
Secure refinements of communication channels

Vincent Cheval1, Véronique Cortier2, and Eric le Morvan2

1 School of Computing, University of Kent, UK& LORIA, INRIA, France

2 LORIA, CNRS, France

Abstract

It is a common practice to design a protocol (say Q) assuming some secure channels. Then the secure

channels are implemented using any standard protocol, e.g. TLS. In this paper, we study when such a

practice is indeed secure.

We provide a characterization of both confidential and authenticated channels. As an application,

we study several protocols of the literature including TLS and BAC protocols. Thanks to our result,

we can consider a larger number of sessions when analyzing complex protocols resulting from explicit

implementation of the secure channels of some more abstract protocol Q.

1998 ACM Subject Classification D.2.4

Keywords and phrases Protocol, Composition, Formal methods, Channels, Implementation

1 Introduction

When designing a protocol, it is common to assume a secure, confidential, or authentic channel.

Authentic channels may be read but not written in. Symmetrically, confidential channels may be

written in but not read. Secure channels are both authentic and confidential. For example, payment

protocols like 3D-secure are supposed to be run over a secure channel such as TLS. Similarly, many

services such as public key registration assume an authenticated channel. How to implement these

secure channels is left unspecified and, intuitively, the security of a payment protocol should not

depend on the particular choice of implementation of its secure channels. A typical example of a

popular and generic realization of a secure channel is TLS. For authentication, one usually relies

on a password-based authentication or on previously established keys (used e.g. for signature or

MACs). Is it safe to use these protocols in any context? What is a secure or authenticated channel?

This paper aims at characterizing channels that have security properties. For example, assume Q is a

secure protocol (e.g. a payment protocol) that requires a secure channel. Which properties should a

protocol P achieve in order to securely realize the secure channels of Q? These properties should of

course be independent of Q since P and Q are typically designed in totally independent contexts. In

the remaining of this introduction, Q will refer to the “main” protocol while P will refer to a protocol

realizing secure channels (for several notions of security).

Our contributions. Our first contribution is a characterization of both secure, confidential, and

authenticated channels. We actually characterize what it means for a channel to be readable or not,

and writable or not. Then the realization of a secure channel typically proceeds in two phases. First,

some values are established by the protocol P, for example short-term symmetric keys or MAC keys.

Quite unsurprisingly, we show that these values need to be secret and appropriately shared. Then

the messages of Q are transported or encapsulated using the values established by P. For example,

the messages of Q may be encrypted with a key established by P. We provide a characterization

of secure encapsulations both for secure, confidential, and authentic channels. A key feature of

our characterization is that it is independent of P and Q, which allows for a modular analysis. We

show that standard encapsulations (e.g. typical use of encryption, signatures, or MACs) enjoy the

requested properties.

licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Secure refinements of communication channels

Our second and main contribution is to show how to securely compose protocols. Intuitively,

our main result guarantees that whenever P is a secure key exchange protocol and E is a secure

encapsulation then P ·E Q is as secure as Q where P ·E Q denotes the protocol obtained from Q

by implementing its secure channels using P and E. The interest of our result is twofolds. First,

it provides foundational grounds to a common practice where protocols are typically designed and

studied independently and then combined. We show that such a practice is actually secure under

reasonably light assumptions: primitives shared between P, E, and Q should be tagged as proposed

in [4]. Tagging is a standard practice that avoids message confusion. Second, our result provides

a technique for analyzing a complex protocol: it is sufficient to analyse its components to deduce

security of the whole protocol. To express and prove our result, we have developed a framework, an

extension of the applied-pi calculus [2], that allows to easily talk about protocols roles and sessions,

a missing aspect in the applied-pi calculus. To illustrate our approach, we show that TLS is a secure

implementation of secure channels. Similarly we show that the BAC protocol [1] is also a secure

implementation of a secure channel and may be safely used with the Passive Authentication (PA)

protocol as prescribed for the biometric passport [1]. Using the CL-Atse tool [18], we analyse several

combined protocols. Thanks to our combination result, it is possible to analyse protocols in isolation

instead of their combination, which allows to consider a larger number of sessions.

Related work. One seminal work on composition is the one of Guttman and Thayer [13]. They

show that two protocols can be composed without one damaging the security of the other as soon

as they are “independent”. However, this independence notion needs to be checked for any protocol

execution and cannot be statically checked at the protocol specification level. Later, Guttman [11]

provides a criterion on the specification of P and Q such that P can be safely composed with Q.

Intuitively, Q should not break some invariant satisfied by P and conversely. While the work of [11]

focuses on authentication and secrecy properties, [12] more generally devises a framework for de-

fining protocol goals and designing, step by step, protocols that fulfill them. In [10], the strand space

model is used in a modular way, to analyse protocols components by components. The disjunction

criteria cannot be checked statically. All these approaches provide a framework that allows to reason

modularly when analysing the combination of two protocols P and Q, typically expressing invari-

ants satisfied by P that are shown sufficient to prove security of Q. This simplifies the proof of P

combined with Q but requires the knowledge of both protocols. Compared to our work, we propose

a criteria for a protocol P to securely implement a secure channel, independently of the protocol Q

that will use it (provided primitives are tagged).

Under tagging assumptions similar to ours, it was already shown that P and Q can be safely run

in parallel even if they share long-term keys [7]. In passing, we generalize this result to the case

where long-term keys may be used as payload. [6] explains when two protocols may be used se-

quentially, with Q using data established by P. The main difference with our work is that messages

may not be transformed when composing protocols. Therefore, [7, 6] cannot be used to (securely)

implement abstract channels. Note also that [6] may not consider compromised sessions, that is ses-

sions between honest and dishonest agents. The problem we address here is referred to as sequential

composition in [16], where the messages of Q are used as payloads in the composed protocol P ·E Q.

[16] provides a nice exposition of the generic problem of a protocol Q using a protocol P as sub-

protocol and lists sufficient (semantical) conditions for combining two protocols. These conditions

require again the knowledge of both P and Q. Datta et al. (e.g. [8]) have also studied secure protocol

composition in a broader sense: protocols can be composed in parallel, sequentially or protocols

may use other protocols as components. However, they do not provide any syntactic conditions for

a protocol P to be safely executed in parallel with other protocols. For any protocol P’ that might be

executed in parallel, they have to prove that the two protocols P and P’ satisfy each other invariants.

Their approach is thus rather designed for component based design of protocols.

Vincent Cheval, Véronique Cortier, and Eric le Morvan 3

2 Model

Our model is inspired from the applied-pi calculus [2], extended to an explicit notion of roles.

2.1 Messages

Messages are modeled using a typed term algebra. We assume an infinite set of namesN = ND⊎NH

of base type and a set Ch of names of channel type. The set NH (resp. ND) represents the names

accessible by honest (resp. dishonest) agents. We also a consider an infinite set of variables X

and a finite signature F of function symbols operating and returning terms of base type. More

precisely, we consider F = Fc ⊎Fcst ⊎ Fkey where Fcst contains only constants, all functions in Fkey

are unary, and Fc = {〈 〉/2, f1/n1, . . . , fk/nk} contains the binary function symbol 〈 〉 used to denote

concatenation and other function symbols fi of arity ni. Terms are defined as names, variables and

function symbols applied to other terms. The set of terms built from N ⊆ N ∪ Ch, X ⊆ X and by

applying the function symbols in F ⊆ F is denoted by T (F,N ∪ X). We denote by st(t) the set of

subterms of t. We denote by vars(t) (resp. names(t)) the set of variables (resp. names) in t. When

vars(t) = ∅, we say that t is ground. To represent events that may occur during a protocol execution,

we assume an infinite signature Ev distinct from F . We say that a term e(t1, . . . , tn) with e ∈ Ev and

t1, . . . , tn ∈ T (F ,N ∪ X) is an event.

◮ Example 1. A standard signature to represent encryption and signature is Fstd, the signature

built from a finite set of constants, functions Fcstd = {senc/2, aenc/2, sign/2, h/1, 〈〉/2} and Fkstd =

{pk/1, vk/1}. The function symbol senc (resp. aenc) represents the symmetric (resp. asymmetric)

encryption. We denote by pk(s) the public key associated s. The function symbol sign represents

the digital signature where vk(s) is the verification associated to s. We write 〈u, v〉 as syntactic sugar

for 〈〉(u, v).

We model the algebraic properties of the cryptographic primitives by a set of inference rules I

composed of composition and decomposition rule described as follows:

x1 ... xk
f-comp

f(x1, ..., xk)
〈x1, x2〉

x1

〈x1, x2〉
x2

f(x, u1, . . . , un) v1 ... vm
f-decompx

where for all j ∈ {1, . . . , n}, for all k ∈ {1, . . . ,m}, u j, vk ∈ T (Fkey,X) and vars(v1, . . . , vk) ⊆

{u1, . . . , un, x}. For each f ∈ F , the set I contains a unique f-comp rule and there is no f-decomp

rule when f ∈ Fkey. Given a set or sequence of terms S and a term t, the deducibility relation is in-

ductively defined as follows. The term t is deducible from S , denoted S ⊢ t, when t ∈ S ∪Fcst ∪ND

or there exists a substitution σ and an inference rule in I with premisses u1, . . . , un and conclusion

u such that t = uσ and for all i ∈ {1, . . . , n}, S ⊢ uiσ.

◮ Example 2. Continuing Example 1, we define the set Istd of decomposition rules as follows.

senc(x, y) y
x

aenc(x, pk(y)) y
x

sign(x, y) vk(y)
x

〈x, y〉
x

〈x, y〉
y

We have that senc(〈a, c〉, k), k ⊢ a but aenc(〈a, c〉, pk(k)), pk(k) 0 a.

2.2 Agents

In standard process algebra (e.g. [2]), the notion of agents is usually implicit. Typically, a process that

models the behavior of the different honest agents is a single process where all agents are implicitly

represented. However, to model protocol composition, we need to explain how to compose each role

and thus we need to talk about each agent separately. Therefore, we explicit the presence of agents

4 Secure refinements of communication channels

in our model. Interestingly, our model may also be used to specify semi-honest agents which may

directly communicate with the attacker during the protocol execution, still hiding some secrets from

him. We consider an infinite set of agentsAgt = {A, B, . . .} = AgtH ⊎AgtD whereAgtH andAgtD

represent respectively honest and dishonest agents. Each agent possesses private data such as keys.

Therefore, we consider NAgt a subset of N as an infinite partition NAgt =
⊎

A∈AgtNA where NA

intuitively are the names accessible by the agent A. By convention, k[A] denotes a name in NA.

2.3 Protocols

In the spirit of [2], we model protocols through a process algebra. We represent explicitly confiden-

tial, secure, and authenticated channels. Formally, we partition the set of channels into three infinite

sets Ch = Cha⊎Chc⊎Chs ⊎Chp where Cha,Chc,Chs,Chp respectively represent the sets of authen-

ticated, confidential, secure and public channels. The syntax of our calculus is as follows:

Roles of agent A

RA,R
′
A

:= 0 | outA(c, u).RA | inA(c, v).RA | new k.RA | eventA(ev).RA

Channel and agent declarations

C,C′ := RA | newta c.C | C | C′

Processes

P,Q := C | P | Q | !P | ag(A,A,Kpub,Kprv).P

where c ∈ Ch, A ∈ Agt, ta is the tuple of agents in C such that c occurs in their role, k is name,

u and v are terms, ev is an event, Kpub and Kprv are sets of ground terms with names(Kpub) ⊆ NA,

names(Kprv) ⊆ NAgt andA ⊆ Agt.

The behavior of an agent A is described in a role RA that consists of a sequence of inputs, outputs,

creations of names and emissions of events. The role outA(c, u).RA outputs the term u on the channel

c and then behaves like RA. The role inA(c, v).RA inputs a message from channel c and expects it to

be an instance of v. The role new k.RA generates a fresh name k. Processes express how the roles

of different agents are combined. The process newta c allocates an abstract channel to the agents in

ta. The process P | Q expresses the parallel execution of P and Q. The process !P represents the

replication of P. The process ag(A,A,Kpub,Kprv).P selects a new agent A amongstA. The setKpub

typically indicates the public keys of A while Kprv contains the (secret) long term keys known by

A. The variables in a role are uniquely bound by the first input in which they appear. The channels

are bound by the operators new . The agents in a process are also bound by agent creation. In

a protocol, we assume that a name or variable is syntactically bound only once. A variable (resp.

agent, channel) that is not bound in P is free. We denote by f a(P), ba(P), f v(P), bv(P), f n(P) and

bn(P) the sets of free and bound agents, variables and names in P respectively. We say that P is

closed when f v(P) = ∅. Given a process P and an agent A, we denote by namesA(P) and chA(P) the

sets of names, channels that occur in the roles of A in P.

A role is executable if it only outputs terms that may be deduced from its inputs, the generated

values (nonces and keys), and the long-term keys used in the role.

◮ Definition 3. Let RA = r1.rn be a role of an agent A. We say that RA is executable when for

all i ∈ {1, . . . , n}, if ri = outA(c, u) then names(r1, . . . , ri) ∪ S ⊢ u where S = {v | j < i ∧ (r j =

inA(d, v) ∨ r j = new v)}. A process P is executable when all the roles in P are executable.

The state of a protocol during its execution is represented by a configuration (P,Φ, µ, θ) where P

is a closed process, Φ is a sequence of ground terms representing the knowledge of the attacker, µ is

a mapping from channels to sets of terms representing the messages sent over non-public channels

and θ is a mapping from triplets of channel, agent, tuple of agents to sets of channels. The semantics

Vincent Cheval, Véronique Cortier, and Eric le Morvan 5

(P | outA(c, u).RA,Φ, µ, θ)→ (P | RA,Φ
′, µ′, θ) where Φ′ = Φ if c ∈ Chc ∪ Chs Out

else Φ′ = Φ · [u] and µ′ = rect(c, u, µ) if c < Chp else µ′ = µ

(P | inA(c, v).RA,Φ, µ, θ)→ (P | RAσ,Φ, µ, θ) if there exists σ such that In

dom(σ) = vars(v) and either vσ ∈ cµ or else c ∈ Chp ∪ Chc and Φ ⊢ vσ

(P | new k.RA,Φ, µ, θ)→ (P | RA{
k′/k},Φ, µ, θ) New-k

with k′ fresh in NH if A ∈ AgtH else k′ ∈ ND

(P | newta c.C[RA1
, . . . ,RAn

],Φ, µ, θ)→ (P | [R′
A1
, . . . ,R′

An
],Φ, µ, θ′) New-c

∀i,R′
Ai
= RAi

if c < ch(RAi
) else R′

Ai
= RAi

{cAi /c} with cAi
∈ Chp if ta ∩AgtD , ∅ else

cAi
∈ S ∪

⋃

B∈ta θ(c, B, ta) r θ(c, Ai, ta) and S ⊆ Cha fresh (resp. Chc, Chs) if c ∈ Cha

(resp. Chc, Chs). Moreover, θ = θ′ if ta ∩AgtD , ∅ else θ′ = recc({(cA, A)}A∈ta, ta, c, θ).

(P | !Q,Φ, µ, θ)→ (P | !Q | Qρ,Φ, µ, θ) with ρ a fresh renaming of vars(Q) Repl

(P | eventA(ev).R,Φ, µ, θ)
ev
−→ (P | R,Φ, µ, θ) Event

(P | ag(A,A,Kpub,Kprv).Q,Φ, µ, θ)→ (P | Qσ,Φ · S , µ, θ) Agent

with σ = {A
′

/A}, A′ < f a(Q), S = Kpubσ if A′ ∈ A ∩AgtH else S = Kpubσ · Kprvσ

Figure 1 Semantics of configuration

is given in Figure 1. The rule Out indicates that the attacker obtains messages on public or authen-

ticated channels. In this rule, rect(c, t, µ) is the mapping µ′ where t was recorded as being sent over

c. Formally, µ′(c′) = µ(c′) for any c′ , c and µ′(c) = µ(c) ∪ {t}. With rule In the attacker can

inject on c any message that he can deduce from his knowledge when c is a public or confidential

channel. He can also relay any message that was previously sent on c. The rule New-k generates

a fresh name of NH or ND depending on whether the agent A is honest or not. The rule New-c

allocates to the role of an agent a channel possibly fresh or that has already been used by other roles

in different sessions. In this rule, recc(S , ta, c, θ) is the mapping θ in which we record the channels

allocated to the agents. Formally, θ′(c′, A′, ta′) = θ(c′, A′, ta′) for any A′ < ta′ or (c′, ta′) , (c, ta),

and θ′(c, A, ta) = θ(c, A, ta) ∪ {d} for any (d, A) ∈ S . The rule Agent selects an agent from A and

adds Kpub to the knowledge of the attacker. Additionally, if the agent is dishonest, the rules adds

Kprv. When (P,Φ, µ, θ)
e1

−→ . . .
en

−→ (P′,Φ′, µ′, θ′), we write (P,Φ, µ, θ)
e1·...·en

=====⇒ (P′,Φ′, µ′, θ′).

◮ Example 4. An electronic passport is a paper passport containing a RFID chip that stores most of

the information printed on the passport. The protocols used to access these private data are specified

in the International Civil Aviation Organization standard [1]. Before exchanging any private data,

an electronic passport and a reader must establish session keys through a key-exchange protocol,

called Basic Access Control (BAC), that prevents eavesdropping on further communication. The

BAC protocol relies on two keys ke and km that are printed on the passport and thus can be obtained

by the reader through optical scanning. We described below the BAC protocol, between a passport

(P) and a reader (R). We assume encrypted messages to be tagged with a. The use of tagging will

be explained later on.

R→ P : challenge

P→ R : nP

R→ P : 〈senc(〈a, nR, nP, kR〉, ke),mac(〈a, senc(〈a, nR, nP, kR〉, ke)〉, km)〉

P→ R : 〈senc(〈a, nP, nR, kP〉, ke),mac(〈a, senc(〈a, nP, nR, kP〉, ke)〉, km)〉

After receiving a challenge command from the reader, the passport generates a fresh name nP that

6 Secure refinements of communication channels

will be used to verify the authenticity of the messages he will receive later on. Upon receiving nP,

the reader generates two nonces nR, kR and sends back to the passport all three nonces encrypted

with the key ke and a mac with the key km. The nonce nR has also an authenticity purpose whereas

kR will be the reader’s contribution to the session keys. The passport then checks the mac using

km and the cipher by decrypting it using ke and verifying the presence of nP in the plain text. If all

verifications succeed, the passport generates a nonce kP, the passport’s contribution to the session

keys, and sends it to the reader. At the end of the protocol, both reader and passport know kR and

kP that they use to generate two session keys f1(kR, kP) and f2(kR, kP). In our syntax, the roles of the

reader (RR) and of the passport (RP) can be expressed as follows.

RP = inP(c, challenge).new nP.outP(c, nP).inP(c, 〈M,mac(〈a,M〉, km[P])〉).

new kP.outP(c, 〈N,mac(〈a,N〉, km[P])〉).0

RR = outR(c, challenge).inR(c, z).new kR.new nR.outR(c, 〈U,mac(〈a,U〉, km[P])).

inR(c, 〈V,mac(〈a,V〉, km[P])〉).0

with c ∈ Chp, M = senc(〈a, x, nP, y〉, ke[P]), N = senc(〈a, nP, x, kP〉, ke[P]), U = senc(〈a, nR, z, kR〉,

ke[P]) and V = senc(〈a, z, nR,w〉, ke[P]). An honest reader communicating with unbounded number

of passports, possibly dishonest, can be modeled in our calculus as the process:

BAC = ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P]}).(RP | RR)

whereP is an infinite set of agents containing honest and dishonest agents and R < P. The following

trace would correspond to the execution of a session with a dishonest passport I and a session of an

honest one A both in P.

(BAC, ∅, ∅, ∅)→∗ (BAC | ag(P,P, ∅, {ke[P], km[P]}).(RP | RR), ∅, ∅, ∅)

→ (BAC | RPσA | RRσA, ∅, ∅, ∅)

→∗ (BAC | RPσA | RRσA | RPσI | RRσI , [ke[I], km[I]], ∅, ∅)

→ (BAC | RPσA | RRσA | RPσI | Q, [ke[I], km[I], challenge], ∅, ∅)

→∗ . . .

where PσA = A, PσI = I and σA, σI also are fresh renaming of bound variables and names and

RRσI = outI(c, challenge).Q. By convention the empty mapping µ = ∅ (resp. θ = ∅) denotes the

mapping that maps any argument to the emptyset: µ(c) = ∅ (resp. θ(c, A, ta) = ∅) for any c, A, ta.

3 Composition

In the previous section, we have defined an abstract notion of confidential, secure, and authenticated

channels. In practice, such channels are realized through cryptographic means. Agents first execute

some key establishment protocol in order to generate secret session keys. Then they encapsulate

the messages supposedly sent over a channel using these session keys. A standard case for secure

channels consists in using session keys to encrypt subsequent messages. How to encrypt the message

is defined by the encapsulation. In Section 3.1, we provide a generic definition of encapsulations and

identify properties needed for encapsulations to allow for authentication, confidential, and secure

channels. We continue in Section 3.2 by characterizing the composition of a key establishment

protocol with a process using abstract channels.

3.1 Encapsulation

For our composition result, we tag encapsulations and processes. These tags are used to distinguish

the parts of a message that correspond to encapsulations from the ones coming from processes.

Formally, a tag is a constant from Fcst, hence known to the attacker. Given a set Tag ⊆ Fcst, we say

that a term t is a Tag-term when for all t′ ∈ st(t), if t′ = f(t1, . . . , tn) for some f ∈ Fc\{〈 〉} and some

Vincent Cheval, Véronique Cortier, and Eric le Morvan 7

terms t1, . . . , tn then t1 = 〈a, u〉 for some term u and a ∈ Tag.

◮ Definition 5. A Tag-encapsulation is a pair (E,F) where E is a Tag-term of T (F ,X) and F ⊆

T (Fkey,X) such that vars(E) = {x, x1, . . . , xn}, {E, x1, . . . , xn} ⊢ x and for all t ∈ st(E),

if t = f(v) with f ∈ Fkey then v ∈ {x1, . . . , xn} ∪ Fcst

if t = f(w, t1, . . . , tn) and there exists a f-decomposition rule with f(x, u1, . . . , un), v1, . . . , vm as

premises then for all j ∈ {1, . . . ,m}, for all i ∈ {1, . . . , n}, v j = g(y) and y ∈ vars(ui) implies

ti ∈ {x1, . . . , xn} ∪ Fcst. Intuitively, if a f-decomposition rule may be applied to a subterm of an

encapsulation using a non atomic key g(ti) then ti must be a variable or a constant.

We denote x by tE and (x1, . . . , xn) by XE. Given two encapsulations (E,F) and (E′,F′), we write

E ∼ E′ when there exists a renaming ρ such that Eρ = E′, Fρ = F′, tEρ = tE′ and XEρ = XE′ . We

denote by E(t, t1, . . . , tn) the term obtained from E by substituting x by t and xi by ti.

In an encapsulation (E,F), the variable tE will be instantiated by the message sent on the channel

implemented by the encapsulation whereas the variables in XE will be instantiated by the session

keys. Note that {E, x1, . . . , xn} ⊢ x indicates that an encapsulated messages may always be retrieved

using the session keys. The terms in F represent the public keys that can be used to deduce the term

encapsulated or to generate an encapsulation with a new message without revealing the session keys.

◮ Example 6. In Example 4, we described how the session keys f1(kR, kP) and f2(kR, kP) are es-

tablished in the BAC protocol. The ICAO standard states that in any other protocol executed

after BAC, the messages exchanged should be of the form 〈u,mac(〈b, u〉, f1(kR, kP))〉 with u =

senc(〈b,M〉, f2(kR, kP)) for some data M and tag b. This represents in fact the encapsulation of

M with the session keys f1(kR, kP) and f2(kR, kP). In our formalism, the encapsulation is defined as

(EBAC, ∅) where EBAC = 〈t,mac(〈b, t〉, x2)〉 with t = senc(〈b, x〉, x1), tEBAC
= x and XEBAC

= (x1, x2).

We use tags to distinguish the encapsulations from the messages actually sent over the network.

However, a process can implement different types of channels using different encapsulations with

the same tags. We need to ensure that the security of an encapsulation is not compromised when

used with other encapsulations. Therefore, to state the different properties that encapsulations must

satisfy, we consider a set of encapsulations and not only a unique one.

These conditions are easily met by standard encapsulations.

◮ Definition 7. Let Se = Sa⊎Sc⊎Ss be a set of Tag-encapsulations. We say that Se allows authen-

tic, confidential and secure channels if the following properties are satisfied: Let (E1,F1), . . . , (En,

Fn) ∈ Se. Assume that the variables in E1, . . . ,En are disjoint. Let σ be a ground substitution such

that dom(σ) = vars(E1, . . . ,En) and let Φ be a ground frame such that Tag ∩ st(σ,Φ) = ∅. Let I be

the set of i ∈ {1, . . . , n} such that Φ · [Ekσ]n
k=1
⊢ tEi
σ.

1. For all i ∈ {1, . . . , n}, ∀u ∈ T (Fkey,XEi
σ), if Φ · [Ekσ]n

k=1
⊢ u then Φ · [tEk

σ]k∈I ⊢ u.

2. For all i, i′ ∈ {1, . . . , n}, ∀u ∈ st(Ei)rX, ∀v ∈ st(Ei′)rX, if u and v are unifiable and root(u) , {〈 〉}

then img(mgu(u, v)) ⊂ X.

Moreover, an encapulation is authentic, that is (Ei,Fi) ∈ Sa if it satisfies the properties [Can

read] and [Cannot write]. An encapulation is confidential, that is (Ei,Fi) ∈ Sc if it satisfies the

properties [Cannot read] and [Can write]. Finally, an encapulation is secure, that is (Ei,Fi) ∈ Sc if

it satisfies the properties [Cannot read] and [Cannot write].

For all ground substitution σ′ such that Tag ∩ st(σ′) = ∅, if we denote J = I − i then

3. [Can read] [Ei] · Fi ⊢ tEi

4. [Cannot read] Φ · [Ekσ]n
k=1
⊢ tEi
σ implies Φ · [tEk

σ]k∈J ⊢ tEi
σ ∨ ∃x ∈ XEi

.Φ · [tEk
σ]k∈J ⊢ xσ

8 Secure refinements of communication channels

5. [Can write] Φ · [Ekσ]n
k=1
⊢ Eiσ

′ is equivalent to ϕ ∨
(

Φ · [tEk
σ]k∈I ⊢ tEi

σ′ ∧ Φ · [tEk
σ]k∈I ⊢ Fiσ

′
)

6. [Cannot write] Φ · [Ekσ]n
k=1
⊢ Eiσ

′ implies either ϕ or the following property:

∃x ∈ XEi
.Φ′ ⊢ xσ′ ∧

(

(∃ j ∈ N.tEi
σ′ = tE j

σ ∧ XEi
σ′ ∩ XE j

σ , ∅) ∨ Φ′ ⊢ tEi
σ′)
)

where ϕ = ∃ j ∈ N.(Ei ∼ E j ∧ Eiσ
′ = E jσ), N = {1, . . . , n} and Φ′ = Φ · [tEk

σ]k∈I .

The set Sa (resp. Sc, Ss) represents the sets of encapsulations that can be used to implement

authentic (resp. confidential, secure) channels. Property 1 indicates that the session keys or their

associated public keys cannot be retrieved directly from an encapsulation. Different encapsulations

may use for instance the same encryption scheme. However, Property 2 prevents a part of an encap-

sulation to be mistaken as session key for another encapsulation. Properties 3 to 6 model the access

control of an encapsulation. In particular, the term tE of an encapsulation allowing reading access

can be derived from the encapsulation E and its public keys F (Property 3). On the other hand, the

term tE of an encapsulation not allowing reading access should not be derived from the encapsula-

tion without knowing the session keys XE (Property 4). Property 5 indicates that an encapsulation

allowing writing access can be deduced only if it was already sent on the network (expressed by

formula ϕ) or by generating it from its public keys F and the term tE encapsulated. Lastly, Property 6

models that an encapsulation not allowing writing access cannot be generated by an attacker unless

already given or unless some of the session keys in XE are known. In the latter, Property 6 also states

that when the term tE is not known to the attacker then he must have extracted it from encapsulations

previously received.

Most common encapsulations satisfy the requested properties.

◮ Theorem 8. The following encapsulations are:

authentic: Esign = sign(〈aEsign, x〉, x1) and Emac = 〈x, h(〈aEmac, x, x1〉)〉;

confidential: Eaenc = aenc(〈aEaenc, x〉, pk(x1));

secure: ETLS = senc(〈aETLS, x〉, x1), EBAC = 〈t,mac(〈aEBAC, t〉, x2)〉 with t = senc(〈aEBAC, x〉, x1),

and Esigncrypt = sign(〈aEsigncrypt, aenc(〈aEsigncrypt, x〉, pk(x1))〉, x2).

where aEsign, aEmac, aEaenc, aETLS, aEBAC, aEsigncrypt are constants.

Moreover, the set {(Esign, {vk(x1)}), (Emac, ∅), (Eaenc, {pk(x1)}), (ETLS, ∅), (EBAC, ∅), (Esigncrypt, ∅)}

allowsfor authentic, confidential and secure channels.

In the rest of this paper, we assume the existence of a set of encapsulationsSe allowing authentic,

secure and confidential channels.

3.2 Composition of protocols

Encapsulations use session keys, which are established by a key exchange protocol. To express the

requested property of this protocol, we need to annotate it with events that specify which keys are

established for which channels and agents.

Considering a context of channel and agent declarations C and a set of channels S , we denote by

C|S the context C where all newta c with c ∈ S are removed. We denote by TAgt the set of tuples of

agents. We consider special events Ev = {ev1, ev2, . . . ∈ Ev}.

◮ Definition 9. Let P = C[R1, . . . ,Rn] be a process with C an agent and channel declaration context

such that R1, . . . ,Rn are roles of agents A1, . . . , An respectively. Let S be a set of channels such that

channels(C) ∩ S = ∅. Let ρ be a mapping from S to TAgt × Se. We say that a process P̃ is an

annotation of P under ρ if P̃ = C[R′
1
, . . . ,R′n] where for all i ∈ {1, . . . , n},

R′
i
= Ri.eventAi

(evi(c1, ta1, ts1, tp1)).eventAi
(evi(cm, tam, tsm, tpm))

where {c1, . . . , cm} = {c ∈ dom(ρ) | cρ = (ta, (E,F)) ∧ Ai ∈ st(ta)} and ∀ j ∈ {1, . . . ,m}, c jρ =

Vincent Cheval, Véronique Cortier, and Eric le Morvan 9

(ta j, (E,F)), ts j = (u1, . . . , u|XE|), tp = F(u1, . . . , u|XE|) for some (E,F) and terms u1, . . . , u|XE| such

that if c ∈ Cha (resp. Chc, Chs) then (E,F) allows authentic (resp. confidential, secure) channels.

At the end of each role Ri, we add the events evi for the channels c1, . . . , cm that the agent is

supposed to establish. Events evi(c, ta, ts, tp) are composed of four elements: a channel c that the

agent wants to instantiate, a tuple of agents ta indicating who is sharing the channel c, a tuple of

session keys ts that will be used in the encapsulation (E,F) to implement c, and lastly a tuple tp of

public keys associated to the session keys and F. Typically, we will require that the session keys in

ts remain secret for honest agents while the public keys are indeed public.

◮ Example 10. Continuing Example 4 and thanks to Theorem 8, the encapsulation (EBAC, ∅)

provides the passport and reader with a secure channel, denoted cs ∈ Chs, once BAC has been

executed. The fact that BAC is supposed to establish a secure channel for P and R is expressed by

the mapping ρ = {cs → ((P,R), (E, ∅))}. The corresponding annotation of BAC under ρ is as follows:

˜BAC = CBAC[RP.eventP(ev1(cs, (P,R), (f1(y, kP), f2(y, kP))))

| RR.eventR(ev2(cs, (P,R), (f1(kR,w), f2(kR,w))))]

where CBAC[_] = ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P], data[P]})._ . Note that the session keys

are different and reflect the respective views on the session keys of the passport and the reader.

◮ Definition 11. Let C and C′ be two channel and agent declaration contexts. We say that C and

C′ are composable if there exist contexts C1,C2,C
′
1
,C′

2
such that C1 and C′

1
are sequences of agent

declarations with ba(C1) ∩ ba(C′
1
) = ∅, C = C1[C2], C′ = C′

1
[C′

2
] and C2,C

′
2

only differ from the

content of Kpub, Kprv in the instances of ag(A,A,Kpub,Kprv).

We define their composition, denoted CC,C′ , as the context C1[C′
1
[C3]] with C3 being the context

C2 where all instances of ag(A,A,Kpub,Kprv) are replaced by ag(A,A,Kpub ∪ Kpub
′,Kprv ∪ Kprv

′)

and ag(A,A,Kpub
′
,Kprv

′) is in C′
2
.

The composability of the channel and agent declaration contexts ensures that the roles of the

process Q can be sequentially composed with the roles of the process P. For instance, they should

have similar replications, agent declarations or even channel declarations. However, we do not

require that an agent in P and Q to have the same private (Kprv) or public (Kpub) data. We also allow

an agent to be declared in one context but not in the other one if declared upfront.

◮ Example 12. One of the protocols that are executed after BAC is the Passive Authentication pro-

tocol which provides an authentication mechanism proving that the content of the RFID chip is au-

thentic. In fact the ICAO standard also indicates that the chip must contain a signature by the Docu-

ment Signer authority (D) of a hash of the private data data[P], sod
de f
= sign(〈a, h(〈a, data[P]〉)〉, sk[D]).

During the Passive Authentication protocol, after receiving on the secure channel a challenge from

the reader, the passport sends back this signature that is checked by the reader.

R→sec P : read

P→sec R : 〈data, sign(〈a, h(〈a, data〉)〉, sk)

where sk is the signing key of the Document Signer authority. In our calculus, the roles of the reader

(QR) and of the passport (QP) can be described as follows:

QP = inP(cs, read).outP(cs, 〈data[P], sod〉)

QR = outR(cs, read).inR(cs, 〈x
′, sign(〈a, h(〈a, x′〉)〉, sk[D])〉)

The complete representation of the system is given by PA = CPA[new(R,P) cs.(QP | QR)] where CPA

is the following context:

CPA = ag(D, {D}, {vk(sk[D])}, {sk[D]}).ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {data[P]})._

Continuing Example 10, CPA and CBAC are composable and CCPA ,CBAC is the context:

CCPA ,CBAC = ag(D, {D}, {vk(sk[D])}, {sk[D]}).ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P], data[P]})._

10 Secure refinements of communication channels

Let S be a set of channels. Let ρ be a mapping from S to TAgt ×Se. We say that two processes P

and Q are composable under ρ if P = C[R1, . . . ,Rn], Q = C′[R′
1
, . . . ,R′n] where Ri,R

′
i

are roles of the

same agent Ai for i = 1 . . .n, C and C′|S are composable and for all c ∈ dom(ρ), if cρ = (ta, (E,F))

then for all i ∈ {1, . . . , n}, c ∈ chAi
(Q) is equivalent to Ai ∈ ta. This reflects the fact that agents using

channel c should be explicitly listed as authorized agents for c.

The composability between P and Q ensures that the agents in Q sharing abstract authentic,

confidential and secure channels are correctly represented in ρ.

◮ Definition 13. Let S be a set of channels. Let ρ be a mapping from S to TAgt × Se. Let P =

C[R1, . . . ,Rn] and Q = C′[R′
1
, . . . ,R′n] two closed composable processes under ρ.

For all P̃ = C[R̃1, . . . , R̃n] annotations of P under ρ, the implementation of Q by P̃ through ρ,

denoted P̃ ·ρ Q, is the process C0[R1.R
′′
1
, . . . ,Rn.R

′′
n] where C0 = CC,C′ |S and for all i ∈ {1, . . . , n},

R′′
i

is defined as R′
i

where all instances of outA(c, u) (resp. inA(c, u)) are replaced by outA(cpub,Eσ)

(resp. inA(cpub,Eσ)) when cρ = (ta, (E,F)), tEσ = u and eventA(evi(c, ta,XEσ,Fσ)) is in R̃i for

some substitution σ.

◮ Example 14. Continuing Example 12, the implementation of PA by ˜BAC through ρ is thus the

process ˜BAC ·ρ PA = CCPA ,CBAC [RP.Q
′
P
| RR.Q

′
R
] where Q′

P
and Q′

R
are defined as follows:

Q′
P
= inP(cpub,EBAC(read,K1,K2)).outP(cpub,EBAC(〈data[P], sod〉,K1,K2))

Q′
R
= outR(cpub,EBAC(read,K′

1
,K′

2
)).inR(cpub,EBAC(〈x, sign(〈a, h(〈a, x〉)〉, sk[D])〉,K′

1
,K′

2
))

with K1 = f1(y, kP), K2 = f2(y, kP), K′
1
= f1(kR,w), K′

2
= f2(kP,w). Note that the ICAO standard

describes in fact the Passive Authentication protocol as the process C[Q′
P
| Q′

R
] (without tags).

Thanks to our result, we may study the simpler process C[new(P,R) cs.(QP | QR)].

4 Security property

It is easy to state secrecy in our formalism, using a special event Sec ∈ Ev: any term occurring in a

Sec event should remain secret unless the corresponding session involves a dishonest agent.

◮ Definition 15. Let Q be closed process containing contains some events of the form Sec(t, (A1,

. . . , An)) where t is a term and A1, . . . , An are some agents. Let Φ be a closed frame. We say that

Q preserves secrecy if for all (Q, ∅, ∅, ∅)
ev1·...·evm

======⇒ (Q′,Φ′, µ′, θ′), for all i ∈ {1, . . . , n}, if evi =

Sec(t′, (A′
1
, . . . , A′n)) for some t′ and some honest agents A′

1
, . . . , A′n then Φ′ 0 t′.

We may also specify the properties requested from a key exchange protocol P: P should preserve

the secrecy of the session keys occurring in its events and should ensure that the associated public

keys are public. Moreover, P also needs to ensure that a session key cannot be used to implement

two different channels and that honest agents sharing a channel will share the same session keys for

this channel. In such a case, we say that P is a secure channel establishment protocol.

◮Definition 16. Let P = C[R1, . . . ,Rn] be a closed process. Let P̃ be an annotation of P under some

mapping ρ. We say that P̃ is a secure channel establishment protocol when for all (P̃, ∅, ∅, ∅)
e1·...·em

=====⇒

(P′,Φ′, µ′, θ′), for all i ∈ {1, . . . ,m}, if ei = ev(c, ta, (s1, . . . , sℓ), (u1, . . . , uq)) such that ev ∈ Ev, all

agents in ta are honest then for all k ∈ {1, . . . , ℓ},Φ′ 0 sk and for all k ∈ {1, . . . , q},Φ′ ⊢ uk. Moreover,

for all j ∈ {1, . . . ,m}, if ev j = ev′(c′, ta′, (s′
1
, . . . , s′

ℓ′
), (u′

1
, . . . , u′q′)) for some ev′ ∈ Ev, some channel

c′, some tuple ta′ of agents and some tuples (s′
1
, . . . , s′

ℓ′
) and (u′

1
, . . . , u′q′) of terms then

either ta , ta′ or c , c′ or ev = ev′ implies ∀k ∈ {1, . . . , ℓ},∀k′ ∈ {1, . . . , ℓ′}, sk , s′
k′

or one of the two following properties is satisfied :

Vincent Cheval, Véronique Cortier, and Eric le Morvan 11

(s1, . . . , sℓ) = (s′
1
, . . . , s′

ℓ′
) and (u1, . . . , uq) = (u′

1
, . . . , u′q′).

∀k ∈ {1, . . . , ℓ},∀k′ ∈ {1, . . . , ℓ′}, sk , s′
k′

.

The first item indicates that the session keys used for a channel between some honest agents

are necessarily different from session keys used for a different channel between any kind of agents,

whether they are honest, dishonest or a mix of both. The second item requires that for matching

channels and sets of agents, either the session keys perfectly match or they are all different.

We are now ready to state our main result: if P is a secure channel establishment protocol and if

Q preserves secrecy using some secure, confidential, or authentic channels, then Q may safely use

P to implement its channels. The proof of Theorem 17 is available in a companion report [5].

◮ Theorem 17. Let tagA and tagB be two disjoint sets of tags. Let Se be a set of tagA-encapsulation

allowing authentic, confidential, and secure channels. Let ρ be a mapping from channels to TAgt×Se.

Let P and Q be two closed executable composable tagB-processes under ρ such that P and Q do not

share names and f a(P) = f a(Q) = ∅. Let P̃ be an annotation of P under ρ. If P̃ is secure and Q

preserves secrecy then P̃ ·ρ Q preserves secrecy as well.

For simplicity, we prove secure composition w.r.t. secrecy properties but we believe that our

result could be easily extended to trace properties.

Sketch of proof. The proof first relies on that fact that the reachability properties are preserved by

disjoint parallel composition. In particular, the process P̃ | Q is a secure channel establishment pro-

tocol and preserves secrecy. The rest of the proof consists in showing that any trace of P̃ ·ρ Q is also

a trace of P̃ | Q with a frame that induces a similar attacker knowledge. More specifically, properties

from Definition 7 ensure that tagB-terms generated by the attacker or obtained from the encapsu-

lations in P̃ ·ρ Q do not give any relevant knowledge to the attacker and can be replaced by fresh

names. This allows us to obtain a trace without tagB-terms and so without encapsulations. Lastly,

since P̃ | Q is a secure channel establishment protocol, we can always match two encapsulations

having same session keys with the corresponding abstract channel in P̃ | Q. ◭

◮ Example 18. Continuing Example 14, the annotation under ρ of the Basic Access Control ˜BAC

is secure and the Passive Authentication CPA[new cs.(QP.eventP(Sec(data[P], (P,R))) | QR)] pre-

serves secrecy (of the private data). Hence, thanks to Theorems 8 and 17, the implementation of PA

by ˜BAC through ρ, CCPA ,CBAC [RP.Q
′
P
.eventP(Sec(data[P], (P,R))) | RR.Q

′
R
], preserves secrecy.

5 Case studies

We show that our approach can be applied to deployed protocols such as the biometric passport

or TLS applied to 3D-secure. As an application, we show that the automatic analysis through the

CL-Atse tool can be significantly speed up when the number of sessions goes higher.

5.1 Biometric passport

Our running example is the combination of the Basic Access Control (BAC) protocol with the Pass-

ive Authentication (PA) protocol from the electronic passports. Actually, PA is not the only protocol

executed after BAC. Another authentication mechanism is used to prevent cloning of the passport

chip. This protocol, called Active Authentication protocol (AA), also uses the same session keys

and encapsulations than PA. Using the CL-Atse tool [18], we show for different scenarios that BAC

is a secure channel establishment protocol and that PA and AA both preserve secrecy. Thanks to

our main result, this yields security of the combined protocol, where BAC implements the secure

channel of PA and AA. For comparaison purpose, we also analyze directly the combined protocol

with CL-Atse. These analysis are reported in Section 5.3

12 Secure refinements of communication channels

5.2 TLS and 3D-secure

Our results also apply to other complex systems. We study the Visa 3D-secure protocol [17] used

by several websites for internet banking and that relies on secure channels implemented by the well

known TLS protocol. The Visa 3D secure protocol is an authenticated payment method between

a card holder and a merchant during an electronic payment. This protocol aims to ensure authen-

tication of the card holder as well as confirmation that the card holder is authorized by his bank to

make the payment. Lastly, the protocol also aims to ensure the secrecy of the card holder’s banking

information, the payment amount and other data.

The protocol involves four types of participants: a card holder (C), a merchant (M), a central-

ized structure called Visa Directory Servers (DS) and the card issuer’s servers called Access Control

Servers (ACS). The main role of the Visa Directory Servers is to transfer card holder’s information

between the Access Control Servers and the merchant.In itself, the 3D secure protocol is already a

complex protocol with multiple exchanges of messages. But the protocol also requires most mes-

sages to be exchanged trough a TLS channel. More specifically, messages of the 3D secure protocol

shall be encrypted with a symmetric session key previously established with TLS. In our model, this

means that the messages are encapsulated by (ETLS, ∅), as defined in Theorem 8.

The well known TLS protocol [15, 9] aims at establishing a secure channel between a client and

a server. Using the CL-Atse tool, we show that TLS (Basic TLS handshake, in the RSA mode) is

indeed a secure channel establishment protocol.

Note that for one session of the Visa 3D secure protocol yields four sessions of the TLS protocol:

one channel between C and M, between C and ACS, between ACS and DS and finally between M

and DS. This renders the verification of even one session of 3D secure protocol with the channels

implemented by TLS a complex task (more than thirty five messages exchanged per session).

5.3 Analysis with CL-Atse

We applied the automatic verification tool CL-Atse [18] on a Dell T1700 computer (16 Go RAM,

3.40 GHz CPU). The corresponding time of analysis are displayed below.

Computation time (in seconds, timeout set to 24 hours)

protocols TLS & 3D secure BAC & PA BAC & AA BAC & PA & AA

complete system (C) or

separated analysis (S)
S C S C S C S C

number of 1 0.2 0.1 0.7 0.1 0.7 0.1 0.7 0.2

sessions 2 1350 time out 6.2 1.6 6.2 1.6 6.5 43156

considered 3 time out time out 9133 time out 9133 time out 9185 time out

Amongst the tools able to verify security protocols for a bounded number of sessions, CL-Atse is

well known and considered to be one of the fastest. However, in the case of the 3D-secure protocol,

the tool already fails to verify one session with all channels implemented as we reached a time out

set to 24 hours of computation. Thus, to obtain meaningful results with the 3D-secure protocol,

we considered the case where only the channel between the card holder and the merchant is imple-

mented. Already in this case, we can see a clear benefit from analyzing separately 3D-secure and

TLS when considering two sessions. Indeed, the verification can be performed under 25 minutes

when analysing the protocols separately whereas the tool was reaching a time out when considering

the complete system. We obtain similar results with the Basic Access Control protocol, the Active

Authentication protocol and the Passive Authentication protocol. Note that for verification tools

handling unbounded number of sessions (e.g. ProVerif [3], Tamarin [14]), the gain in time would

probably be less significant since these tools do not systematically explore all interleavings.

Vincent Cheval, Véronique Cortier, and Eric le Morvan 13

6 Conclusion

We have shown how to securely compose a protocol with the implementation of its channels. We

have provided a characterization for the three most common types of channels: secure, confidential,

and authentic channels. We plan to consider other types of communication channels like anonymous

channels. This will certainly require to extend our approach to equivalence properties.

Our composition result holds for a class of primitives that encompasses all standard crypto-

graphic primitives. We plan to extend it to a larger class of primitives, including in particular exclus-

ive or or homomorphic encryption.

Our result assumes a light tagging of the primitives, to ensure that an encapsulation cannot be

confused with a message coming from the protocols. While tagging is reasonable, it is not often done

in practice. On the other hand standard protocols typically enjoy some non unifiability properties

that prevent such confusion. We believe that our result could be extended to a general notion of non

unifiability of the terms, without having to require explicit tagging.

Acknowledgments:

The research leading to these results has received funding from the European Research Council under

the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n◦

258865, project ProSecure.

References

1 Machine readable travel document. Technical Report 9303, International Civil Aviation Organiza-

tion, 2008.

2 M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc. of

the 28th ACM Symposium on Principles of Programming Languages (POPL’01), pages 104–115,

January 2001.

3 B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In Proc. CSFW’01,

2001.

4 B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces termination.

In A. Gordon, editor, Foundations of Software Science and Computation Structures (FoSSaCS’03),

volume 2620 of LNCS, April 2003.

5 V. Cheval, V. Cortier, and E. Le-Morvan. Secure refinements of communication channels. Research

report RR-8790, Inria, 2015.

6 Ş. Ciobâcă and V. Cortier. Protocol composition for arbitrary primitives. In Proceedings of the 23rd

IEEE Computer Security Foundations Symposium (CSF’10), pages 322–336, Edinburgh, Scotland,

UK, July 2010. IEEE Computer Society Press.

7 V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in System Design,

34(1):1–36, Feb. 2009.

8 A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (PCL). Electr. Notes

Theoretical Computer Science, 172:311–358, 2007.

9 T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2 (rfc 5246). Tech-

nical report, IETF, 2008.

10 T. Gibson-Robinson, A. Kamil, and G. Lowe. Verifying layered security protocols. Journal of

Computer Security, 23(3), 2015.

11 J. D. Guttman. Authentication tests and disjoint encryption: a design method for security protocols.

Journal of Computer Security, 12(3–4):409–433, 2004.

12 J. D. Guttman. Establishing and preserving protocol security goals. Journal of Computer Security,

22(2):203–267, 2004.

14 Secure refinements of communication channels

13 J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption. In Proc.

13th Computer Security Foundations Workshop (CSFW’00), pages 24–34. IEEE Comp. Soc. Press,

2000.

14 S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN Prover for the Symbolic Analysis

of Security Protocols. In N. Sharygina and H. Veith, editors, Computer Aided Verification, 25th

International Conference, CAV 2013, Princeton, USA, Proc., volume 8044 of Lecture Notes in

Computer Science, pages 696–701. Springer, 2013.

15 C. Meyer and J. Schwenk. Lessons learned from previous ssl/tls attacks : A brief chronology of

attacks and weaknesses. In IACR Cryptology ePrint, 2013.

16 S. Moedersheim and L. Viganò. Sufficient conditions for vertical composition of security protocols.

In ASIACCS, pages 435–446, 2014.

17 V. Pasupathinathan, J. Pieprzyk, H. Wang, and J. Y. Cho. Formal analysis of card-based payment

systems in mobile services. In Fourth Australian information security workshop, conferences in

research and practise in information security, pages 213–220, 2006.

18 M. Turuani. The CL-Atse Protocol Analyser. In Term Rewriting and Applications - Proc. of RTA,

volume 4098 of Lecture Notes in Computer Science, pages 277–286, Seattle, WA, USA, 2006.

	Introduction
	Model
	Messages
	Agents
	Protocols

	Composition
	Encapsulation
	Composition of protocols

	Security property
	Case studies
	Biometric passport
	TLS and 3D-secure
	Analysis with CL-Atse

	Conclusion

