
Lengths may break privacy – or how to check for

equivalences with length ⋆

Vincent Cheval1, Véronique Cortier2, and Antoine Plet2

1 LSV, ENS Cachan & CNRS & INRIA, France
2 LORIA, CNRS, France

Abstract. Security protocols have been successfully analyzed using sym-
bolic models, where messages are represented by terms and protocols by
processes. Privacy properties like anonymity or untraceability are typ-
ically expressed as equivalence between processes. While some decision
procedures have been proposed for automatically deciding process equiv-
alence, all existing approaches abstract away the information an attacker
may get when observing the length of messages.
In this paper, we study process equivalence with length tests. We first
show that, in the static case, almost all existing decidability results (for
static equivalence) can be extended to cope with length tests. In the ac-
tive case, we prove decidability of trace equivalence with length tests, for
a bounded number of sessions and for standard primitives. Our result
relies on a previous decidability result from Cheval et al [15] (without
length tests). Our procedure has been implemented and we have discov-
ered a new flaw against privacy in the biometric passport protocol.

1 Introduction

Privacy is an important concern in our today’s life where many documents and
transactions are digital. For example, we are usually carrying RFIDs cards (for
ground transportation, access to office buildings, for opening modern cars, etc.).
Due to these cards, malicious users may (attempt to) track us or learn more
about us. For instance, the biometric passport contains a chip that stores sen-
sitive information such as birth date, nationality, picture, fingerprints, and also
iris characteristics. In order to protect passport holders privacy, the application
(or protocol) deployed on biometric passports is designed to achieve authentica-
tion without revealing any information to a third party (data is sent encrypted).
However, it is well known that designing security protocols is error prone. For ex-
ample, it was possible to track French citizens due to an additional error message
introduced in French passports [5]. Symbolic models have been very successful
for analyzing security protocols. Several automatic tools have been designed such
as ProVerif [10], Avispa [6], etc.. They are very effective to detect flaws or prove

⋆ This work has been partially supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 258865, project ProSecure and project JCJC VIP no 11 JS02 006 01

2 Vincent Cheval, Véronique Cortier, and Antoine Plet

security of many real-case studies (e.g JFK [2], OAuth2.0 [7], etc.). However,
these tools are, for most of them, dedicated to accessibility properties. While
data secrecy or authentication can be easily expressed as accessibility proper-
ties, privacy properties are instead stated as indistinguishability (or equivalence)
properties: Alice remains anonymous if an attacker cannot distinguish a session
with Alice as participant from a session with Bob as participant. The literature
on how to decide equivalence of security protocols is much less prolific than for
accessibility. Some procedures have been proposed [8,15,12,11] for some classes
of cryptographic primitives, not all procedures being guaranteed to terminate.
However, none of these results take into account the fact that an attacker can
always observe the length of a message. For example, even if k is a secret key, the
cyphertext {n}k corresponding to the encryption of a random number n by the
key k can always be distinguished from the cyphertext {n, n}k corresponding
to the encryption of a random number n repeated twice by the key k. This is
simply due to the fact that {n, n}k is longer than {n}k. These two messages
would be considered as indistinguishable in all previous mentioned symbolic ap-
proaches. The fact that encryption reveals the length of the underling plaintext
is a well-identified issue in cryptography. Therefore and not surprisingly, intro-
ducing a length function becomes necessary in symbolic models when proving
that symbolic process equivalence implies cryptographic indistinguishability [16].

Our contributions. In this paper, we consider an equivalence notion that takes
into account the information leaked by the length of a message. More precisely,
we equip the term algebra T with a length function ℓ : T 7→ R

+ that associates
a non negative real number to any term and we let the attacker compare the
length of any two messages he can construct. As usual, the properties of the
cryptographic primitives are modeled through an equational theory. For example,
the equation sdec(senc(m, k), k) models the fact that decrypting with a key k a
message m (symmetrically) encrypted by k yields the message m in clear. The
goal of our paper is to study the decidability of equivalence with length tests.

The simplest case is the so-called static case, where an attacker can only ob-
serve protocol executions. Two sequences of messages are statically equivalent if
an attacker cannot see the difference between them. For example, the two mes-
sages {0}k and {1}k are distinct but cannot be distinguished by an attacker un-
less he knows the key k. We show how most existing decidability results for static
equivalence can be extended to length tests. We simply require the length func-
tion to be homomorphic, that is, the length ℓ(M) of a term M = f(M1, . . . ,Mk)
is a function of f and the lengths of M1, . . . ,Mk. We show that whenever static
equivalence is decidable for some equational theory E then static equivalence
remains decidable when adding length tests. The result requires a simple hy-
pothesis called SET-stability that is satisfied by most equational theories that
have been showed decidable for static equivalence. As an application, we deduce
decidability of static equivalence for many primitives, including symmetric and
asymmetric encryption, signatures, hash, blind signatures, exclusive or, etc.

The active case, where an attacker can freely interact with the protocol, is
of course more involved. Even without the introduction of a length function,

How to check for equivalences with length 3

there are very few decidability results [17,15]. Starting from the decision pro-
cedure developed in [15], we show how to deal with length functions for the
standard cryptographic primitives (symmetric and asymmetric encryption, sig-
natures, hash, and concatenation). Like for the static case, our result is actually
very modular. In order to check whether two protocols P and Q are in trace
equivalence with length tests, it is sufficient to first run the procedure of [15],
checking whether two protocols P and Q are in trace equivalence without length
tests. It is then sufficient to check for equalities of the polynomials we derive
from the processes that appear in the final states of the procedure of [15]. As
such, we provide a decision procedure for the two following problems: (1) Given
two processes P and Q and a length function ℓ, are P and Q in trace equiva-
lence with length tests (w.r.t. the length function ℓ)? (2) Given two processes
P and Q, does there exist a length function ℓ such that P and Q in not trace
equivalence with length tests (w.r.t. the length function ℓ)? From a practical
point of view, this amounts into deciding whether there exists an implementa-
tion of the primitives (that would meet some particular length property) such
that an attacker could distinguish between P and Q, leading to a privacy attack.
We have implemented our decision procedure for trace equivalence with length
tests as an extension of the APTE tool developped for [15]. As an application,
we study the biometric passport [1] and discover a new flaw. We show that an
attacker can break privacy by observing messages of different lengths depending
on which passport is used, therefore discovering who between Alice or Bob is
currently using her/his passport.

Related work. Existing decision procedures for trace equivalence do not con-
sider length tests. [15] shows that trace equivalence is decidable for finitely many
sessions and for a fixed term algebra (encryption, signatures, hash, . . .). A pro-
cedure for a more flexible term algebra is provided in [12] but is not guaranteed
to terminate. Building on [8], it has been shown that trace equivalence can be
decided for any convergent subterm equational theories, for protocols with no
else branches [17]. The tool ProVerif [10,11] is also able to check for equiva-
lence but is again not guaranteed to terminate (and prove an equivalence that is
sometimes too strong). One of the only symbolic models that introduce a length
function is the model developed in [16] for proving that symbolic process equiv-
alence implies cryptographic indistinguishability. However, [16] does not discuss
any decision procedure for process equivalence.

2 Preliminaries

A key ingredient of formal models for security protocols is the representation of
messages by terms. This section is devoted to the definitions of terms and two
key notions of knowledge for the attacker: deduction and static equivalence.

2.1 Terms

Given a signature F (i.e. a finite set of function symbols, with a given arity),
an infinite set of names N , and an infinite set of variables X , the set of terms

4 Vincent Cheval, Véronique Cortier, and Antoine Plet

T (F ,N ,X) is defined as the union of names N , variables X , and function sym-
bols of F applied to other terms. A term is said to be ground if it contains no
variable. ñ denotes a set of names. The set of names of a term M is denoted by
fnames(M). Substitutions are replacement of variables by terms and are denoted
by θ = {M1/x1, . . . ,Mk/xk}. The application of a substitution θ to a term M
is defined as usual and is denoted Mθ. A context C is a term with holes. Given
terms M1, . . . ,Mk, the term C[M1, . . . ,Mk] may be denoted C[M̃i].

Example 1. A signature for modelling the standard cryptographic primitives
(symmetric and asymmetric encryption, concatenation, signatures, and hash)
is Fstand = Fc∪Fd where Fc and Fd are defined as follows (the second argument
being the arity):

Fc = {senc/2, aenc/2, pk/1, sign/2, vk/1, 〈 〉/2, h/1}
Fd = {sdec/2, adec/2, check/2, proj1/1, proj2/1}.

The function aenc (resp. senc) represents asymmetric encryption (resp. symmet-
ric encryption) with corresponding decryption function adec (resp. sdec) and
public key pk. Concatenation is represented by 〈 〉 with associated projectors
proj1 and proj2. Signature is modeled by the function sign with corresponding
validity check check and verification key vk. h represents the hash function.

The properties of the cryptographic primitives (e.g. decrypting an encrypted
message yields the message in clear) are expressed through equations. Formally,
we equip the term algebra with an equational theory, that is, an equivalence
relation on terms which is closed under substitutions for variables and names. We
write M =E N when the terms M and N are equivalent modulo E. Equational
theories can be used to specify a large variety of cryptographic primitives, from
the standard cryptographic primitives of Example 1 to exclusive or (XOR), blind
signatures, homomorphic encryption, trapdoor-commitment or Diffie-Hellman.
We provide below a theory for the standard primitives and for XOR. More
examples of equational theories can be found in [3,4].

Example 2. Continuing Example 1, the equational theory Estand for the standard
primitives is defined by the equations:

sdec(senc(x, y), y) = x (1)

adec(aenc(x, pk(y)), y) = x (2)

check(sign(x, y), vk(y)) = x (3)

proj1(〈x, y〉) = x (4)

proj2(〈x, y〉) = y (5)

Equation 1 models that decrypting an encrypted message senc(m, k) with
the right key k yields the message m in clear. Equation 2 is the asymmetric
analog of Equation 1. Similarly, Equations 4 and 5 model the first and second
projections for concatenation. There are various ways for modeling signature.
Here, Equation 3 models actually two properties. First, the validity of a signa-
ture sign(m, k) given the verification key vk(k) can be checked by applying the
test function check. Second, the underlying message m under signature can be

How to check for equivalences with length 5

retrieved (as it is often the case in symbolic models). This is because we assume
that a signature sign(m, k), which represents the digital signature itself, is always
sent together with the corresponding message m.

Example 3. The theory of XOR E⊕, is based on the signature Σ = {⊕/2, 0/0}
and the equations:

(x⊕ y)⊕ z = x⊕ (y ⊕ z)

x⊕ y = y ⊕ x

x⊕ x = 0

x⊕ 0 = x
The two left equations model the fact that the function ⊕ is associative and

commutative. The right equations model the fact that XORing twice the same
element yields the neutral element 0.

A function symbol + is said to be AC (associative and commutative) if it
satisfies the two equations (x + y) + z = x + (y + z) and x + y = y + x. For
example, the symbol ⊕ is an AC-symbol of the theory E⊕. Given an equational
theory E, we write M =AC N if M and N are equal modulo the associativity
and commutativity of their AC-symbols.

2.2 Deduction and static equivalence

During protocol executions, the attacker learns sequences of messagesM1, . . . ,Mk

where some names are initially unknown to him. This is modeled by defining a
frame φ to be an expression of the form

φ = νñ{M1/x1, . . . ,Mk/xk}

where ñ is a set of names (representing the secret names) and the Mi are terms.
A frame is ground is all its terms are ground. The domain of the frame φ is
dom(φ) = {x1, . . . , xn}.

The first basic notion when modeling the attacker is the notion of deduction.
It captures what an attacker can built from a frame φ. Intuitively, the attacker
knows all the terms of φ and can apply any function to them.

Definition 1 (deduction). Given an equational theory E and a frame φ =
νñσ, a ground term N is deducible from φ, denoted φ ⊢ N , if there is a free
term M (i.e. fnames(M) ∩ ñ = ∅), such that Mσ =E N . The term M is called
a recipe of N .

Example 4. Consider φ1 = νn, k, k′{k/x1, senc(〈n, n〉, k)/x2, senc(n, k
′)/x3}. Then

φ1 ⊢ k, φ1 ⊢ n, but φ1 6⊢ k′. A recipe for k is x1 while a recipe for n is
proj1(sdec(x2, x1)). Another possible recipe of n is proj2(sdec(x2, x1)).

As mentioned in the introduction, the confidentiality of a vote v or the
anonymity of an agent a cannot be defined as the non deducibility of v or a.
Indeed, both are in general public values and are thus always deducible. Instead,
the standard approach consists in defining privacy based on an indistinguisha-
bility notion: an execution with a should indistinguishable from an execution
with b. Indistinguishability of sequences of terms is formally defined as static
equivalence.

6 Vincent Cheval, Véronique Cortier, and Antoine Plet

Definition 2 (static equivalence). Two frames φ1 = νñ1σ1 and φ2 = νñ2σ2

are statically equivalent, denoted φ1 ∼ φ2, if and only if for all terms M,N such
that (fn(M) ∪ fn(N)) ∩ (ñ1 ∪ ñ2) = ∅,

(Mσ1 =E Nσ1) ⇔ (Mσ2 =E Nσ2).

Example 5. Let φ2 = νn, n′, k, k′{k/x1, senc(〈n
′, n〉, k)/x2, senc(n, k

′)/x3} and
φ3 = νn, k, k′{k/x1, senc(〈n, n〉, k)/x2, senc(〈n, n〉, k

′)/x3}. φ1 is defined in Ex-
ample 4. Then φ1 6∼ φ2 since proj1(sdec(x2, x1)) = proj2(sdec(x2, x1)) is true in
φ1 but not in φ2. Intuitively, an attacker may distinguish between φ1 and φ2 by
decrypting the second message and noticing that the two components are equal
for φ1 while they differ for φ2. Conversely, we have φ1 ∼ φ3.

2.3 Rewrite systems

To decide deduction and static equivalence, it is often convenient to reason with
a rewrite system instead of an equational theory. A rewrite system R is a set of
rewrite rules l → r (where l and r are terms) that is closed by substitution and
context. Formally a term u can be rewritten in v, denoted by u →R v if there
exists l → r ∈ R, a substitution θ, and a position p of u such that u|p = lθ and
v = u[rθ]p. The transitive and reflexive cloture of →R is denoted →∗

R. We write
→ instead of →R when R is clear from the context.

Definition 3 (convergent). A rewrite system R is convergent if it is:

– terminating: there is no infinite sequence u1 → u2 → · · · → un → · · ·
– confluent: for every terms u, u1, u2 such that u → u1 and u → u2, there

exists v such that u1 →∗ v and u2 →∗ v.

For a convergent rewrite system, a term t has a unique normal form t↓ such that
t →∗ t↓ and t↓ has no successor.

An equational theory E is convergent if there exists a finite convergent rewrite
system R such that for any two terms u, v, we have u =E v if and only if u↓= v↓.

For example, the theory Estand defined in Example 2 is convergent. Its associ-
ated finite convergent rewrite system is obtained by orienting the equations from
left to right. Conversely, the theory E⊕ defined in Example 3 is not convergent
due the equations of associativity and commutativity. Since many equational
theories modeling cryptographic primitives do have associative and commuta-
tive symbols, we define rewriting modulo AC as M →AC N if there is a term
M ′ such that M =AC M ′ and M ′ → N . AC-convergence can then be defined
similarly to convergence.

Definition 4 (AC-convergent). A rewrite system R is AC-convergent if it is:

– AC-terminating: there is no infinite sequence u1 →AC · · · →AC un →AC · · ·
– AC-confluent: for every terms u, u1, u2 such that u →AC u1 and u →AC u2,

there exists v such that u1 →∗
AC v and u2 →∗

AC v.

How to check for equivalences with length 7

For a AC-convergent rewrite system, a term t has a unique set of normal forms
t↓AC= {t′ | t →∗ t′ and t′ has no successor}. For any u, v ∈ t↓AC , u =AC v.

An equational theory E is AC-convergent if there exists a finite AC-convergent
rewrite system R such that for any two terms u, v, we have u =E v if and only
if u↓AC= v↓AC .

For example, the theory E⊕ defined Example 3 is AC-convergent. Its associ-
ated finite AC-convergent rewrite system is obtained by orienting the two right
equations from left to right. Of course, any convergent theory is AC-convergent.
Most, if not all, equational theories for cryptographic primitives are convergent
or at least AC-convergent. So in what follows, we only consider AC-convergent
theories.

3 Length equivalence - static case

While many decidability results have been provided for deduction and static
equivalence, for various theories, none of them study the leak induced by the
length of messages. In this section, we provide a definition for length functions
and we study how to extend existing decidability results to length functions.

3.1 Length function

A length function is simply a function ℓ : T (F ,N ,X) → R
+ that associates non-

negative real numbers to terms. A meaningful length function should associate
the same length to terms that are equal modulo the equational theory. Since
we consider AC-convergent theories, we assume that the length of a term t is
evaluated by an auxiliary function applied once t is in normal form. Moreover,
the size of a term f(M1, . . . ,Mk) is typically a function that depends on f and
the length of M1 . . . ,Mk. This class of length functions is called normalized
length functions.

Definition 5 (Normalized length function). Let T (F ,N ,X) be a term al-
gebra and E be an AC-convergent equational theory. A length function ℓ is a
normalized length function if there exists a function ℓaux : T (F ,N ,X) → R

+

(called auxiliary length function) such that the following properties hold:

1. ℓaux is a morphism, that is, for every function symbol f of arity k, there

exists a function ℓf : R+k
→ R

+ s.t. for all terms M1, . . . ,Mk

ℓaux(f(M1, . . . ,Mk)) = ℓf (ℓaux(M1), . . . , ℓaux(Mk))
2. ℓaux is stable modulo AC: ℓaux(M) = ℓaux(N) for all M,N s.t. M =AC N .
3. ℓaux decreases with rewriting: ℓaux(M) ≥ ℓaux(N) for all M,N s.t. M →AC N .
4. ℓ coincides with ℓaux on normal forms: ℓ(M) = ℓaux(M↓AC) where ℓaux(M↓AC)

is defined to be ℓaux(N) for any N ∈ M↓AC .
5. For any r ∈ R

+, the set {n ∈ N | ℓ(n) = r} is either infinite or empty. A
name should not be particularized by its length.

8 Vincent Cheval, Véronique Cortier, and Antoine Plet

Note that item 5 implies in particular that ℓaux(M) = ℓaux(Mσ) for any σ that
replaces the names of M by names of equal length (i.e. such that ℓaux(σ(n) =
ℓaux(n)). Indeed, the length should not depend of the choice of names.

Example 6. A natural length function for the standard primitives defined in
Example 2 is ℓstand induced by the following auxiliary length function ℓaux:

ℓaux(n) = 1 n ∈ N
ℓaux(senc(u, v)) = ℓaux(u) + ℓaux(v)

ℓaux(〈u, v〉)) = 1 + ℓaux(u) + ℓaux(v)
ℓaux(aenc(u, v)) = 2 + ℓaux(u) + ℓaux(v)
ℓaux(sign(u, v)) = 3 + ℓaux(u) + ℓaux(v)

ℓaux(f(u, v)) = 1 + ℓaux(u) + ℓaux(v) f ∈ {sdec, adec, check}
ℓaux(f(u)) = 1 + ℓaux(u) f ∈ {proj1, proj2}

Then the length of a term M is simply the auxiliary length of its normal form:
ℓ(M) = ℓaux(M↓) and ℓ is a normalized length function. Note that the constants
1, 2, 3 are rather arbitrary and ℓ would be a normalized length function for
any other choice. The choice of the exact parameters typically depends on the
implementation of the primitives.

Example 7. A length function for XOR is ℓ⊕, induced by the auxiliary func-
tion ℓaux defined by ℓaux(n) = 1 for n name, ℓaux(0) = 0, and ℓaux(u ⊕ v) =
max(ℓaux(u), ℓaux(v)). Then ℓ⊕ is again a normalized length function.

An attacker may compare the length of messages, which gives him addi-
tional power. For example, the frames φ1 and φ3 (defined in Example 5) are
statically equivalent. However, in reality, an attacker would notice that the
third messages are of different length. In particular, ℓstand(senc(n, k

′)) = 2 while
ℓstand(senc(〈n, n〉, k

′)) = 4 (where ℓstand has been defined in Example 6).
We extend the notion of static equivalence to take into account the ability

of an attacker to check for equality of lengths.

Definition 6 (static equivalence w.r.t. length). Two frames φ1 = νñ1σ1

and φ2 = νñ2σ2 are statically equivalent w.r.t. the length function ℓ, denoted
φ1 ∼ℓ φ2, if φ1 and φ are statically equivalent (φ1 ∼ φ2) and for all terms M,N
such that (fn(M) ∪ fn(N)) ∩ (ñ1 ∪ ñ2) = ∅,

(ℓ(Mσ1) =E ℓ(Nσ1)) ⇔ (ℓ(Mσ2) =E ℓ(Nσ2)).

3.2 Decidability

Ideally, we would like to inherit any decidability result that exists for the usual
static equivalence ∼. We actually need to look deeper in how decidability results
are obtained for ∼. In many approaches (e.g. [3,9]), decidability of static equiv-
alence is obtained by computing from a frame φ, an upper set that symbolically
describes the set of all deducible subterms. Here, we generalize this property into
SET-stability.

How to check for equivalences with length 9

Definition 7 (SET-stable). An equational theory E is SET-stable if for any
frame φ = νñ{M1/x1, . . . ,Mk/xk} there exists a set SET(φ) such that:

– M1, . . . ,Mk ∈ SET(φ),
– ∀M ∈ SET(φ), φ ⊢ M ,
– for any finite set of names ñ′ ⊇ ñ, for every context C1 such that fn(C1) ∩

ñ′ = ∅, for all N1
i ∈ SET(φ), for all T ∈ (C1[Ñ1

i]↓), there exist a context C2

such that fn(C2)∩ ñ′ = ∅ and terms N2
i ∈ SET(φ) such that T =AC C2[Ñ2

i].

We say that E is efficiently SET-stable if there is an algorithm that computes
the set SET(φ) being given a frame φ and that computes a recipe ζM for any
M ∈ SET(φ).

We are now ready to state our first main theorem.

Theorem 1. Let E be an efficiently SET-stable equational theory and ℓ be a
normalized length function. If ∼E is decidable then ∼ℓ

E is decidable.

Sketch of proof The algorithm for checking for ∼ℓ
E works as follows. Given

two frames φ1 = νñσ1 and φ2 = νñσ2,

– check whether φ1 ∼E φ2

– compute SET(φ1) and SET(φ2);
– for any M ∈ SET(φ1), compute its corresponding recipe ζM and check

whether ℓ(ζMσ2) = ℓ(M);
– symmetrically, for any M ∈ SET(φ2), compute its corresponding recipe ζM

and check whether ℓ(ζMσ1) = ℓ(M);
– return true if all checks succeeded and false otherwise.

The algorithm returns true if φ1 ∼ℓ
E φ2. Indeed, for anyM ∈ SET(φ1), ℓ(ζMσ1) =

ℓ(M) = ℓ(M0) where M0 is length-preserving renaming of M↓ with free names
only. ℓ(ζMσ1) = ℓ(M0σ1) implies ℓ(ζMσ2) = ℓ(M0σ2) = ℓ(M0) = ℓ(M).

The converse implication is more involved and makes use of the properties
of the sets SET(φ1) and SET(φ2). �

Applying Theorem 1 we can deduce the decidability of ∼ℓ
E for any theory E

described in [3], e.g. theories for the standard primitives, for XOR, for pure AC,
for blind signatures, homomorphic encryption, addition, etc. More generally, we
can infer decidability for any locally stable theories, as defined in [3]. Intuitively,
locally-stability is similar to SET-stability except that only small contexts are
considered. Locally-stability is easier to check than SET-stability and has been
shown to imply SET-stability in [3].

Corollary 1. Let E be a locally-stable equational theory as defined in [3]. Let ℓ
be a normalized length function. If ∼E is decidable then ∼ℓ

E is decidable.

4 Length equivalence - active case

We now study length equivalence in the active case, that is when an attacker
may fully interact with the protocol under study. We first define our process
algebra, in the spirit of the applied-pi calculus [4].

10 Vincent Cheval, Véronique Cortier, and Antoine Plet

4.1 Syntax

We consider Fd as defined in Example 1 and F ′
c ⊇ Fc. We let F ′

c contain more
primitives than Fc, to allow for constants or free primitives such as mac. We
consider the fixed equational theory Estand as defined in Example 2. Orienting
the equations of Estand from left to right yields a convergent rewrite system.

The constructor terms, resp. ground constructor terms, are those in T (F ′
c,N∪

X), resp. in T (F ′
c,N). A ground term u is called a message, denoted Message(u),

if v↓ is a constructor term for all v ∈ st(u). For instance, the terms sdec(a, b),
proj1(〈a, sdec(a, b)〉), and proj1(a) are not messages. Intuitively, we view terms as
modus operandi to compute bitstrings where we use the call-by-value evaluation
strategy.

The grammar of our plain processes is defined as follows:

P,Q := 0 | (P |Q) | P +Q | in(u, x).P | out(u, v).P | if u1 = u2 then P else Q

where u1, u2, u, v are terms, and x is a variable of X . Our calculus contains paral-
lel composition P | Q, choice P +Q, tests, input in(u, x).P , and output out(u, v).
Since we do not consider restriction, private names can simply be specified be-
fore hand so there is no need for name restriction. Trivial else branches may be
omitted.

Definition 8 (process). A process is a triple (E ;P;Φ) where:

– E is a set of names that represents the private names of P;
– Φ is a ground frame with domain included in AX . It represents the messages

available to the attacker;
– P is a multiset of closed plain processes.

4.2 Semantics

The semantics for processes is defined as usual. Due to space limitations, we only
provide two illustrative rules (see [13] or the appendix for the full definition).

(E ; {in(u, x).Q} ⊎ P;Φ)
in(N,M)
−−−−−−→ (E ; {Q{x 7→ t}} ⊎ P;Φ) (Inc)

if MΦ = t, fvars(M,N) ⊆ dom(Φ), fnames(M,N) ∩ E = ∅
NΦ↓ = u↓, Message(MΦ), Message(NΦ), and Message(u)

(E ; {out(u, t).Q} ⊎ P;Φ)
νaxn.out(M,axn)
−−−−−−−−−−−→ (E ; {Q} ⊎ P;Φ ∪ {axn ⊲ t}) (Outc)

if MΦ↓ = u↓, Message(u), fvars(M) ⊆ dom(Φ), fnames(M) ∩ E = ∅
Message(MΦ), Message(t) and axn ∈ AX , n = |Φ|+ 1

where u, v, t are ground terms, and x is a variable. The
w
−→ relation is then

defined as usual as the reflexive and transitive closure of −→, where w is the
concatenation of all non silent actions.

The set of traces of a process A = (E ;P1;Φ1) is the set of the possible
sequences of actions together with the resulting frame.

trace(A) = {(s, νE .Φ2) | (E ;P1;Φ1)
s
⇒ (E ;P2;Φ2) for some P2, Φ2}

How to check for equivalences with length 11

4.3 Equivalence

Some terms such as sdec(〈a, b〉, k) or sdec(senc(a, k′), k) do not corresponding to
actual messages since the corresponding computation would typically fail and
return an error message. It would not make sense to compare the length of such
decoy messages. We therefore adapt the notion of static equivalence in order to
compare only lengths of terms that correspond to actual messages.

Definition 9. Let E a set of private names. Let Φ and Φ′ two frames. We say
that νE .Φ and νE .Φ′ are statically equivalent w.r.t. a length function ℓ, written
νE .Φ ∼ℓ

c νE .Φ
′, when dom(Φ) = dom(Φ′) and when for all terms M,N such that

fvars(M,N) ⊆ dom(Φ) and fnames(M,N) ∩ E = ∅, we have:

– Message(MΦ) if and only if Message(MΦ′)
– if Message(MΦ) and Message(NΦ) then

• MΦ↓ = NΦ↓ if and only MΦ′↓ = NΦ′↓; and
• ℓ(MΦ↓) = ℓ(NΦ↓) if and only if ℓ(MΦ′↓) = ℓ(NΦ′↓).

Two processes A and B are in trace equivalence if any sequence of actions of
A can be matched by the same sequence of actions in B such that the resulting
frames are statically equivalent.

Definition 10 (trace equivalence w.r.t. length ≈ℓ). Let A and B be pro-
cesses with the same set of private names E. A ⊑ℓ B if for every (s, νE .Φ) ∈
tracec(A), there exists (s, νE .Φ′) ∈ trace(B) such that νE .Φ ∼ℓ

c νE .Φ
′.

Two closed processes A and B are trace equivalent w.r.t. the length function
ℓ, denoted by A ≈ℓ B, if A ⊑ℓ B and B ⊑ℓ A.

The length functions associated to standard primitives usually follow a simple
pattern (see e.g. Example 6). We focus on linear length functions, that have been
proved sound w.r.t. symbolic models [16]. A linear function is a function ℓ such
that for any f ∈ F ′

c, ℓ(f(t1, . . . , tn)) = lf (ℓ(t1), . . . , ℓ(tn)) where lf (x1, . . . , xn) =

βf +
∑n

i=1 α
f
i xi for some αf

1 , . . . , α
f
n, β

f ∈ R
+. Moreover, we assume that hashed

messages are of fixed size: ℓ(h(t)) = ℓ(n) for any term t and name n. Finally, we
assume that the size of a pairing is at least the size of its arguments. Our second
main contribution is a decision procedure for trace equivalence w.r.t. length.

Theorem 2. Let ℓ be a linear length function. The problem of trace equivalence
w.r.t. ℓ is decidable.

Even if two processes are in trace equivalence for some length function, they
may not be in trace equivalence for another one. Choosing the appropriate length
function may be tricky since the “right” parameters depend on the implementa-
tion of the primitives. We can actually decide a stronger problem: the existence
of a length function that would compromise trace equivalence.

Theorem 3. The following problem is decidable:

Entry: two closed processes A and B
Question: does there exist a linear length function ℓ such that A 6≈ℓ B?

12 Vincent Cheval, Véronique Cortier, and Antoine Plet

For both theorems, the decision procedure builds upon the decision proce-
dure developed in [15] for trace equivalence (without length). Given two closed
processes A and B, our procedure roughly works as follows.
1. We first apply the procedure of [15] to A and B.
2. If A 6≈ B (A and B are not in trace equivalence) then clearly A 6≈ℓ B for any
length function ℓ.
3. Otherwise, if A ≈ B, we look deeper at the output of the procedure of [15]. It
ends up with two trees (one for each process), which leaves are sets of “constraint
systems” C that define a parametrized frame Φ(C). We can associate polynomials
to each frame as follows. Given a term u with parameters param(u), we define
its associated polynomial Pu ∈ Z[param(u)] by Pn = ℓ(n) for n a name, Px = x
for x a parameter and Pf(u1,...,uk) = ℓf (Pu1

, . . . , Puk
) otherwise.

Then the sequence of polynomials associated to a frame
Φ = {ξ1 ⊲ u1, . . . , ξn ⊲ un} is PΦ = Pu1

, . . . , Pun
.

We can show that A ≈ℓ B if and only if, for any set Σ1 of constraint system
that appears as leaf in the tree associated to A, its corresponding set Σ2 of
constraint system in the tree associated to B is such that

{PΦ(C) | C ∈ Σ1} = {PΦ(C) | C ∈ Σ2}.

Therefore, checking for trace equivalence for a particular linear length function ℓ
(Theorem 2) amounts into checking for equality of sets of polynomials. Check-
ing whether there exists a linear length function ℓ such that an attacker can
distinguish between A and B (Theorem 3) amounts into checking for equality of
sets of parametrized polynomials, which in turn amounts again into checking for
equality of polynomials (since the coefficients of the parametrized polynomials
are also polynomials).

Our procedure could be easily extended to non linear length functions, pro-
vided that we can solve the corresponding algebraic problem, that is equality of
the zeros of the Pu’s, when they are not polynomials anymore.

5 Passport

The biometric passport contains an RFID chip that stores sensitive authen-
tication information such as birth date, nationality, picture, fingerprints, and
also iris characteristics. The International Civil Aviation Organisation (ICAO)
standard specifies the communication protocols that are used to access these
information [1]. We have discovered a new attack on anonymity, as soon as the
size of the pictures may vary from one user to another one.

5.1 Description of the Passive Authentication protocol

According to the ICAO standard, a reader (e.g. officer at the border) and a
passport first establishes key sessions (denoted ksenc and ksmac) through the
Basic Access Control protocol. Once such keys are successfully established, the

How to check for equivalences with length 13

Passport Tag

ksenc, ksmac, dg , sod

Reader

ksenc, ksmac

xenc← senc(read, ksenc)
xmac← mac(xenc, ksmac)

〈xenc, xmac〉

Verify mac and read

yenc← senc(〈dg , sod〉, ksenc)
ymac← mac(yenc, ksmac)

〈yenc, ymac〉

Fig. 1. Passive Authentication protocol (PA)

Passive Authentication protocol (Figure 1) is executed along with other proto-
cols. It establishes a secure communication between the reader and the passport,
which sends the (sensitive) authentication information such as the name, date
of birth, nationality, and pictures. This information is organised in data groups
(dg1 to dg19). In particular, dg5 contains the JPEG picture of the passport’s
holder. The standard specifies that JPEG pictures are of size 0 to 99999 bytes.

The Passive Authentication protocol works as follows. (1) The reader sends
an authentication query, sending a pre-defined public value read, encrypted by
the session key ksenc and MACed by the session MAC key ksmac. This ensures
that the request comes from a legitimate reader. (2) The passport sends back
the authentication information dg (from dg1 to dg19) together with a certificate

sod
def
= sign(dg , skDS), encrypted under the encryption key ksenc and MACed

under ksmac. The certificate sod ensures the validity of the information.

5.2 Formal specification of the protocol

The formal specification of the Passive Authentication protocol is displayed in
Figure 2. The process PA(dg , ℓ) represents a session of the passive authentication
protocol, where Pass and Reader represent respectively the Passport Tag and
the Reader. The key ksenc and ksmac are fresh names shared only by Pass and
Reader since they are session keys previously established by the Basic Access
Control protocol.

5.3 Unlinkability

The ICAO standard specifies that biometric passport must ensure unlinkability,
i.e. must ensure that a user may make multiple uses of a service or a resource

14 Vincent Cheval, Véronique Cortier, and Antoine Plet

Pass(dg , ksenc, ksmac)
def
= in(c, x).

if mac(proj1(x), ksmac) = proj2(x) then
if proj1(x) = senc(read, ksenc) then

let y = senc(〈dg , sign(dg , skDS)〉, ksenc) in
out(c, 〈y,mac(y, ksmac)〉)

else out(c,Error)
else out(c,Error)

Reader(ksenc, ksmac)
def
= let xenc = senc(read, ksenc) in

out(c, 〈xenc,mac(xenc, ksmac)〉).in(c, x).
if mac(proj1(x), ksmac) = proj2(x) then

let y = sdec(proj1(x), ksenc) in
if check(proj2(y), vk(skDS)) = proj1(y) then 0

PA(dg)
def
= νksenc.νksmac.(Pass(dg , ksenc, ksmac) | Reader(ksenc, ksmac))

Fig. 2. Formal specification of the Passive Authentication Protocol.

without others being able to link these uses together. The unlinkability of the
Passive Authentication protocol can be formalised by the following equivalence:

νskDS .(PA(dg1) | PA(dg1) ≈
ℓ νskDS .(PA(dg1) | PA(dg2))

where dg1, dg2 are the respective data groups of two passport. Intuitively, a user
is unlinkable if an attacker cannot distinguish two sessions where the same user
is present from two sessions where two different users are present.

Attack. Intuitively, the attack works as follows. We assume that the attacker
first listens to an honest session between a reader and a passport A under attack.
It therefore learns the size of the encryption of the data groups. Now, listening
to any session between a reader and a passport B, it can compare the size of the
encryption of the data groups. with the previous one. If they differ, A cannot be
present, that is B 6= A. If they are equal, then B is likely to be A. How likely
depends on the variability of the length and the size of the group of passport
holders the attacker wish to distinguish from. Formally, this attack shows that
νskDS .(PA(dg1) | PA(dg1) 6≈

ℓ νskDS .(PA(dg1) | PA(dg2)).
Impact. Our attack is very simple: a small device placed near a reader may

very quickly decides whether A is present or not, simply listening to the mes-
sages received by the reader. [5] also describes an attack against unlinkability. It
is based on the Basic Access Control protocol and relies on the fact that differ-
ent error codes were used in the implementation of the French passports. The
attack is dedicated to French passports and has now been fixed. Another attack
demonstrated by A. Laurie consists in brute-forcing the document numbers of
the passport (which normally requires to open and read the first page of the
passport). Once the document numbers are known, anyone can access the data
groups. In contrast, our attack does not require any access to these numbers and
is inherent to the variability of the size of identifying objects such as pictures.

Fixes. The only simple fix is to ensure that data groups are of fixed size, typi-
cally by padding and/or restricting the range of size of data groups. However, this

How to check for equivalences with length 15

would result in heavier exchanges. Alternatively, a solution is to add padding of
random size (which size varies at each transaction). The attacker would still gain
some information on the probable user’s identity but with smaller probability.

5.4 Implementation of the decision procedure

We have implemented our decision procedure in the active case (for the stan-
dard primitives) as an extension of the APTE tool [14]. Thanks to our tool,
we can prove our fix (with padding) secure. Consider two data groups dg ′1,
dg ′2 of the same length (ℓ(dg ′1) = ℓ(dg ′2)). Using APTE, we show that padding
ensures unlinkability, that is, νskDS .(PA(dg

′
1) | PA(dg ′1) ≈ℓ νskDS .(PA(dg

′
1) |

PA(dg ′2)). We can also show that our attack relies solely on the ability to compare
lengths. Indeed, using APTE again, we can show that PA guarantees unlinka-
bility for trace equivalence without length, that is νskDS .(PA(dg1) | PA(dg1) ≈
νskDS .(PA(dg1) | PA(dg2)).

The following table summarises our findings using APTE on a 2.4 Ghz Intel
Core 2 Duo. The input file used can be found in [14].

Unlinkability Time
PA w.r.t. ≈ true 4.42 sec
PA w.r.t. ≈ℓ false 0.01 sec
PA with padding w.r.t. ≈ true 4.44 sec
PA with padding w.r.t. ≈ℓ true 4.36 sec

6 Conclusion

We have proposed the first decision procedure for behavioral equivalence in pres-
ence of a length function. This allows e.g. to check for privacy properties more
accurately. In the passive case, we have shown how to extend existing decid-
ability results to a length function, for large classes of equational theories. In
the active case, we provide a decision procedure for the standard primitives. Its
implementation is an extension of the APTE tool [14]. As an application, we
have discovered a new privacy flaw in the biometric passport. As future work,
we plan to implement our attack and test it on several passports.

In this paper, we have focused on linear length functions since linear length
functions can be realized for standard primitives and proved sound w.r.t. a cryp-
tographic model [16]. We plan to investigate other families of length functions
that are relevant for cryptographic primitives. In case some of these functions
are not linear, we may need to revisit our procedure.

Protocols may sometimes perform length tests as well, for example, an agent
may check that some data does not exceed a certain length. We believe that
our procedure can be adapted in case length tests appear in the control flow
of the protocols. It would require to extend the constraint systems used in the
procedure in order to store constraints on the length. Adapting the decision
procedure to solve these additional constraints might be challenging and raise
difficult termination problems.

16 Vincent Cheval, Véronique Cortier, and Antoine Plet

Our length function may also be used to capture other kind of leakages
such as computation time or power consumption. To detect such side-channel
attacks, we would need to model the “length” (or computation time / power
consumption) of tests performed in the protocol. We plan to study whether our
procedure can be extended to the case where protocols not only leak the length
of output terms but also the “length” of performed tests.

References

1. Machine readable travel document. Technical Report 9303, International Civil
Aviation Organization, 2008.

2. M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in the pi calculus. ACM
Transactions on Information and System Security (TISSEC), 10(3):1–59, 2007.

3. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

4. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th ACM Symp. on Principles of Programming Languages (POPL’01), 2001.

5. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In 23rd IEEE Computer Security Foun-
dations Symposium (CSF’10), 2010.

6. A. Armando et al. The AVISPA Tool for the automated validation of internet
security protocols and applications. In 17th Int. Conference on Computer Aided
Verification (CAV’05), volume 3576 of LNCS, pages 281–285. Springer, 2005.

7. C. Bansal, K. Bhargavan, and S. Maffeis. Discovering concrete attacks on website
authorization by formal analysis. In 25th IEEE Computer Security Foundations
Symposium (CSF 2012), 2012.

8. M. Baudet. Deciding security of protocols against off-line guessing attacks. In 12th
Conference on Computer and Communications Security (CCS’05), 2005.

9. M. Berrima, N. Ben Rajeb, and V. Cortier. Deciding knowledge in security pro-
tocols under some e-voting theories. Theoretical Informatics and Applications
(RAIRO-ITA), 45:269–299, 2011.

10. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In 14th Computer Security Foundations Workshop (CSFW’01), 2001.

11. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008.

12. R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence
properties of cryptographic protocols. In 21th European Symposium on Program-
ming (ESOP’12), 2012.

13. V. Cheval. Automatic verification of cryptographic protocols: privacy-type proper-
ties. Phd thesis, ENS Cachan, France, 2012.

14. V. Cheval. APTE (Algorithm for Proving Trace Equivalence), 2013. http://

projects.lsv.ens-cachan.fr/APTE/.
15. V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative

tests and non-determinism. In 18th ACM Conference on Computer and Commu-
nications Security (CCS’11), 2011.

16. H. Comon-Lundh and V. Cortier. Computational soundness of observational equiv-
alence. In 15th Conf. on Computer and Communications Security (CCS’08), 2008.

17. V. Cortier and S. Delaune. A method for proving observational equivalence. In
22nd IEEE Computer Security Foundations Symposium (CSF’09), 2009.

How to check for equivalences with length 17

(E ; {if u = v then Q1 else Q2} ⊎ P;Φ)
τ
−→i (E ; {Q1} ⊎ P;Φ) (Thenc)

if u↓ = v↓, Message(u) and Message(v)

(E ; {if u = v then Q1 else Q2} ⊎ P;Φ)
τ
−→i (E ; {Q2} ⊎ P;Φ) (Elsec)

if u↓ 6= v↓ or ¬Message(u) or ¬Message(v)

(E ; {out(u, t).Q1; in(v, x).Q2} ⊎ P;Φ)
τ
−→i (E ; {Q1;Q2{x 7→ t}} ⊎ P;Φ) (Commc)

if Message(u),Message(v),Message(t) and u↓ = v↓

(E ; {in(u, x).Q} ⊎ P;Φ)
in(N,M)
−−−−−−→i (E ; {Q{x 7→ t}} ⊎ P;Φ) (Inc)

if MΦ = t, fvars(M,N) ⊆ dom(Φ), fnames(M,N) ∩ E = ∅
NΦ↓ = u↓, Message(MΦ), Message(NΦ), and Message(u)

(E ; {out(u, t).Q} ⊎ P;Φ)
νaxn.out(M,axn)
−−−−−−−−−−−→i (E ; {Q} ⊎ P;Φ ∪ {axn ⊲ t}) (Outc)

if MΦ↓ = u↓, Message(u), fvars(M) ⊆ dom(Φ), fnames(M) ∩ E = ∅
Message(MΦ), Message(t) and axn ∈ AX , n = |Φ|+ 1

(E ; {P1 | P2} ⊎ P;Φ)
τ
−→i (E ; {P1;P2} ⊎ P;Φ) (Parc)

(E ; {P1 + P2} ⊎ P;Φ)
τ
−→i (E ; {P1} ⊎ P;Φ) (Choicec-1)

(E ; {P1 + P2} ⊎ P;Φ)
τ
−→i (E ; {P2} ⊎ P;Φ) (Choicec-2)

where u, v, t are ground terms, and x is a variable.

Fig. 3. Semantics

A Semantics

The semantics for processes is given in Figure 3. Since we consider arbitrary
terms for channels, we need to check whether the channel is known by the at-
tacker or not (see rules In and Out). Moreover, we check that all terms that
have to be evaluated during the execution are messages.

Let Ac be the alphabet of actions α used in transitions
α
−→i. For every w ∈ A∗

c

the relation
w
−→c is defined as usual: P

α.w′

−−−→c Q if there exists P ′ such that

P
α
−→i P ′ and P ′ w′

−→c Q. For s ∈ (Ac r {τ})∗, the relation
s
⇒c is defined by:

A
s
⇒c B if, and only if there exists w ∈ A∗

c such that A
w
−→c B and s is obtained

by erasing all occurrences of τ .

B Decidability of static equivalence for length

B.1 Locally stable

Definition 11 (Size). The size cE of an equationnal theory E defined by the

equations
⋃k

i=1{Mi =E Ni} is given by cE = max
1≤i≤k

(|Mi|, |Ni|, ar(F) + 1).

18 Vincent Cheval, Véronique Cortier, and Antoine Plet

Definition 12 (Local stability). An AC-convergent equationnal theory is lo-
cally stable if and only if for every closed frame φ = νñ{M1/x1, . . . ,Mk/xk} in
normal form, there exists a finite (computable) set SAT(φ), closed modulo AC,
such that

1. ∀i,Mi ∈ SAT(φ) and ∀n ∈ fnames(φ), n ∈ SAT(φ)
2. if N1, . . . , Nk are terms such that ∀i,Ni ∈ SAT(φ) and f(N1, . . . , Nk) is a

subterm of SAT(φ), then f(N1, . . . , Nk) ∈ SAT(φ),
3. if C[S1, . . . , Sl]→M and the reduction occurs in head, where C is a context

such that |C| ≤ cE and fnames(C)∩ñ = ∅, and where Si ∈ sum⊕(SAT(φ), ñ)
for some AC symbol ⊕, then there exist a context C ′, a term M ′, and
S′
1, . . . , S

′
k ∈ sum⊕(SAT(φ), ñ) such that |C ′| ≤ c2E, fnames(C ′) ∩ ñ = ∅,

and M →∗
AC M ′ =AC C ′[S′

1, . . . , S
′
k],

4. if M ∈ SAT(φ), then φ ⊢ M .

where sum⊕(S, ñ) is the set of linear combinations (with ⊕) built on terms in S
and names in N\ñ.

B.2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1, that is, the soundness and
completeness of the algorithm provided in Section 3.2. In the remaining of this
section, we assume given a SET-stable equational theory E.

Let us first remark that length equality is stable by application of context.

Lemma 1. If C is a context and M̃1
i , M̃

2
i are terms such that ∀i, ℓaux(M

1
i) =

ℓaux(M
2
i) then ℓaux(C[M̃1

i]) = ℓaux(C[M̃2
i]).

Proof. We prove recursively on C that ∀i, ℓaux(M1
i) = ℓaux(M

2
i) implies that

ℓaux(C[M̃1
i]) = ℓaux(C[M̃2

i]).

1. if |C| = 1, then either C is a hole and ∃k such that C[M̃i] = Mk hence

ℓaux(C[M̃1
i]) = ℓaux(M

1
k) = ℓaux(M

2
k) = ℓaux(C[M̃2

i])

or C is a constant hence C[M̃1
i] = C[M̃2

i].
2. if |C| > 1, then there exists f such that C[M̃i] = f(C1[M̃i], . . . , Ck[M̃i]).

So ℓaux(Cj [M̃1
i]) = ℓaux(Cj [M̃2

i]) holds hence, using item 1 of Definition 5:

ℓaux(C[M̃1
i]) = ℓaux(f(C1[M̃1

i], . . . , Ck[M̃1
i]))

= lf (ℓaux(C1[M̃1
i]), . . . , ℓaux(Ck[M̃1

i]))

ℓaux(C[M̃2
i]) = ℓaux(f(C1[M̃2

i], . . . , Ck[M̃2
i]))

= lf (ℓaux(C1[M̃2
i]), . . . , ℓaux(Ck[M̃2

i]))

so ℓaux(C[M̃1
i]) = ℓaux(C[M̃2

i]), which concludes the proof.

How to check for equivalences with length 19

We now introduce some additional notations.

Definition 13. Given a frame φ1 = νñσ1, we define the small set of length tests
to be

Eqsmall(φ1) = {(ζM ,M) | M ∈ SET (φ1)}

where ζM is a recipe for M (ie fnames(ζM) ∩ ñ = ∅ and ζMσ1 =E M).
We define φ2 |= Eqsmall(φ1) to hold if for all (ζM ,M) ∈ SET(φ1), ℓ(ζMφ2) =

ℓ(M) (with a possible renaming in φ2).

The algorithm presented in Section 3.2 amounts in checking φ2 |= Eqsmall(φ1)
and φ1 |= Eqsmall(φ2). We have already seen that φ1 ∼ℓ

E φ2 implies φ2 |=
Eqsmall(φ1) and φ1 |= Eqsmall(φ2). Let us show that, conversely, φ1 ∼E φ2,
φ2 |= Eqsmall(φ1), and φ1 |= Eqsmall(φ2) implies φ1 ∼ℓ

E φ2. It is a direct con-
sequence of the following lemma.

Lemma 2. Let φ1 = νñσ1 and φ2 = νñσ2 be two frames such that φ1 ∼ φ2. If
φ1 |= Eqsmall(φ2) then for any term M such that fnames(M) ∩ ñ1 = ∅. we have
ℓ(Mσ1) ≤ ℓ(Mσ2).

Proof. Let φ1 = νñσ1 and φ2 = νñσ2 be two frames such that φ1 ∼ φ2. Assume
φ1 |= Eqsmall(φ2) and let M be a term such that fnames(M) ∩ ñ1 = ∅.

Let U ∈ Mσ2↓. Since Mσ2 is a context over terms in SET(φ2) and applying
Definition 7, there exist a context C and terms N1, . . . , Nk ∈ SET(φ2) such that
fnames(C) ∩ ñ = ∅ and

U =AC C[Ñi]

Thus ℓ(Mσ2) = ℓaux(U) = ℓaux(C[Ñi]). Moreover, φ1 ∼ φ2 thus (M =E C ˜ζNi
)φ2

implies (M =E C ˜ζNi
)φ1. Let Vi ∈ (ζNi

σ1)↓. We have

ℓ(Mσ1) = ℓ(C ˜ζNi
)σ1) = ℓ(C[Ṽi])

Since φ1 |= Eqsmall(φ2), we have ℓ(Vi) = ℓ(ζNi
σ1) = ℓ(ζNi

σ2) = ℓ(Ni) thus
ℓaux(Vi) = ℓaux(Ni). Applying Lemma 1, we deduce ℓaux(C[Ṽi]) = ℓaux(C[Ñi]).
The item 3 of Definition 5 implies that ℓ(C[Ṽi]) ≤ ℓaux(C[Ṽi]). Thus we have

ℓ(Mσ1) = ℓ(C[Ṽi]) ≤ ℓaux(C[Ṽi]) = ℓaux(C[Ñi]) = ℓ(Mσ2)

which concludes the proof.

C Decidability of trace equivalence for length

C.1 Symbolic framework

As mentioned in the paper, our procedure is based for on the procedure of [15]
that decide the symbolic equivalence between sets of constraint system without
considering a length function. One particularity of the constraint system, ob-
tained by applying the procedure [15], is the generation of an extended frame
defined below.

20 Vincent Cheval, Véronique Cortier, and Antoine Plet

We call recipe, usually denoted ξ, the terms in T (F ,N ∪X 2 ∪AX). We say
that a recipe ξ is closed (or ground) if ξ ∈ T (F ,N ∪ AX). Given a recipe ξ ∈
T (F ,X 2∪AX), we denote param(ξ) the set of parameter in ξ, i.e. vars(ξ)∩AX .
To avoid confusion, we denote the set of first order variables X by X 1.

Definition 14. We define an extended frame as a sequence {ξ1 ⊲ u1, . . . , ξn ⊲

un} where ξj ∈ T (F ,X 2 ∪ AX) and uj ∈ T (F ′
c,X

1 ∪ N) for all j ∈ {1, . . . , n}.

Intuitively, the extended frame in a simplified constraint system contains all
possible deducible messages obtained by applying destructors like sdec, adec,

Example 8. Consider the frame Φ = {a/ax 1, senc(b, a)/ax 2} of some constraint
system. From the procedure [15], Φ would be extended into {ax 1 ⊲ a, ax 2 ⊲

senc(b, a), sdec(ax 2, ax 1) ⊲ b}. Note that sdec(ax 2, ax 1) represent the recipe need
for the intruder to deduce b from Φ.

We use these extended frame in our procedure to decide the symbolic equiv-
alence w.r.t. length. Given a term u (with variables), we define its associated
polynomial Pu ∈ Z[vars(u)] as follows:

Pn = ℓ(n) if n is a name
Px = ℓ(x) if x is a variable

Pf(u1,...,uk) = ℓf (Pu1
, . . . , Puk

)

We extend this definition to frames: given a frame Φ = {ξ1 ⊲ u1, . . . , ξn ⊲ un},
its associated polynomial is PΦ = Pu1

, . . . , Pun
.

Proposition 1. Assume uσ to be a term in normal form and let x1, . . . , xn be
the variables of u. Let Pu is the associated polynomial of u. Then

ℓ(uσ) = Pu(ℓ(x1σ), . . . , ℓ(xnσ))

This follows immediately from the definition of Pu and the length function.

Definition 15. A constraint system is a triple (Φ;D;Eq):

– Φ is an extended frame {ξ1 ⊲ u1, . . . , ξn ⊲ un} where ui are constructor
terms and ξi are recipes.

– D is a set of deducible constraints of the form X, i
?

⊢ x with i ∈ N, X ∈ X 2,
x ∈ X 1.

– Eq is a set of inequations of the form t
?

6= t′ where t, t′ are constructors terms
that do not contain names.

Given a set D of constraints, we denote by vars1(D) (resp. vars2(D)) the first
order (resp. second order) variables of D, that is vars1(D) = fvars(D) ∩ X 1

(resp. vars2(D) = fvars(D) ∩ X 2). We also assume the following conditions are
satisfied on a constraint system:

How to check for equivalences with length 21

1. for every x ∈ vars1(D), there exists a unique X such that (X, i
?

⊢ x) ∈ D,
and each variable X occurs at most once in D.

2. vars1(C) ⊆ vars1(D)
3. for every 1 ≤ k ≤ n, for every x ∈ vars1(tk), if ax j ∈ vars2ξk then there

exists (X, i
?

⊢ x) ∈ D such that i < j.

Given an extended frame Φ = {ξ1, i1 ⊲ t1, . . . , ξn, in ⊲ tn} and a recipe ξ,
we say that ξ is build from Φ if there exists a context C[1, . . . , m] containing
only constructor function symbol and j1, . . . , jm ∈ {1, . . . , n} such that ξ =
C[ξj1 , . . . , ξjm]. Moreover, we denote ξΦ the term C[tj1 , . . . , tjm].

Definition 16 (solution). A solution of a constraint system C = (Φ;D;Eq) is
a pair of substitutions (σ, θ) such that σ is a mapping from vars1(C) to T (F ′

c,N),
θ is a mapping from vars2(C) to T (F ,AX), and:

1. for all (X, k
?

⊢ x) ∈ D, Xθ is built from Φθ, (Xθ)(Φθσ) = xσ, and param(Xθ)
⊆ {ax 1, . . . , axk};

2. for all t
?

6= t′, tσ 6= t′σ

The substitution σ is called the first-order solution of C associated to θ, called
second-order solution of C. The set of solutions of a constraint system C is de-
noted Sol(C).

Definition 17 (static equivalence). Let Φ and Φ′ two closed extended frames
having the same structure. We say that Φ and Φ′ are in static equivalence if for
all ξ, ξ′ built from Φ (thus also built from Φ′), ξΦ = ξ′Φ if and only if ξΦ′ = ξ′Φ′.
Moreover, we say that Φ and Φ′ are in static equivalent w.r.t. length if Φ and Φ′

are statically equivalent and for all ξ, ξ′ built from Φ, ℓ(ξΦ) = ℓ(ξ′Φ) if and only
if ℓ(ξΦ′) = ℓ(ξ′Φ′).

Definition 18 (symbolic equivalence). Let Σ and Σ′ be two sets of onstraint
systems that contain constraint systems having the same structure. We say that
Σ and Σ′ are in symbolic equivalence, denoted by Σ ≈c

s Σ′, if for all C ∈ Σ,
for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ and a substitution σ′ such that
(σ′, θ) ∈ Sol(C′) and Φθσ ∼c Φ′θσ′ (and conversely) where C = (Φ;D;Eq) and
C′ = (Φ′;D′;Eq′).

We say that Σ and Σ′ are in symbolic equivalence w.r.t. length, denoted by
Σ ≈c

sℓ Σ′, if for all C ∈ Σ, for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ and a
substitution σ′ such that (σ′, θ) ∈ Sol(C′) and Φθσ ∼ℓ

c Φ′θσ′ (and conversely)
where C = (Φ;D;Eq) and C′ = (Φ′;D′;Eq′).

C.2 Reduction of trace equivalence to symbolic equivalence

The algorithm of [15] is explained in detail in [13]. In particular, [13] contains
a reduction result of trace equivalence to symbolic equivalence w.r.t. to a predi-
cate that satisfies a stability property under replacement of name by successive
application of the function h.

22 Vincent Cheval, Véronique Cortier, and Antoine Plet

Let E be a finite set of names denoted {b1, . . . , bn}. Let N be a positive
integer. Let a ∈ N . We denote σE,N,a the substitution defined such that for all
i ∈ N

+, biσE,N,a = hi×N (a).

Property 1. Let E be a finite set of names. For all u, v closed constructor terms,
there exists N ∈ N such that for all N ′ > N , ℓ(u) = ℓ(v) if and only if
ℓ(uσE,N,a) = ℓ(vσE,N,a).

Intuitively, this property is used in [13] to replace every public name intro-
duced by the intruder by successive applications of h that preserves the length
of messages.

Theorem 4 (derived from [13, Theorem 8.4]). Consider a length function
that satisfies Property 1. Given an algorithm for deciding the symbolic equiva-
lence w.r.t. length between two sets of constraint systems Σ and Σ′ that contain
constraint systems having the same structure and such that there exists a ∈ N
such that for all (Φ;D;Eq) ∈ Σ ∪Σ′, (ax 1 ⊲ a) ∈ Φ, and for all C, C′ ∈ Σ ∪Σ′,
C ≈c

s C
′, D = D′ and Eq = Eq′ where C = (Φ;D;Eq) and C′ = (Φ′;D′;Eq′), we

can derive an algorithm for deciding trace equivalence w.r.t. length between two
bounded processes.

C.3 Specific solutions of a constraint system

In this section, we assume a ∈ N . Let H(t) be the height of the term t.

Definition 19. Let ξ ∈ T (F ′
c, {ax 1}) and a ∈ N . We define Rec2n(ξ) ∈ T (F ′

c,
{ax 1}) inductively as follow:

– Rec20(ξ) = ax 1

– Rec2n(ξ) = 〈Rec2n−1(ξ), ξ〉

Similarly, let u ∈ T (F ′
c, {a}. We define Rec1n(u) ∈ T (F ′

c, {a}) inductively as
follow:

– Rec10(u) = a
– Rec1n(u) = 〈Rec1n−1(u), u〉

Lemma 3. Let Φ an extended frame such that (ax 1 ⊲ a) ∈ Φ. Let ξ ∈ T (F ′
c,

{ax 1}. Let n ∈ N. Then Rec2n(ξ)Φ = Rec1n(ξΦ).

Lemma 4. Let Φ an extended frame such that (ax 1 ⊲ a) ∈ Φ. Let ξ ∈ T (F ′
c,

{ax 1}. Let n ∈ N such that n > 0. Then

H(Rec2n(ξ)) = H(Rec1n(ξΦ)) = n+ H(ξ)

Proof. We prove the result by induction on n.

Base case n = 1: In such a case, we have Rec21(ξ) = 〈ax 1, ξ〉. Since the ξ ∈
T (F ′

c, {ax 1}, we deduce that H(ξ) > 0 hence the result holds.

Inductive step n > 1: Otherwise, Rec2n(ξ) = 〈Rec2n−1(ξ), ξ〉. Thus, we have

H(Rec2n(ξ)) = 1+max(H(Rec2n−1(ξ));H(ξ)) = 1+max(n− 1+H(ξ);H(ξ)). Since
n > 0, we deduce that H(ξ) = 1 + n− 1 + H(ξ) = n+ H(ξ). ⊓⊔

How to check for equivalences with length 23

Lemma 5. Let n, n′ ∈ N with n, n′ > 0. Let u, u′ ∈ T (F ′
c, {a}). We have:

Rec1n(u) = Rec1n′(u′) implies u = u′ and n = n′

Proof. By hypothesis, we have n, n′ > 0. Hence by definition of Rec1n(u) and
Rec1n′(u′), Rec1n(u) = Rec1n′(u′) implies that Rec1n−1(u) = Rec1n′−1(u

′) and u =

u′ which implies that H(Rec1n−1(u)) = H(Rec1n′−1(u)). Hence by Lemma 4, we
deduce n− 1 + H(u) = n′ − 1 + H(u) and so n = n′. ⊓⊔

Lemma 6. Let x0 ∈ X 1 and u ∈ T (F ′
c,X

1) such that x0 6∈ vars1(u). Assume
that vars1(u) = {x1, . . . , xk}. At last, let N = H(u). Let σ such that:

– for all i ∈ {0, . . . , k}, xiσ = Rec1ni
(Rec1mi

(a)) for some ni,mi > N
– for all i, i′ ∈ {0, . . . , k}, i 6= i′ implies mi 6= m′

i.
– for all i, i′ ∈ {0, . . . , k}, ni > mi′ .

We have that x0σ 6= uσ.

Proof. To prove this result, we distinguish two cases:

Case 1, |u| = 1: It implies that u ∈ X 1. Assume that u = xℓ. By hypothesis,
we know that x0 6∈ vars1(u) hence 0 6= ℓ and so mℓ 6= m0. Thanks to Lemma 5,
mℓ 6= m0 implies that Rec1m0

(a) 6= Rec1mℓ
(a) which implies again thanks to

Lemma 5 that Rec1n0
(Rec1m0

(a)) 6= Rec1nℓ
(Rec1mℓ

(a)). Hence we conclude that
x0σ 6= xℓσ.

Case 2, |u| > 1: Otherwise, we denote u = g(u1, . . . , un). If g 6= 〈〉 then by
definition of Rec1n0

(Rec1m0
(a)) and since n0 > 0, we have that x0σ 6= uσ.

Let’s now assume that g = senc and x0σ = uσ. In such a case, we would have
Rec1n0−1(Rec

1
m0

(a)) = u1σ and Rec1m0
(a) = u2σ. But H(Rec1m0

(a)) = m0 + 1.
Since H(u) = N < m0, we deduce that there exists ℓ ∈ {1, . . . , k} such that
xℓ ∈ vars1(u2). But we know that H(xkσ) = nk + mk + 1 which means that
H(u2σ) > nk + mk + 1. But by hypothesis we also have that nk > m0 thus
H(Rec1m0

(a)) < H(u2σ) which contradict the fact that Rec1m0
(a) = u2σ. ⊓⊔

Definition 20. Let Σ,Σ′ be two sets of constraint systems such that there exists
a ∈ N such that for all C, C′ ∈ Σ ∪ Σ′, D(C) = D(C′), Eq(C) = Eq(C′) and
(ax 1 ⊲ a) ∈ Φ(C). Let N be maximum height of all terms in the inequations of
Σ,Σ′. Let k = |D(C)| for some C ∈ Σ. Let E1, . . . , Ek the sets such that for all
i ∈ {1, . . . , k}

Ei = {Rec1n(Rec
1
N+i(a)) | n ∈ N ∧ n > N + k}

At last, we define S(Σ,Σ′) the set of specific solutions of Σ and Σ′ such that
such that:

– E1 × . . .× Ek = {(x1σ, . . . , xkσ) | (σ, θ) ∈ S(Σ,Σ′)}

– for all (σ, θ) ∈ S(Σ,Σ′), for all (X, i
?

⊢ x) ∈ D(C), xσ = Rec1n(Rec
1
m(a)) and

Xθ = Rec2n(Rec
2
m(ax 1)), for some m,n.

24 Vincent Cheval, Véronique Cortier, and Antoine Plet

Lemma 7. Let Σ,Σ′ be two sets of constraint systems such that for all C, C′ ∈
Σ ∪ Σ′, D(C) = D(C′) and Eq(C) = Eq(C′). For all (σ, θ) ∈ S(Σ,Σ′), for all
C ∈ Σ ∪Σ′, (σ, θ) ∈ Sol(C).

Proof. Let (σ, θ) ∈ S(Σ,Σ′). Let C ∈ Σ. We show that (σ, θ) ∈ Sol(C) by

verifying the two conditions of Definition 16. Assume that D(C) = {X1, i1
?

⊢

x1, . . . , Xn, ik
?

⊢ xk}.

Let j ∈ {1, . . . , k}. By Definition 20, we know thatXjθ = Rec2n(Rec
2
N+j(ax 1))

where N is the maximum height of all terms in the inequation of C. Hence
according to Definition 19, Xjθ ∈ T (F ′

c, {ax 1}) with (ax 1 ⊲ a) ∈ Φ(C). We
deduce that Xθ is built from Φ(C)θ. Moreover, thanks to Lemma 3, we know that
Xjθ(Φθ) = Rec1n(Rec

1
N+j(a)) thus Xjθ(Φθ) = xjσ. At last Xjθ ∈ T (F ′

c, {ax 1})
implies that param(Xjθ) ⊆ {ax 1, . . . , ax ij}.

We now show that for all (s
?

6= s′) ∈ Eq, sσ 6= s′σ. Assume that sσ = s′σ.
Since Eq is satisfiable, there exists x ∈ vars1(s) (resp. vars1(s′)) and t ∈ st(s′)
(resp. t ∈ st(s)) such that xσ = tσ and x 6= t. Moreover, since sσ = s′σ, we
deduce that x 6∈ st(t). But by definition of a constraint system x ∈ vars1(D(C))
hence there exists j ∈ {1, . . . , k} and n > N+k such that xσ = Rec1n(Rec

1
N+j(a)).

Similarly, if we denote {xα1
, . . . , xαp

} = vars1(t), we know that there exists

nα1
, . . . , nαp

strictly superior to N + k such that xαq
σ = Rec1nαq

(Rec1N+αq
(a))

for all q ∈ {1, . . . , p}. Hence by Lemma 6, we deduce that xσ 6= tσ which is a
contradiction with sσ = s′σ. We conclude that sσ 6= s′σ and so (σ, θ) ∈ Sol(C).

⊓⊔

Lemma 8. Let ℓ〈 〉 the length function of 〈 〉 such that ℓ〈 〉(x1, x2) = α0 +
α1 × x1 + α2 × x2. If α1 ≥ 1, α2 > 0 and α0 ≥ 0 then for all k > 0, for all
i ∈ {1, . . . , k}, for all N > 0, we have {ℓ(Rec1n(Rec

1
N+i(a))) | n > N + k} is an

infinite set.

Proof. By Definition 19, since α1 ≥ 1 and α2 > 0 then for all terms u, for all n,
ℓ(Rec1n(u)) < ℓ(Rec1n+1(u)). Thus the result holds. ⊓⊔

C.4 Deciding symbolic equivalence w.r.t. length

Proposition 2. Let C1 = (Φ1;D1;Eq1) and C2 = (Φ2;D2;Eq2) be two simpli-
fied constraint systems having same structure. Assume PΦ1

= PΦ2
. Let σ1, σ2, θ

substitution such that (σ1, θ) ∈ Sol(C1), (σ2, θ) ∈ Sol(C2). Then for any recipe ξ
built from Φ1θ, ℓ(ξΦ1θσ1) = ℓ(ξΦ2θσ2).

Proof. Let (σ1, θ) ∈ Sol(C1), (σ2, θ) ∈ Sol(C2) such that Φ1θσ1 ∼c Φ2θσ2. Since
C1 and C2 have same structure, we can assume that Φ1 = {ξ1 ⊲ u1, . . . , ξn ⊲ un}
and Φ2 = {ξ1 ⊲ v1, . . . , ξn ⊲ vn}.

We first prove by induction that

∀k ∈ {1, . . . , n}, ℓ(ukσ1) = ℓ(vkσ2)

How to check for equivalences with length 25

Let Hm be “∀k ∈ {1, . . . , n}, if param(ξk) ⊆ {ax 1, . . . , axm} then ≤ ℓ(ukσ1) =
ℓ(vkσ2)”.

Case m = 1: Let k ∈ {1, . . . , n} such that param(ξk) ⊆ {ax 1}. By definition of
a constraint system, we deduce that uk is a ground term thus Puk

is a constant.
Similarly, Pvk

is a constant so Puk
= Pvk

implies ℓ(ukσ1) = ℓ(vkσ2). Hence H1

is true.

Case m + 1: Assume Hm is true. Let k ∈ {1, . . . , n} such that param(ξk) ⊆
{ax 1, . . . , axm+1}. By hypothesis, we know that Puk

= Pvk
hence ℓ(ukσ1) =

Puk
(ℓ(y1σ1), . . . , ℓ(ypσ1)) and ℓ(vkσ2) = Puk

(ℓ(y1σ2), . . . , ℓ(ypσ2)) where y1, . . . ,
yp are the variables of uk and vk.

Let us show that ℓ(yjσ1) = ℓ(yjσ2) for all j ∈ {1, . . . , p} which will allow us
to conclude that ℓ(ukσ1) = ℓ(vkσ2) and so to ensure Hm+1. Let j ∈ {1, . . . , p}.
By definition of a simplified constraint system, param(ξk) ⊆ {ax 1, . . . , axm+1}

implies that there exists Yj , ij
?

⊢ yj ∈ D(C1) = D(C2) such that ij < m +
1. By definition of a solution of a simplified constraint system, we know that
Yjθ is build from Φ1θ hence there exists a constructor context C such that
Yjθ = C[ξα1

θ, . . . , ξαp
θ] with α1, . . . , αp ∈ {1, . . . , n}. Moreover, we know that

Yjθ(Φ1θσ1) = yjσ1 and Yjθ(Φ2θσ2) = yjσ2. Hence, we deduce that

yjσ1 = C[uα1
σ1, . . . , uαp

σ1] yjσ2 = C[vα1
σ2, . . . , vαp

σ2]

So there exists a polynomial PC such that ℓ(yjσ1) = PC(ℓ(uα1
σ1), . . . , ℓ(uαp

σ1)),
ℓ(yjσ2) = PC(ℓ(vα1

σ1), . . . , ℓ(vαp
σ1)).

But once again by definition of a solution, param(Yjθ) ⊆ {ax 1, . . . , ax ij} with
ij < m+1. Hence param(ξαq

θ) ⊆ {ax 1, . . . , ax ij} for all q ∈ {1, . . . , p}. Thus by
the inductive hypothesis Hm, we deduce that for all q ∈ {1, . . . , p}, ℓ(uαq

σ1) =
ℓ(vαq

σ1). Hence, it implies that PC(ℓ(uα1
σ1), . . . , ℓ(uαp

σ1)) = PC(ℓ(vα1
σ1), . . . ,

ℓ(vαp
σ1)) and so ℓ(yjσ1) = ℓ(yjσ2).

Let ξ be a recipe built from Φ1θ. Let now show that ℓ(ξΦ1θσ1) = ℓ(ξΦ2θσ2).
Since ξ is built from Φ1θ, there exists a context C with only constructor symbols
such that ξ = C[ξα1

θ, . . . , ξαp
θ] with α1, . . . , αp ∈ {1, . . . , n}. Moreover, we

have that ξ(Φ1θ)σ1 = C[uα1
σ1, . . . , uαp

σ1] . Since Φ1 and Φ2 have both same
structure, then ξ is built from Φ2θ and so ξ(Φ2θ)σ2 = C[vα1

σ2, . . . , vαp
σ2].

So there exists a polynomial PC such that ℓ(ξΦ1θσ1) = PC(ℓ(uα1
σ1), . . . ,

ℓ(uαp
σ1)) and ℓ(ξΦ2θσ2) = PC(ℓ(vα1

σ1), . . . , ℓ(vαp
σ1)). Since ℓ(uiσ1) = ℓ(viσ2)

for all i ≤ n, we have ℓ(ξΦ1θσ1) = ℓ(ξΦ2θσ2).

Corollary 2. Let C1 = (Φ1;D1;Eq1) and C2 = (Φ2;D2;Eq2) be two constraint
systems having same structure. Assume PΦ1

= PΦ2
. Let σ1, σ2, θ substitution

such that (σ1, θ) ∈ Sol(C1), (σ2, θ) ∈ Sol(C2). Then Φ1θσ1 ∼c Φ2θσ2 is equivalent
to Φ1θσ1 ∼ℓ

c Φ2θσ2

Proof. By definition of the static equivalence, Φ1θσ1 ∼ℓ
c Φ2θσ2 implies Φ1θσ1 ∼c

Φ2θσ2. Moreover, let ξ, ξ′ two recipes built from Φ1θσ1 such that ℓ(ξΦ1θσ1) =
ℓ(ξ′Φ1θσ1). By Proposition 2, we know that ℓ(ξΦ2θσ2) = ℓ(ξΦ1θσ1) = ℓ(ξ′Φ1θσ1)
= ℓ(ξ′Φ2θσ2). Hence we conclude that Φ1θσ1 ∼c Φ2θσ2 implies Φ1θσ1 ∼ℓ

c Φ2θσ2.

26 Vincent Cheval, Véronique Cortier, and Antoine Plet

Lemma 9. Let Φ1 and Φ2 two ground extended frame with same structure. If
there exists a name a such that (ax 1 ⊲ a) ∈ Φ1 and (ax 1 ⊲ a) ∈ Φ2, then
Φ1 ∼ℓ

c Φ2 implies that for all ξ built from Φ1, ℓ(ξΦ1) = ℓ(ξΦ2).

Proof. Let’s denote Φ1 = {ξ1 ⊲ u1, . . . , ξn ⊲ un} and Φ2 = {ξ1 ⊲ v1, . . . , ξn ⊲

vn}. Let ξ built from Φ1. There exists C a context with constructor sym-
bol such that ξ = C[ξα1

, . . . , ξαp
] with α1, . . . , αp ∈ {1, . . . , n}. Thus ξΦ1 =

C[uα1
, . . . , uαp

]. For all q ∈ {1, . . . , p}, let ζαq
be the recipe obtained by re-

placing every name of uαq
by ax 1. Since ax 1Φ1 ∈ N , we have that ℓ(ξΦ1) =

ℓ(C[ζα1
, . . . , ζαp

]Φ1). By hypothesis, we know that Φ ∼ℓ
c Φ′ hence ℓ(ξΦ2) =

ℓ(C[ζα1
, . . . , ζαp

]Φ2). But since ax 1Φ2 = ax 1Φ1 ∈ N , we deduce that ℓ(C[ζα1
, . . . ,

ζαp
]Φ1) = ℓ(C[ζα1

, . . . , ζαp
]Φ2) and so ℓ(ξΦ1) = ℓ(ξΦ2). ⊓⊔

Lemma 10. For every m ∈ N
∗, for every P ∈ R[X1, . . . , Xm], if there exist

some subsets Y1, . . . , Ym ⊂ R, such that for every k, #Yk > dmax(P) and ∀y ∈
Y1 × . . .× Ym, P (y1, . . . , ym) = 0, then P = 0.

Proof. Let Hm be ”for every P ∈ R[X1, . . . , Xm], if there exist some subsets
Y1, . . . , Ym ⊂ R, such that for every k, #Yk > dmax(P) and ∀y ∈ Y1 × . . . ×
Ym, P (y1, . . . , ym) = 0, then P = 0”. We prove by recurrence that for every
m ∈ N

∗, Hm holds.

Base case m = 1: There exist at least #Y1 > deg(P) zeros for P so P = 0 and
H1 holds.

Inductive step m+1 : We can see P as a polynomial from R[X1, . . . , Xm][Xm+1]
by writing P (y1, . . . , ym+1) =

∑r

k=0 βk(y1, . . . , ym)ykm+1 with βk ∈ R[X1, . . . ,
Xm] and r < #Ym+1. Thus, for every (y1, . . . , ym) ∈ Y1 × . . .× Ym, Q(Xm+1) =
P (y1, . . . , ym, Xm+1) ∈ R[Xm+1]. Moreover, deg(Q) = r < #Ym+1 and for every
ym+1 ∈ Ym+1, Q(yn) = 0 so Q = 0. Hence, for every k, for every (y1, . . . , ym) ∈
Y1 × . . . × Ym, βk(y1, . . . , ym) = 0 so according to Hm, βk = 0. Finally, P = 0
and Hm ⇒ Hm+1. ⊓⊔

Let E be a set of terms. We denote by ℓ(E) the set {ℓ(u) | u ∈ E}. By
abuse of notations, we write σ ∈ E1 × · · · ×En if σ is a substitution of the form
σ(xi) = ti ∈ Ei for 1 ≤ i ≤ n.

Proposition 3. Let E1, . . . , Ek be sets of terms such that ℓ(Ei) is infinite. Let
x1, . . . , xk be variables. Let Φ = {ξ1 ⊲ u1, . . . , ξn ⊲ un} be an extended frame
and Φi = {ξ1 ⊲ vi1, . . . , ξn ⊲ vin} be a finite family of extended frames, 1 ≤ i ≤ m
such that vars(Φ) and vars(Φi) are included in {x1, . . . , xk}. Assume that

∀σ ∈ E1 × · · · × Ek ∃1 ≤ i ≤ m s.t. ∀1 ≤ j ≤ n ℓ(ujσ) = ℓ(vijσ)

Then there is 1 ≤ i ≤ m such that PΦ = PΦi
.

Proof. Since the variables x1, . . . , xk are the variables in all the frames, then
thanks to Proposition 1, we have that for all σ ∈ E1×· · ·×Ek, there is 1 ≤ i ≤ m
such that

Puj
(ℓ(x1σ), . . . , ℓ(xkσ)) = Pvi

j
(ℓ(x1σ), . . . , ℓ(xkσ))

How to check for equivalences with length 27

for every 1 ≤ j ≤ n (Property (*)). We wish to show that there is 1 ≤ i ≤ m
such that Puj

− Pvi
j
= 0 for all 1 ≤ j ≤ n. Suppose by contradiction that it is

not the case, that is, for every 1 ≤ i ≤ m, there is ji such that Puji
− P i

vji
6= 0.

Consider the polynomial

P =
m∏

i=1

(Puji
− Pvi

ji

)

Due to Property (*), for any (z1, . . . , zk) ∈ ℓ(E1)×· · ·×ℓ(Ek), P (z1, . . . , zk) = 0.
Thanks to Lemma 10, we deduce that P = 0. Now ,since R[X1, . . . , Xk] is an
integral domain, there is no zero divisors thus we deduce that there must be an
index i such that Puji

− Pvi
ji

= 0, contradiction.

We therefore deduce that there is 1 ≤ i ≤ m such that Puj
− Pvi

j
= 0 for all

1 ≤ j ≤ n, that is PΦ = PΦi
.

Theorem 5. Let Σ,Σ′ two sets of constraint systems that contains constraint
systems with same structure. Assume that there exists a ∈ N such that for all
(Φ;D;Eq) ∈ Σ∪Σ′, (ax 1 ⊲ a) ∈ Φ. Moreover, assume that for all C, C′ ∈ Σ∪Σ′,
C ≈c

s C′, D = D′ and Eq = Eq′ where C = (Φ;D;Eq) and C′ = (Φ′;D′;Eq′).
Then {PΦ(C) | C ∈ Σ} = {PΦ(C′) | C

′ ∈ Σ′} if and only if Σ ≈c
sℓ Σ

′.

Proof. Assume first that {PΦ(C) | C ∈ Σ} = {PΦ(C′) | C
′ ∈ Σ′}. Let us show that

Σ ≈c
sℓ Σ

′. Let C1 ∈ Σ. By hypothesis, we know that there is C2 ∈ Σ′ such that
PΦ(C1) = PΦ(C2). Let (σ, θ) ∈ Sol(C1). By hypothesis, C1 ≈c

s C2 hence there exists
σ′ such that (σ′, θ) ∈ Sol(C2) and Φ(C1)θσ ∼c Φ(C2)θσ

′.
We deduce from Corollary 2 that Φ(C1)θσ ∼ℓ

c Φ(C2)θσ
′. Therefore C1 ≈c

sℓ C2
and thus Σ ⊆ℓ Σ

′. Symmetrically, we must have Σ′ ⊆ℓ Σ and therefore Σ ≈c
sℓ

Σ′.
Reciprocally, assume Σ ≈c

sℓ Σ
′. Let us show that P(Σ) ⊆ P(Σ′) Let C1 ∈ Σ.

By hypothesis, for all C2 ∈ Σ′, {C1} ≈c
s {C2}. Moreover, by Lemma 7, S(Σ,Σ′) ⊆

Sol(C1) and S(Σ,Σ′) ⊆ Sol(C2), for all C2 ∈ Σ′. Thus for all (σ, θ) ∈ S(Σ,Σ′),
we have Φ(C1)θσ ∼c νΦ(C2)θσ. Moreover, since Σ ≈c

sℓ Σ′, then for all (σ, θ) ∈
S(Σ,Σ′), there exists C′

2 ∈ Σ′ such that Φ(C1)σ ∼ℓ
c Φ(C

′
2)σ.

Let Φ(Σ′) = {Φ1, . . . , Φk}. Let Φ(C1) = {ax 1, 1 ⊲ u1, . . . , axn, n ⊲ un} and
Φi = {ax 1, 1 ⊲ vi1, . . . , axn, n ⊲ vin}. If we denote E1, . . . , Ek the sets associated
to S(Σ,Σ′) (see Definition 20), then for all σ ∈ E1×· · ·×Ek, there is 1 ≤ i ≤ k
such that Φ(C1)σ ∼ℓ

c Φiσ, that is ℓ(ujσ) = ℓ(vijσ) for all 1 ≤ j ≤ n thanks to
Lemma 9. Since by Lemma 8, ℓ(Ei) is infinite, for all 1 ≤ i ≤ k, then by applying
Proposition 3, we deduce that there is 1 ≤ i ≤ k such that PΦ(C1) = PΦi

, that is
there is C2 ∈ Σ′ such that PΦ(C1) = PΦ(C2).

This shows that P(Σ) ⊆ P(Σ′). Symmetrically, we have P(Σ′) ⊆ P(Σ). ⊓⊔

The proof of Theorem 2 and 3 follows from Theorems 4 and 5.

