→r δP′ . We obtain
that there exists a distribution E such that Q a

==⇒r E,
and δP′≤̂simE. But by structural property of the lifting,
we have that P ′ ≤sim Q′ for every element Q′ in the
support of E. Moreover, since Q is non-probabilistic,
it holds that Q a

==⇒np Q′ for every element Q′ in the
support of E. Since E is a distribution, there exists at
least one such element Q′, thus we can conclude.

The following result indicates that may testing and trace
equivalence coincide in non-probabilistic settings. In par-
ticular, we recover the fact that for the classical definitions
in non-probabilistic settings, trace equivalence implies may-
testing, as shown in [23].

Proposition 3. Let P,Q ∈MPnp. (P,∅) ≤tr (Q,∅) iff

∀Adv ∈MPnp s.t. fn(Adv) ⊆ Npub. ∀c ∈ Npub.
RProbRnr(No)(P ∪Adv, ↓c) ≤ RProbRnr(No)(Q∪Adv, ↓c)

May-testing and simulation coincide for bounded pro-
cesses. We rely on a modal characterization of strong sim-
ulation on image finite labeled transition systems (LTS) by
a Hennessy-Milner logic [31] (HML).

We can rely on strong simulation as it is a well-known
fact ([32]) that simulation for a LTS can be expressed as
strong simulation on the corresponding weak LTS, that is, in
our case all transitions (P, φ)

τ−→
∗ a−→ τ−→

∗
(Q, ψ) are merged

into a single transition.
A LTS is image finite when the LTS cannot infinitely

branch from a state and a label. Therefore, as we consider
only bounded processes and by denoting ≤L

ssim the strong
simulation relation on a LTS L, we can build an image finite
LTS L` such that for all P,Q ∈MPnp:

(P,∅) ≤sim (Q,∅) iff (P,∅) ≤L`

ssim (Q,∅)

Our HML characterization consists in expressing strong
simulation preorder by the means of satisfaction of logical
formulas by the LTS.

Definition 17. Let A be a countable set of actions. We
define the set of logical formulas as:

F ∈ F := > | a.F | F1 ∧ F2, where a ∈ A

In our case, the set of actions corresponds to A`ext that
is indeed countable. The satisfaction of such formulas by a
LTS is defined as follows.

Definition 18. Let L = (S,A,→) be a LTS. We say that L
satisfies a formula F , written s |= F , if for all s ∈ S,
• s |= >;
• s |= a.F when s a−→ t and t |= F ;

12

• s |= F1 ∧ F2 when s |= F1 and s |= F2.

The following proposition shows how to relate strong
simulation with satisfiability of logical formulas.

Proposition 4 (HML caracterisation of simulation). For an
image finite LTS L,

s ≤L
ssim t iff ∀F ∈ F . s |= F implies t |= F

In order to prove that simulation coincides with may-
testing for bounded non-probabilistic processes, we show
that we can emulate any logical formula by a probabilistic
adversary: for all formulas F , we build a probabilistic
adversary AdvcF such that for all bounded non-probabilistic
extended processes (P, φ),

(P,∅) |= F iff RProbRr(P ∪ {{AdvcF }}, ↓c) = 1

We illustrate the construction of AdvcF on a few selected
formulas:

Advcin(ξ,ζ).F ′ = out(ξ, ζ).AdvcF ′

Advc
(ξ

?
=ζ).F ′

= if ξ = ζ then AdvcF ′

AdvcF1∧F2
= AdvcF1

+ 1
2
AdvcF2

Advc> = out(c, c)

In particular, conjunction is encoded by probabilistic choice
and on formula >, the adversary process exhibits the barb
c. The main result of this section follows almost directly.

Proposition 5. Let P,Q ∈MP<∞,np.

(P,∅) ≤sim (Q,∅) iff P ≤may Q

Cheval et al. have shown [22] that both deciding trace
equivalence and bisimilarity is coNEXPTIME complete
when cryptographic primitives are modelled by a subterm
convergent destructor rewrite system and the number of
sessions is bounded. (We refer the reader to [22] for a
precise definition of this class of rewrite systems.) The
hardness proof reduces SUCCINT 3SAT to both trace equiv-
alence and bisimilarity using a same encoding which also
proves hardness of similarity. The coNEXPTIME decision
procedure for bisimilarity can be directly adapted to the case
of similarity, hence, we have the following result.

Corollary 1. Let P,Q ∈MP<∞,np. Deciding P ≈may Q
is coNEXPTIME complete when .

= is defined by a subterm
convergent destructor rewrite system.

May-testing and simulation do not coincide for un-
bounded processes. We consider the following two simple
LTS L1 and L2, that are an asymetric variant of the LTSs
used in [33] to show that the finitary HML does not char-
acterize bisimulation.

s0 s1 s2 . . . sn . . .L1:
a a a a a

s00 s11

s21 s21

s31 s32 s33

. . .

L2:
a
a

aa

a aa

Though both L1 and L2 may produce an unbounded
number of a transitions, the initial transition in L2 decides
on an arbitrary, but fixed number of a transitions in the rest
of the execution. This in particular shows that L2 does not
simulate L1, i.e., L1 6≤sim L2.

In the applied π-calculus, L1 can be represented by
the process !out(c, a). Modeling L2 is more complex: we
non-deterministically choose an integer n ≥ 0, and output
n + 1 times a. The non deterministic choice of n is real-
ized through the following process that outputs the unary
encoding hn(b) of n:

Qcount(e) = new d.(out(d, b) |
!in(d, x).(out(e, x) + out(d, h(x))))

Channel d represents a memory cell initiated with a public
name b (encoding 0). When reading on d the current value
x, the process non deterministically chooses to increment
x (updating the cell with h(x)) or to select the value x by
outputting it on channel e.

It remains to model the process that given an integer x,
produces x+ 1 outputs of a:

Qout(e) = new d′.in(e, x).(out(d′, b) |
!in(d′, y).out(c, a).if x = y then 0
else out(d′, h(y)))

Similarly to Qcount(e), Qout(e) relies on a private d′ to
increment b until reaching the value x read on e. It is easy
to see that the process outputs x+ 1 times a.

Lemma 5. Let Q = new e.(Qcount(e) | Qout(e)). We have:

(!out(c, a),∅) 6≤N`

sim (Q,∅) but !out(c, a) ≤may Q

5.2. Purely probabilistic processes

At the opposite of the spectrum of purely non-non-
deterministic processes, we study purely probabilistic pro-
cesses with (nearly) no non-determinism. A similar class of
processes has been considered in [25], [26] to model various
protocols relying on randomization (e.g., Crowds [10], mix-
net [9], electronic voting [34]). They consider systems that
are built as the parallel composition of independant agents,
called roles, and where all communications are mediated by
the adversary. Moreover, the internal behavior of each role
is deterministic; the only non-determinism is controlled by
the adversary–thus external–and consists in the adversary’s
choice for scheduling the communications. We model purely
probabilistic processes as follows.

13

Definition 19. A process is fully determinate if it does not
contain the operators +, |, nor !.
P = {P1, . . . , Pn} ∈ MP is purely probabilistic when:
• each Pi is fully determinate;
• there exist distinct public channels c1, . . . , cn ∈ Npub

such that for all i ∈ {1, . . . , n}, all input and output
actions in Pi are on ci.

The class of purely probabilistic multisets of processes is
denoted by MPpp.

MPpp can also be seen as a probabilistic extension of
the class of simple processes introduced in [35] to show that
trace equivalence coincides with observational equivalence
for such processes.

Removing scheduling of τ -actions. In [25], [26], the
authors consider trace equivalence for a slightly restricted
fragment of purely probabilistic processes. More precisely,
all processes have exactly the same control structure which
removes the necessity of scheduling honest τ -actions and al-
lows to directly consider strong trace equivalence, as exactly
the same τ -actions occur. In this work, we lift this restriction
on the shape of the processes and show instead that the non-
determinism related to honest τ actions is inconsequential
when deciding trace equivalence. Indeed, in a multiset of
processes {P1, . . . , Pn}, a τ action may be available si-
multaneously in multiple components. However, all such
τ -action are in fact purely deterministic (e.g., conditional
branching, probabilistic choice). Moreover, as the Pis do
not contain parallel composition and all input and output
occur on distinct channels ci, no internal communication
between processes Pi and Pj is possible.

We show that to compute the probability of executing a
trace w, we only need to consider a single maximal resolu-
tion on the NPLTS N`. Such a resolution always executes an
action when at least one is available. Formally, a resolution
(corr, R) with R = (S,A, trans) on purely probabilistic
processes is maximal when for all s ∈ S, if there exists
corr(s)

a−→ D in N` for some a,D then trans(s)(a) = D′

for some D′.

Proposition 6. Let (P, φ) be an extended purely probabilis-
tic process. For all maximal resolutions (corr, R) on N`, for
all s ∈ S(R) with corr(s) = (P, φ),

∀w ∈ A?ext. ProbR(s, w) = ProbR`r ((P, φ), w).

May-testing and trace equivalence coincide for fully
determinate adversaries. As illustrated in Example 3, may-
testing is strictly stronger than trace equivalence even on
purely probabilistic processes due to the non-determinism
in the adversarial process. However, by restricting the ad-
versarial process to be fully determinate, we can show that
may-testing and trace equivalence coincide. We define the
resulting determinate may testing preorder, denoted ≤d-may,
exactly as in Definition 7 but additionally restrict the adver-
sary process Adv to be a singleton {{A}} where A is fully
determinate.

Theorem 3. Let P,Q ∈MPpp.

P ≤d-may Q iff (P,∅) ≤tr (Q,∅)

Proof sketch. To prove that (P,∅) ≤d-may (Q,∅) implies
P ≤tr Q we encode any trace w into a determinate adver-
sary Advcw where c is fresh. Advcw is defined in a similar
way as AdvcF (Section 5.1), e.g.,

Advcin(ξ,ζ).w′ = out(ξ, ζ);Advcw′ and
Advc

(ξ
?
=ζ).w′

= if ξ = ζ then Advcw′

In particular, on the empty trace the adversary process
exhibits the barb c: Advcε = out(c, c). We obtain that

ProbRr(N`)((P,∅), w) = RProbRor (P ∪ Adv, ↓c)

The other implication is more difficult as the adversarial
process Adv is allowed to use probabilistic choices which
cannot be directly encoded in a trace. Instead, we show
that any adversarial process Adv aiming to exhibit a barb c
corresponds to a multiset of weighted traces Tr(Adv), built
inductively on Adv. For instance, when Adv = Adv1 +p

Adv2 and

Tr(Advi) = {{(pik, wik)}}nik=1 for i = 1, 2

then

Tr(Adv) = {{(p · p1k, w1
k)}}n1

k=1 ∪ {{((1− p) · p
2
k, w

2
k)}}n2

k=1

For other constructs, the set of weighted traces is built as
expected, e.g., Tr(0) = ∅ and Tr(new a;Adv′) = Tr(Adv′).
For outputs or inputs, we additionally test if the channel
corresponds to the barb c, i.e., when Adv = out(ξ, ζ);Adv′

and Tr(Adv′) = {{(pk, wk)}}nk=1,

Tr(Adv) = {{(pk, (ξ 6
?
= c).in(ξ, ζ).wk)}}nk=1 ∪ {{(1, ξ

?
= c)}}

This construction yields the following property:

RProbRnr(No)(P ∪Adv, ↓c) = RProbRnr(No)(P, ↓c)
+ (1− RProbRnr(No)(P, ↓c))·∑
(α,w)∈Tr(Adv)

α · ProbRnr(N`)((P,∅), w)

Intuitively, exhibiting the barb on c does not require any
interaction with the adversary, or this interaction is correctly
encoded in Tr(Adv). Using this property we easily conclude.

Towards deciding trace equivalence. As previous men-
tioned, Cheval et al. [22] designed a decision procedure
for trace equivalence when cryptographic primitives are
modelled by a subterm convergent destructor rewrite system
and a bounded number of sessions. This procedure is based
on constraint solving techniques that represent in a finite
symbolic tree the infinite set of all possible concrete execu-
tions of the processes and an arbitrary attacker. Intuitively,
each node of this symbolic tree represents the state of
the two processes after executing a trace tr. Due to non-
determinism, a node may contain several constraint systems

14

corresponding to every possible interleaving allowing the
execution of such trace tr. Deciding trace equivalence be-
tween processes A and B, in the original, non-probabilistic
setting, requires to check that each node of the symbolic tree
contains at leat one constraint system derived from process
A and one from process B; or the node is empty.

For purely probabilistic processes, as there is no non-
determinism, we can associate to each constraint system
the probability of executing this trace, depending on the
probabilistic choices taken during the execution of the pro-
cesses. Thus, using the same constraint solving techniques,
we can compute a symbolic tree representing the state of the
processes after executing trace tr but where the constraint
systems of a node correspond to the possible probabilistic
choices. Deciding trace equivalence between processes A
and B thus reduces to checking that in every node, the sum
of the probabilities of the constraint systems derived from
the process A is equal to the sum of the probabilities of the
constraint systems derived from B.

6. Conclusion and future work

In this paper we introduced a framework to reason about
indistinguishability properties, modelled as process equiv-
alences, in symbolic models enhanced with probabilities.
Defining such a framework turns out to rely on subtle
technicalities such as the need for randomized schedulers,
overseen in previous attempts. In addition to solving techni-
cal problems, we believe that randomized schedulers capture
more faithfully the idea that one cannot predict how non-
determinism is resolved. Randomized schedulers generalize
the idea that one distribution is chosen non-deterministically
by allowing an arbitrary combination (in the convex hull)
of the available distributions.

We define different, classical behavioral and labelled
equivalences and show their precise relations. As usual
in models mixing non-determinism and probabilities, the
resulting equivalences may be considered as too strong:
indeed arbitrary schedulers may leak the (private) proba-
bilistic choices of the processes and give the attacker an
unrealistically strong distinguishing power. Defining more
restricted schedulers that are only allowed partial knowledge
of the current state, such as in [20], is orthogonal to our
work. We however believe that our work provides a conve-
nient framework for defining such more fine-grained notions
of schedulers and consider this an interesting direction for
future work.

We therefore study two classes of protocols where this
problem is avoided. First, we study protocols that do not
make probabilistic choices, but allow the adversary to do
so. This class of non-probabilistic protocols corresponds
to the classical setting and captures all major case studies
performed in the context of symbolic models. Our results
highlight that the classical notion of may-testing, considered
rather intuitive as it models an arbitrary attacker running in
parallel, does not take into account attackers that make prob-
abilistic choices. Interestingly, when bounding the number
of sessions, (non-probabilistic) similarity exactly captures

such probabilistic attackers and offers an attractive target
for automated analysis. Second, we study a class of fully
probabilistic protocols, also considered in [25], and show
that trace equivalence on such protocols coincides with may
testing in the presence of a (syntactic) class of determinate
attackers. One may indeed argue that determinacy removes
artificial non-deterministic choices that the attacker could
exploit and that correspond to unrealistic behaviors. When
protocols can be expressed in the class of purely proba-
bilistic processes, from a formal analysis point, it seems
appealing to do so as it also simplifies the analysis.

Our work paves the road towards several future work,
in addition to exploring restricted schedulers mentioned
above. We sketched a decision procedure in the DeepSec
tool for the class of fully probabilistic adversaries. A thor-
ough treatment of this idea and an implementation are a
natural next step. Also, the insight that (purely possibilistic)
similarity takes into account probabilistic adversaries (as it
coincides with may testing) when the number of sessions
is bounded and protocols are non-deterministic motivates
adding support for (bi)similarity in a tool such as DeepSec
(which currently only verifies trace equivalence). A different
direction going beyond the subclasses considered in this
paper is to investigate restrictions of the scheduler (building,
e.g., on ideas from [20], [21]) in our framework to limit the
adversary’s power without restricting the class of protocols.
Finally, a more prospective direction is the use of more
quantitative equivalences, i.e., distances between processes,
that might be interesting to compare different protocols that
try to achieve a same property.

Acknowledgments. We thank Alwen Tiu and the
anonymous reviewers for their helpful comments and sug-
gestions. This work has been partly supported by the ANR
Research and teaching chair in AI ASAP and by ANR
TECAP (decision number ANR-17-CE39-0004-03).

References

[1] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Trans. Inf. Theory, vol. 29, no. 2, pp. 198–207, 1983.

[2] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the tls 1.3 standard candidate,” in IEEE
Symposium on Security and Privacy (S&P’17). IEEE, 2017, pp.
483–502.

[3] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A comprehensive symbolic analysis of TLS 1.3,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS’17).
ACM, 2017, pp. 1773–1788.

[4] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila,
“A formal security analysis of the signal messaging protocol,” Journal
of Cryptology, vol. 33, no. 4, pp. 1914–1983, 2020.

[5] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler, “A formal analysis of 5g authentication,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS’18),
D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. ACM, 2018,
pp. 1383–1396.

[6] D. A. Basin, R. Sasse, and J. Toro-Pozo, “The EMV standard:
Break, fix, verify,” in 42nd IEEE Symposium on Security and Privacy
(S&P’21). IEEE, 2021, pp. 1766–1781.

15

[7] V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic
methods in computational analysis of cryptographic systems,” Journal
of Automated Reasoning, vol. 46, no. 3-4, pp. 225–259, Apr. 2010.

[8] D. Chaum, “The dining cryptographers problem: Unconditional
sender and recipient untraceability,” J. Cryptol., vol. 1, no. 1, pp.
65–75, 1988.

[9] ——, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.

[10] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web trans-
actions,” ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, 1998.

[11] M. Abadi, B. Blanchet, and C. Fournet, “The applied pi calculus:
Mobile values, new names, and secure communication,” Journal of
the ACM (JACM), 2017.

[12] J. Goubault-Larrecq, C. Palamidessi, and A. Troina, “A probabilistic
applied pi–calculus,” in Asian Symposium on Programming Lan-
guages and Systems. Springer, 2007, pp. 175–190.

[13] R. Segala and N. Lynch, “Probabilistic simulations for probabilistic
processes,” Nordic Journal of Computing, vol. 2, no. 2, pp. 250–273,
1995.

[14] A. Parma and R. Segala, “Logical characterizations of bisimula-
tions for discrete probabilistic systems,” in International Conference
on Foundations of Software Science and Computational Structures.
Springer, 2007, pp. 287–301.

[15] V. Castiglioni, “Trace and testing metrics on nondeterministic prob-
abilistic processes,” in Combined 25th International Workshop on
Expressiveness in Concurrency and 15th Workshop on Structural
Operational Semantics and 15th Workshop on Structural Operational
Semantics,(EXPRESS/SOS) 2018, vol. 276, 2018, pp. 19–36.

[16] F. Bonchi, A. Sokolova, and V. Vignudelli, “The theory of traces for
systems with nondeterminism and probability,” in 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE,
2019, pp. 1–14.

[17] Y. Deng, R. Van Glabbeek, M. Hennessy, and C. Morgan, “Testing
finitary probabilistic processes,” in International Conference on Con-
currency Theory. Springer, 2009, pp. 274–288.

[18] M. Stoelinga, “Alea jacta est: verification of probabilistic, real-time
and parametric systems,” Ph.D. dissertation, University of Nijmegen,
the Netherlands, Apr. 2002.

[19] C. G. Eisentraut, “Principles of markov automata,” Ph.D. dissertation,
Saarländische Universitäts-und Landesbibliothek, 2017.

[20] K. Chatzikokolakis and C. Palamidessi, “Making random choices
invisible to the scheduler,” Inf. Comput., vol. 208, no. 6, pp. 694–
715, 2010.

[21] M. S. Alvim, M. E. Andrés, C. Palamidessi, and P. van Rossum,
“Safe equivalences for security properties,” in Theoretical Computer
Science - 6th IFIP TC 1/WG 2.2 International Conference, TCS 2010,
Held as Part of WCC 2010, ser. IFIP Advances in Information and
Communication Technology, C. S. Calude and V. Sassone, Eds., vol.
323. Springer, 2010, pp. 55–70.

[22] V. Cheval, S. Kremer, and I. Rakotonirina, “Deepsec: Deciding
equivalence properties in security protocols - theory and practice,”
in Proceedings of the 39th IEEE Symposium on Security and Privacy
(S&P’18). San Francisco, CA, USA: IEEE Computer Society Press,
May 2018, pp. 525–542.

[23] V. Cheval, V. Cortier, and S. Delaune, “Deciding equivalence-based
properties using constraint solving,” Theor. Comput. Sci., vol. 492,
pp. 1–39, 2013.

[24] H. Comon-Lundh and V. Cortier, “Computational soundness of ob-
servational equivalence,” in ACM Conference on Computer and Com-
munications Security (CCS’08), P. Ning, P. F. Syverson, and S. Jha,
Eds. ACM, 2008, pp. 109–118.

[25] R. Chadha, A. P. Sistla, and M. Viswanathan, “Verification of ran-
domized security protocols,” in 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS’17). IEEE, 2017, pp. 1–12.

[26] M. S. Bauer, R. Chadha, A. P. Sistla, and M. Viswanathan, “Model
checking indistinguishability of randomized security protocols,” in
International Conference on Computer Aided Verification (CAV’18).
Springer, 2018, pp. 117–135.

[27] V. Cheval, R. Crubillé, and S. Kremer, “Symbolic protocol
verification with dice: process equivalences in the presence of
probabilities (extended version),” Jun. 2022, working paper or
preprint. [Online]. Available: https://hal.inria.fr/hal-03683907

[28] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and proverif,” Foundations and Trends in Privacy
and Security, 2016.

[29] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
I,” Inf. Comput., vol. 100, no. 1, pp. 1–40, 1992.

[30] Y. Deng, “Axiomatisations and types for probabilistic and mobile
processes,” Ph.D. dissertation, École des Mines de Paris, 2005.

[31] M. Hennessy and R. Milner, “On observing nondeterminism and con-
currency,” in Automata, Languages and Programming (ICALP’80),
J. de Bakker and J. van Leeuwen, Eds. Springer, 1980, pp. 299–
309.

[32] R. Amadio, “Operational methods in semantics,” 2016.

[33] R. J. van Glabbeek, “Bounded nondeterminism and the approximation
induction principle in process algebra,” in Annual Symposium on
Theoretical Aspects of Computer Science. Springer, 1987, pp. 336–
347.

[34] D. Chaum, P. Y. A. Ryan, and S. A. Schneider, “A practical voter-
verifiable election scheme,” in 10th European Symposium on Research
in Computer Security (ESORICS’05), ser. Lecture Notes in Computer
Science, S. D. C. di Vimercati, P. F. Syverson, and D. Gollmann, Eds.,
vol. 3679. Springer, 2005, pp. 118–139.

[35] V. Cortier and S. Delaune, “A method for proving observational equiv-
alence,” in 22nd IEEE Computer Security Foundations Symposium,
(CSF’09). IEEE Computer Society, 2009, pp. 266–276.

16

https://hal.inria.fr/hal-03683907

	Introduction
	Probabilistic Applied -calculus
	Message as terms
	Syntax of the process calculus
	Operational semantics

	Behavioral equivalences
	Resolving the internal non-determinism
	Computing the probability to reach a barb
	Defining May Testing Equivalence
	Defining Observational Equivalence

	Labelled semantics and equivalences
	Labelled semantics
	Defining Trace Equivalence
	Defining Bisimulation
	Randomized vs non-randomized schedulers

	Well behaved subclasses of protocols
	Non-probabilistic processes
	Purely probabilistic processes

	Conclusion and future work
	References

