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Abstract. We use symbolic formal models to study the composition of public key-based
protocols with public key infrastructures (PKIs). We put forth a minimal set of requirements
which a PKI should satisfy and then identify several reasons why composition may fail. Our
main results are positive and offer various trade-offs which align the guarantees provided by
the PKI with those required by the analysis of protocol with which they are composed. We
consider both the case of ideally distributed keys but also the case of more realistic PKIs.
Our theorems are broadly applicable. Protocols are not limited to specific primitives and
compositionality asks only for minimal requirements on shared ones. Secure composition
holds with respect to arbitrary trace properties that can be specified within a reasonably
powerful logic. For instance, secrecy and various forms of authentication can be expressed
in this logic. Finally, our results alleviate the common yet demanding assumption that
protocols are fully tagged. Keywords: secure composition, PKI, protocol analysis

1 Introduction

Modular analysis of cryptographic systems is an area of permanent concern in security research.
Composition results are set either in the symbolic model (e.g. [19,16,17,6,27,22,14,2]) or in the
computational model (e.g. [12,28,13,24,23,11,9,10]). Some of these results yield general frameworks
where arbitrary components can be safely combined but, unsurprisingly, rely on particularly strong
hypothesis. Other results provide narrower composition theorems tailored to specific cryptographic
tasks but afford more relax and practical assumptions on the components.

This paper falls within the latter research direction. We study the composition of protocols for
establishing public key infrastructures (PKIs) with arbitrary other protocols which require such
keys. For two parties the question we adress is (using ad-hoc notation): when can a PKI protocol
P = P1 | P2 that distributes public (and secret) keys be composed with a protocol Q = Q1 | Q2

that uses these keys. We are after a theorem which (using informal notation) guarantees that

P1 | P2 |= φPKI ⇒ P1.Q1 | P2.Q2 |= secrecy(s)

provided that
Q1(skA, pk(skB)) | Q2(skB , pk(skA)) |= secrecy(s)

That is, a secure PKI infrastructure P (as captured by some security property φPKI) can be safely
used by a protocol Q provided that Q is secure (preserve the secrecy of some piece of data s) when
analyzed with honestly generated keys. In the above theorem, think of P1 as the PKI component
which provides the secret key to user A and informs him of the public key of user B; protocol P2

plays the converse role for user B.
This type of composition result is often simply assumed! For example, it is quite common

for the analysis of protocols that use public keys to rely on the assumption that prior to their
execution the PKI keys have been generated, distributed to all parties, and that the link between
the identities of parties and their public keys is known to everyone. This convenient idealization
of key distribution is often adopted by analysis via automatic tools (e.g. ProVerif[5], Scyther [18],
Avispa [3], or Tamarin [26]) and reflects compelling inuition: PKI infrastructures (such as X.509)
are designed to distribute and certify keys, independently of the protocols that will use such keys.
This intuition is not supported by rigorous underpinnings and it may actually be wrong since the
guarantees provided by the PKI are not always aligned with those assumed by the subsequent



protocol. For example, PKIs do not guarantee that a malicious party registers the same key with
different registration authorities (so the same user may have two different public keys), do not
guarantee that different users do not share the key or, more generally, that each user has followed
honestly the registration process. In fact, it is not clear even what minimal guarantees for a PKI
can still ensure a composition result.

There has been relatively little research on the problem of secure composition of PKIs with
other protocols and, interestingly, most work is set within computational model (see related work).
In this paper we approach the problem using symbolic models. As we discuss later, the higher level
of abstraction yields results of broader applicability. Moreover, our results are relevant for proofs
that use automated tools since they usually work on top of some symbolic model.

In a nutshell, our results are as following. We reconfirm that the mismatch between assumptions
made in the analysis of Q and the guarantees offered by some PKI protocols P leads to insecure
composition. Our main results are then rigorous composition theorem which carefully account for
the mismatch between what is assumed and what is guaranteed. Below we highlight the main
features of our work.

The perils of Idealized key distribution. At a high level the theorem we are after may
fail because of implicit assumptions that underly the analysis of Q. As explained above, the
assumption is usually that the keys of parties have been honestly generated and are in place
before the execution of Q. For a variety of reasons, this assumption does not hold when keys are
managed by a real PKI. For example, when parties generate their own secret/public keys and have
them certified (e.g. the Verisign process for issuing certificates), keys are not necessarily honestly
generated. Other causes include “confusion” of messages between the protocol for key registration
and subsequent protocols that use these keys (which makes standalone analysis incomplete) as well
as the classic message parsing errors. In Section 2 we illustrate through concrete counterexamples
several obstacles which need to be carefully accounted for by any generic composition theorem.

Composition of PKIs with arbitrary protocols. The counterexamples that we identify
inform our main results. We provide sufficient conditions to ensure that a protocol for distributing
public keys P composes securely with a protocol Q which uses these keys, in the sense that the
desired security properties of Q are guaranteed.

Our first theorem imposes only minimal requirements on P . These are formalized by formula
φPKI (in a logic on traces which we provide) and demand that secret keys stay secret, that all
parties have a consistent view of the public keys of honest parties, and that honest parties use
distinct keys for signing and decryption. We emphasize that φPKI provides no guarantees on the
keys held by dishonest parties. This weaker guarantees on the keys distributed by P translates
into a correspondingly stronger requirement on Q. Its security needs to hold under a permissive
key assignment (which only reflects the guarantees offered by φPKI). We refer to this version of
Q as “permissive” Q.

In symbolic models, protocols are however never analyzed in their “permissive” form, but rather
in the “ideal” form where all keys (including those of dishonest parties) are honestly generated
and already predistributed. In this case the above theorem does not apply (and in fact we give
counterexample protocols that shows that composition with realistic PKIs fails). Our next theorem
recovers a composition result for such protocols, at the expense of stronger requirements on the
PKI: we strengthen the assumption on P to require that besides φPKI it also satisfies φideal. This
additional assumption essentially asks that all honest users have a consistent view of the keys for
encryption and verification that belong to other users, that keys of distinct agents are pairwise
distinct and that encryption and verification keys are also distinct.

Our theorems share several features. First, they treat the properties of Q in a generic way.
Composition preserves any trace-based security property which can be specified by a formula in a
logic which we provide. In particular, (weak) secrecy and various forms of authentication properties
can be specified in the logic.

Our theorems are rather agnostic to the class of protocols themselves. We consider arbitrary
classes of protocols (possibly with else branches) which employ arbitrary cryptographic primitives
(including e.g. Exclusive Or or Diffie-Hellman). While we require the minimal condition that P
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and Q do not share underspecified primitives we do permit that they both use standard ones
(encryption, signatures, hashes, . . . ).

Sharing primitives between protocols leads to well-known difficulties due to cross-protocol
attacks. The traditional solution is to assume that each use of these primitives is “tagged” [17,16,2].
This convenient technique helps to easily distinguish between messages of different protocols but
is not supported by current practice. Our theorems show how one may avoid full tagging of
primitives. We propose a more general property that avoids cross-protocol attacks. This property
can be enforced by tagging mechanism but also through alternative restrictions on the protocols,
e.g. that P and Q employ shared functions but always under different keys or by minimal tagging
assumptions (e.g. that only occurrences of public keys, and not each individual use of the primitives
are tagged). For example, a PKI protocol P may use the same signature (resp. encryption) scheme
as Q provided that keys shared from P to Q are either used to sign (resp. encrypt) in P or Q but
not both.

A convenient specification language. Our results are set within a symbolic model similar
to those that underlie existing automated tools. It turns out that existing symbolic formalisms
(e.g. those close to the applied pi-calculus [1]) are not convenient to specify scenarios like those we
treat in this paper. For example, in the applied-pi calculus, it is surprisingly difficult to express
persistent storage e.g. of a trusted server of symmetric keys shared by unbounded number of pairs
of agents. Modeling such a server requires a heavy encoding using private channels. Tools like
ProVerif bypass this encoding by extending their calculus to include tables. The problem is that
the notion of “agent” is captured implicitly in existing calculi and this makes it difficult to reason
in a simple manner about composition.

We design a new specification language. The main feature is a notion of parameterized agents
and names which allows to conveniently talk about the different sessions of protocols that share
the same parameters. For example, we can elegantly express that a server shares a symmetric key
KAS with any agent A by writing k[A,S]. Then one server talking to infinitely many agents can
be simply described by a process of the form

!iR1(k[S,A[i]]) | R2(k[S,A[i]])

where R1 and R2 represent respectively the role of the server and the agent.

Related work. Our work uses and extends techniques used in other existing composition result
set withing symbolic models, and is close in scope with some recent works on the composition of
PKIs that rely on computational models.

Relevant composition results within symbolic models include [17] which characterizes when two
protocols run in parallel may share keys and [16] which studies what is a good key establishment
protocol and how it can be used. These early works hold for trace properties. More recent results
establish similar results in the context of equivalence properties, useful to model privacy properties
[15,2]. In [27,22,14], the authors study “vertical composition”: when a protocol Q uses some secure,
authenticated, or confidential channel, how such a channel can be securely realized? In contrast,
our paper focuses here on PKI and studies what are the properties of a good PKI and how it can be
used. Our proof techniques borrow from [2,14]. However, in addition to considering a different type
of composition (PKI), we establish the first composition result that does not require an explicit
tagging scheme. In other words, we can now compose actual protocols instead of composing their
tagged version. To establish such a general result, we had to considerably reshape the proofs
developed e.g. in [2] or [14].

In the computational model there are several generic frameworks for compositional analysis
[12,28,23,11] all sharing the same underlying philosophy: components can be designed separately,
yet their security is preserved when the components are used together, so composability comes
somehow for free. The strength of this level of security also means that it may be difficult to
achieve. Indeed, for public key infrastructures the model for PKI as introduced by Barak et al. [4]
and later refined by [21] can only be achieved by registration protocols which essentially ensure
that the PKI also learns the associated secret key.
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The works of Boldyreva et al [7] and of Boyd et a. [8] are closest in spirit to ours in that they
are exclusively concerned with the use of PKIs within other protocols and primitives. Boldyreva
et al. [7] consider the security of asymmetric encryption and digital signatures in the presence of
attackers that can also interfere with the registration process of long term keys. That work considers
composition of PKIs with these two important primitives but leaves the study of implications to
higher level protocols for future work. More recently, Boyd et al. [8] have looked at the use of
PKIs within key exchange protocols. They extend standard cryptographic model for key exchange
with adversarial capabilities that reflect potential PKI interference (like registering malformed
keys). The models can then be used to construct key exchange protocols that protect against
some weaknesses in the PKI. However, strictly speaking the results are not compositional results:
there are no guarantees for when the PKI is instantiated with an actual protocol.

2 Why composing with a PKI is hard?

In this section we discuss in more details why composition with a PKI does not work so well in
general, providing counter-examples and spelling out the assumptions we will consider in the rest
of the paper.

2.1 Minimal assumptions on the PKI

We first state what we view as the minimal property that we believe a PKI should satisfy. Infor-
mally, we demand that:

– An honest agent has a unique public/private key pair and a unique verification/signing key
pair.

– Honest agents have pairwise distinct private/signing keys.

– Keys are consistently distributed, that is, honest agents know each other public and verification
keys.

– Decryption/signing keys of honest agents are private.

In this paper we explore whether these properties are actually sufficient: can a PKI that satisfies
the requirements above be safely used together with any public key protocol Q?

2.2 Standard assumptions

Since composing a public-key protocol involves sharing key material, we of course face the same
issues as existing composition results [17,16,15,2]. In particular, one of the protocols could act
as a decryption oracle for the other one. For example, assume that the PKI includes a challenge
response phase where the authority checks that A knows her private key.

Auth→ A : {N}pkA
A→ Auth : N

This challenge phase may occur during the registration of the key but also later, for example if A
wishes to extend the validity of the certificate associated with her key. Such a PKI would break
the security of most protocols that use public keys. Consider for example, the following simple
protocol Q where B sends a secret to A using her public key.

B → A : {s}pkA

Then Q executed in isolation with predistributed keys is secure (it does not compromise s) while
Q composed with the PKI described above is insecure.

4



The standard way for preventing such behaviours [17,16,15,2] consists in tagging the encryption
scheme which a tag tpki that is specific to the protocol.

Auth→ A : {tpki, N}pkA
A→ Auth : N

In this paper we go one step further: we introduce a more general property which ensures that
messages of different protocols are not confused. The usual tagging mechanism is only one way to
enforce this property. We show that it suffices to ensure that functions shared between protocols
protocols use different keys. In particular, a PKI protocol P may use the same signature (resp.
encryption) scheme as Q, if keys provided by P to Q are used to sign (resp. encrypt) either by
P or Q but not by both. In practice, this condition is often satisfied and allows us to compose
protocols without requiring a tagging scheme. A typical exception are protocols where the PKI
protocol uses the keys it provides to also carry out a challenge response as proof of possession.

2.3 Confusing public keys with other material

Analysis of public key protocols typically assumes that the keys of all parties have been honestly
generated and distributed. However, this assumption is not valid in all scenarios, e.g. in the Verisign
process for issuing certificates where users generate their own secret/public keys and have them
certified. The following example shows that the mismatch between assumption and reality may be
problematic.

Assume a setting where public keys (or verification keys) are used to identify parties. Consider
a simple protocol where A sends a message M to B, signed together with the identity of B, to
indicate that M is meant for B.

A→ B : [pkB,M ]skA

When B receives the message M , he is convinced that A sent it to him. Consider an attacker C
who registers the string pkC = pkB, pkC′ as his public key. Note that he may not be able to decrypt
message encrypted by pkC (or properly sign with the corresponding key) but this still allows him
to mount an attack against the simple signing protocol.

A→ C : [pkC,M ]skA

C(B)→ B : [pkB, pkC′,M ]skA since pkC = pkB, pkC′

That is, when A initiates a session with some malicious party C, C can use the message in this
session to impersonate A towards user B. In practice, it could be the case that A was requesting
a service to C, and the attacker uses the corresponding message to request a service to B, in the
name of A. So, while the protocol is secure when long term keys of parties are honestly generated,
the protocol is insecure if parties manage to register malformed keys.

One way of circumventing this issue is to tag keys that are part of messages (i.e. not used for
signing/encryption).

A→ B : [tpkey(pkB),M ]skA

Such a tagging makes sense as soon as the format of messages ensures that public keys can-
not be confused with other material. However examples in the following sections show that this
countermeasure is not sufficient.

2.4 Confusing public keys with other keys

Even when public keys are not sent as payload, the adversary may chose his dishonest key so that
he can trigger unexpected behaviors. Consider the case where A sends out a secret encrypted with
C’s public keys and (immediately) decrypts the message with her private key.

A→ B : adec({s}pkC, skA)
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Then C may simply chose his public key to be the public key of A: pkC = pkA, yielding an attack
in the protocol Q described above. A similar issue occurs if A uses fixed, long term, asymmetric
keys. Our example is admittedly contrived but it conveys well the composition issue. We could
make it more realistic by complexifying Q.

2.5 Several public keys for the same identity

One problem which is not fixed by the use of tagging is that dishonest parties may register and
use different keys to identify themselves to different users. This may yield composing issue as soon
as Q contains (non trivial) else branches. Notice that a dishonest agent may register different keys
for his identity. For example, A may believe C’s public keys is pkC while B believes C’s public keys
is pkC′. This can created unexpected disequalities that undermine the security of Q, as illustrated
by the following example.

A→ B : [B, pkB]sigA

A : [x, y1]sigA, [x, y2]sigB
y1 6=y2−→ B : s

A sends the public key of B as viewed by A, signed by A. Then whenever A receives two certificates
(one from A and one from B), she may check that the two public keys coincide. By interacting
with two sessions of the protocol (one with A and one with B), the attacker could obtain both
[C, pkC]sigA and [C, pkC′]sigB, and send them to A to learn the secret s. While this example is again
contrived, it presents well the intuition: in case two honest agents A and B do not share the same
view on C, some unexpected behaviors may occur. To circumvent this issue, we have two options:
either consider more demanding properties on the PKI (even dishonest keys should be consistently
distributed) or we analyze a more flexible Q (see next sections). We explore both options in this
paper. This issue did not surface in previous composition results since they either do not consider
else branches [17,16] or do not consider dishonest keys [15,2].

2.6 Related keys

Even if a PKI guarantees that honest agents have pairwise distinct public keys, there is no guar-
antee that these keys are independent. Key dependencies may lead to insecurity, as exemplified
by our next (pathological) example. Assume that, possibly in interaction with the PKI, A obtains
k as private key (skA = k) while B obtains 〈k, k〉 (skB = 〈k, k〉). This would break the security of
the following protocol Q.

A→ B : {N}pkB

A : in(x). let y = adec(x, 〈skA, skA〉) y=N−→ B : s

Then A sends a fresh nonce N encrypted with B’s public key and then expects a message x,
decrypts it with 〈skA, skA〉 and leaks a secret (s) if she retrieves her nonce N . This protocol would
clearly be insecure with the PKI sketched above while when keys are honestly and independently
generated the protocol is clearly secure.

One way to circumvent this problem is to ensure through syntactical requirements that Q
cannot break due to dependencies of keys provided by P . Interestingly, this issue is not specific
to public key distribution. However, previous results discarded such behaviors by either requiring
disjoint primitives [16] (the two protocols may not both use concatenation) or requiring explicitly
that keys established by P are atomic or at least viewed as atomic by Q [15,2].

2.7 Permissive Q

The examples in the previous sections show that typical security assumptions on a PKI fail, in
more than one way, to allow composition with arbitrary public key protocols. One option to recover
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composability is to require more from the PKI, in particular w.r.t. the dishonest keys. Another
option is to analyze Q under a more “permissive” assumption which makes no restrictions on how
keys of dishonest parties are created. For example, instead of analyzing sessions between A, B and
a dishonest C with perfectly distributed keys:

Q1(skA, pk(skB)) | Q2(skB , pk(skA)) | Q2(skB , pk(skC))

we may let agents input dishonest keys from the adversary.

Q1(skA, pk(skB)) | Q2(skB , pk(skA)) | in(x).Q2(skB , x)

Indeed, we show that if this permissiveQ is secure then it can be safely composed with a PKI, under
much lighter assumptions. Interestingly, such a permissive Q can be easily encoded in existing tools
(e.g. ProVerif, Tamarin, Scyther).

2.8 Summary

In this paper, we conduct a thorough analysis on how to compose safely protocols with a PKI.
Our main results are summarized in Table 1. The rest of the paper is devoted to the formalization
and proof of these results. Interestingly, we do not need to prove each result separately. Instead,
we can derive them from a general composition result (which will not be fully stated in the paper,
due to space constraints).

Q secure P secure PKI Additional hypotheses Permanent hypotheses

Qperm φPKI
Tagged Processes

• Only F0 as comon signature
• Tagged private keys

Disjoint keys

Qideal φPKI ∧ φideal
Tagged Processes • Tagged public keys

• Only PKI keys in asym. enc.Disjoint keys

Fig. 1. Summary of our composition results

3 Framework

A cryptographic protocol describes how agents exchange messages over a network. A standard
framework for modelling cryptographic protocols is a process algebra, such as the applied pi-
calculus [1]. It is typical for existing approaches to have an implicit notion of agents: an honest
agent is modeled as a process while dishonest agents are not described – their private keys are
simply passed to the attacker. This is not sufficient to describe some trust scenarios like those
underlying our results. We therefore introduce novel specification framework which enhances the
traditional process algebra with an explicit notion of agent. In particular, our framework provides
the user directly with an intuitive notion of honest and dishonest agents, discharging him from
having to hard-code which keys are known to the attacker. We also believe that it can be used to
specify more complex scenario such as subnetworks, e.g. the particular protocol topology described
in the introduction where a server links an unboundned number of pairs of parties.

3.1 Messages and agents

We assume a set of names N used to represent keys, nonces, etc. We consider a set of agents A =
AD ] AH where AD (resp. AH) represents the dishonest (resp. honest) agents, a set of integer
variables XN and a set of variables X = Xt ]Xa where Xt represents term variables and Xa agent
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variables. All these sets are infinite. Lastly, we consider a signature F = Fc ]Fd which consists of
a finite set of function symbols and their arity. The subsets Fc and Fd represent constructor and
destructor function symbols.

Many calculi (e.g. applied pi calculus [1]) rely extensively on the renaming of bounded variables
and names in presence of replication. However, this renaming becomes an hindrance when one
needs to refer to specific variables or names during the protocol execution. Moreover, the renaming
does not allow a simple mapping between the different agents and their shared knowledge. We
therefore replace part of the renaming with an alternative mechanism that relies on the notion of
parametrized agent and parametrized names.

We define the set of parametrized agents A as the set of elements from Xa or of the form
A[p1, . . . , pn] where A ∈ A, n ∈ N and pi ∈ N ∪ XN for i = 1 . . . n. We say that a parametrized
agent A[p1, . . . , pn] is honest (resp. dishonnest) when A ∈ AH (resp. AD) and we denote by
AH (resp. AD) their set. When there is no parameter, we write A for A[]. For example, for a
typical protocol, we will simply consider one honest parameterized agent H[i] and one dishonest
parameterized agent D[i] to model honest agents a1, a2 . . . and dishonest agents d1, d2 . . .. A local
server talking to agents inside an internal network can be be modeled as S[i] with agents A[i, j]
where agents A[i, 1], . . . , A[i, n] only talk to S[i].

Similarly, we define the set N of parametrized names as the set of elements of the form
k[A1, . . . An] where n ≥ 1, k ∈ N and Ai ∈ A for i = 1 . . . n. We say that a parametrized
name k[A1, . . . , An] is honest when A1, . . . , An are all honest and is otherwise dishonest.

Terms are inductively defined as variables, names, parametrized names and agents, closed by
application of function symbols (in a way that complies with arities). We say that a term t is a
constructor term when t does not contain destructor function symbols. A term t is ground if it
does not contain any variables and integer variables.

The destructor and constructor function symbols represent the cryptographic primitives used
in the protocol. We model their behavior by means of a rewriting system R and an equational
theory E that are standard rewriting techniques used in symbolic cryptographic models (e.g. [20]).
In our model we require that the equations in E are between name-free constructor terms and
that the rewrite rules in R are of the form f(t1, . . . , tn−1) → tn where t1, . . . , tn are name-free
constructor terms and f ∈ Fd. Moreover, we assume that R is convergent modulo E we denote by
u↓ the normal form of u modulo E. Lastly, we consider the predicate Msg(u) which holds when
the normal form modulo E of any subterm of u is a constructor term. In such a case, we say that
u is a message. Thanks to our expressive modeling which considers both a rewrite system and an
equational theory, we can model most primitives and in particular rather complex primitives such
as Exclusive Or, associative concatenation, Diffie-Hellman, or blind signatures.

Example 1. We consider the signatures F = Fc]Fd where Fd = {sdec/2, rsdec/2, adec/2, radec/2, check/2,
proj1/1, proj2/1} and Fc = {senc/2, rsenc/2, aenc/2, raenc/2, pk/1, sign/2, vk/1, 〈 〉/2, h/1,⊕/2, 0/0}.
They represent deterministic and randomized symmetric encryption as well as asymmetric encryp-
tion, signature, pairing, hash function and exclusive or. Their behavior can be modeled with the
following rewriting system R:

sdec(senc(x, y), y)→ x
check(sign(x, y), vk(y))→ x
adec(aenc(x, pk(y)), y)→ x

proji(〈x1, x2〉)→ xi with i ∈ {1, 2})
rsdec(rsenc(x, y, z), z)→ x

radec(raenc(x, y, pk(z)), z)→ x

and the following equational theory E that models Exclusive Or:

x⊕ x = 0 x⊕ (y ⊕ z) = (x⊕ y)⊕ z
x⊕ 0 = x x⊕ y = y ⊕ x
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3.2 Processes

Processes in our framework are modeled using the grammar in Figure 2. We discuss its less
standard aspects below, and we do so from the perspective of using this specification framework
to formulate our results.

Before we go into the details, we introduce a useful refinement of how assignment is usually
handled in processes. We are motivated by our composition scenario. A PKI infrastructure P
assign secret and public keys and these keys may then be passed through variable assignment to a
process Q that depends on these keys. To indicate what type of terms is expected to be assigned
in a variable, we introduce a typed variable assignment [x :=τ u]. Formally, we consider a set T of
types that contains sk,pk,vk, sig, corresponding to types for resp. private, public, verification,
and signing keys. Similarly to parametrized names, we also consider the infinite sets Xty and T of
type variables and parametrized types respectively. For example, a variable assignment with type
pk[A,B] will typically refer to the public key of B as viewed by A. As we shall see later, this is
very convenient to relate variables among different agents and different sessions. Given τ ∈ T , we
denote by τH the set of parametrized types τ [A1, . . . , An] where A1, . . . , An are honest.

P,Q = 0 null
| inA(c, x).P input
| outA(c, u).P output
| if u = v then P else Q conditional
| P | Q parallel
| !i P replication
| newA k.P name restriction
| agent(X,S).P agent selection
| [x :=τ u].P variable assignment

where A∪ ∈ A, S ⊆ A, X ∈ Xa, x ∈ Xt, i ∈ XN, τ ∈ T and c, u, v are terms.

Fig. 2. Grammar of processes

The grammar of our processes is provided in Figure 2 and explained below. Part of our grammar
is classical in cryptographic process algebra. Note that we annotate inputs, outputs and name
restrictions by the agent performing them. Moreover, a replication !i P is annotated by an integer
i. Intuitively, P is parametrized by the variable i that will be instantiated at each replication by
some (non necessarily fresh) integer n ∈ N. This mechanism allows to differentiate between different
replicas of P . For example, !iR1(k[S,A[i]]) | R2(k[S,A[i]]) represents a server talking to infinitely
many agents, each of them sharing a ket k[S,A] with him. Even more interestingly, we can represent
the case of an unbounded number of internal networks, where inside each network i, agents may
only communicate among themselves and to a router S[i], while routers may communicate between
them. The corresponding process is !iR1(S[i]).!j R2([S[i], A[i, j]]), which denotes multiples sessions
of R1 and R2 but where the A[i, j] may only talk to the same S[i]. The process agent(X,S) selects
an agent from S that instantiates X. Lastly, the process [x :=τ u] assigns the term u to the variable
x typed with τ .

Term variables are bound by input and variable assignment, agent variables are bound by agent
selection and names are bound by name restriction. We say that a process P is a role of A if all
outputs, inputs and name restrictions in P are done by A and all parametrized names and types
in P contain A as agent.

Example 2. We consider a PKI where agents generate their own private/public key pair and sign-
ing/verification key pair. They send both public key and verification key to a trusted server S
to be signed. When an agent A wishes to establish a connection with another agent B, he will
a request to B along with his own certificate. Upon receiving the certificates of B, A will check
that they are signed by the server and they correspond to the public and verification keys of B.
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The role of the agent can be modeled by the following context process PA[ A] where the hole A

corresponds to where the role of A in the composed protocol (e.g. Needham-Schroeder protocol)
will be plugged.

outA(pc[S,A], 〈pk(sk[A]), vk(sig[A])〉). Register
inA(pc[S,A], xcert).
[xskA :=sk[A] sk[A]].[xsigA :=sig[A] sig[A]].
outA(c, 〈〈request, B〉, xcert〉).inA(c, z). Request
if proj1(check(z, vk(sig[S]))) = B then Check

let y = proj2(check(z, vk(sig[S]))) in
[ypkB :=pk[A,B] proj1(y)].[yvkB :=vk[A,B] proj2(y)]. A Assign

We use the syntax let y = u in P as a syntactic sugar for P{u/y}. Note that in the registration
phase, sk[A] and sig[A] represent the private and signing keys of A. Since they are parametrized
names, they will remain the same through any different sessions. Furthermore, an attacker does
not have directly access to them unless A is dishonest. Also note that the agent A and the server
S are communicating through a parametrised channel pc[S,A] meaning that this channel is only
shared between A and S. After sending its request to B, the agent A is expecting a message of the
form sign(〈B, 〈t1, t2〉〉, sig[S]) where t1 and t2 respectively correspond to the public and verification
key of B. Once the agent A verifies the signature and the ownership of the certificate, he assigns
the variables accordingly.

The role of the receiver B is very similar to the one of A and can be modeled by the following
context process PB [ B ]. The process modeling the role of the server registering the key of an agent
A, denoted R(A), is described as follows:

inS(pc[S,A], x).outS(pc[S,A], sign(〈A, x〉, sig[S]))

A complete session of the PKI with a server S between two agents A and B can thus be modeled
by the following context process P [ A, B ] = PA[ A] | PB [ B ] | R(A) | R(B). Furthermore, if we
want to model unbounded number of sessions between honest and dishonest agents, with a unique
trusted server S. It corresponds to the following context process

!i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).P [ A, B ]

where S,H ∈ AH and D ∈ AD.

The following example models the well-known Needham-Schroeder-Lowe protocol [25].

Example 3. Needham-Schroeder-Lowe protocol can be informally described as follows.

A→ B : {pkA, Na}pkB
B → A : {pkB, Na, Nb}pkA
A→ B : {Nb}pkB

The following process QA represents the role of the initiator A in the Needham-Schroeder
protocol:

newA na.outA(c, aenc(〈pk(xskA), na〉, xpkB)).inA(c, y).
if na = proj1(proj2(adec(y, xskA))) then
if xpkB = proj1(adec(y, xskA)) then
outA(c, aenc(proj2(proj2(adec(y, xskA))), xpkB))

Note that xskA, xpkB are free in QA. Intuitively, these variables should be bound by a PKI infras-
tructure process P that assigns variables xskA and xpkB respectively with type sk[A] and pk[A,B]
where B is the agent contacted by A.

Definition 1. A configuration is a tuple (E ;P ;Φ;σ;µ) where:

– E is a set of names that corresponds intuitively to the private names of the process.
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– P is a process where names and variables are bound only once.
– Φ and σ are both substitutions of term variables to ground terms. The variables of dom(Φ) do

not appear anywhere else in the configuration.
– µ is a mapping from T to sets of term variables.

The set E represents the set of names that have been generated by honest agents. The substitution
Φ, also called frame, represents the messages that have been sent on channels controlled by the
attacker (and which the adversary therefore knows). The substitution σ represents the variables
instantiated so far. Lastly, µ(τ) for some τ is the set of variables that have been assigned with
type τ . We sometimes write P instead of the initial configuration (∅;P ; ∅; ∅; ∅).

The attacker can forge new messages by applying recipes to his knowledge that is by applying
function symbols. He may also use names, except the names generated by honest agents. Formally,
given a frame Φ and a set E , we define Recipe(Φ, E) as the set of terms M whose variables are of
the domain of Φ, whose names are not in E ∪ NH and that satisfies Msg(MΦ).

3.3 Semantics

We define the operational semantics of configurations through a transition relation K → K′ be-
tween configurations. The transition relation is defined by the rules given in Figure 3. We denote
by →∗ the transitive closure of →.

(E ;P | outA(c, u).Q;Φ;σ;µ)→ (E ;P | Q;Φ · {w → uσ};σ;µ) (Out)
if w is fresh, Msg(cσ), Msg(uσ) and ∃M ∈ Recipe(E , Φ).MΦ↓ = cσ↓

(E ;P | inA(c, x).Q;Φ;σ;µ)→ (E ;P | Q;Φ;σ · {x→ NΦσ};µ) (In)
if ∃M,N ∈ Recipe(E , Φ) s.t. MΦ↓ = cσ↓, Msg(cσ)

(E ;P | inA(c, x).Q | outB(d, u).R;Φ;σ;µ)→ (E ;P | Q | R;Φ;σ · {x→ uσ};µ) (Comm)
if Msg(cσ), Msg(dσ), Msg(uσ) and cσ↓ = dσ↓

(E ;P | if u = v then Q else R;Φ;σ;µ)→ (E ;P | Q;Φ;σ;µ) if uσ↓ = vσ↓, Msg(uσ), Msg(vσ) (Then)

(E ;P | if u = v then Q else R;Φ;σ;µ)→ (E ;P | R;Φ;σ;µ) if uσ↓ 6= vσ↓ or ¬Msg(uσ) or ¬Msg(vσ) (Else)

(E ;P |!iQ;Φ;σ;µ)→ (E ;P | !iQ | Q{i→ n}ρ;Φ;σ;µ) (Repl)
if n ∈ N and ρ is a fresh renaming of bound names and variables of Q

(E ;P | newA k.Q;Φ;σ;µ)→ (E ′;P | Q;Φ;σ;µ) where E ′ = E ∪ {k} if A ∈ AH else E ′ = E (New)

(E ;P | agent(X,S).Q;Φ;σ;µ)→ (E ;P | Q{X → A};Φ;σ;µ) if A ∈ S (Agent)

(E ;P | [x :=τ u].Q;Φ;σ;µ)→ (E ;P | Q;Φ;σ · {x→ uσ};µ′) (Assign)
if Msg(uσ), µ′(τ ′) = µ(τ ′) for τ ′ 6= τ and µ′(τ) = µ(τ) ∪ {x}

Fig. 3. Semantics of configuration

The rules follow the intuition we gave when describing the grammar of of processes. Note that
the rule New adds a name k restricted in newA k.P to the set E only if A is honest. If A is
dishonest, k becomes available to the attacker (since k /∈ E , it can be freely used in recipes by the
attacker). Also note that the rule Assign augments µ by adding x to the set µ(τ) of variables of
type τ .

Example 4. Consider the process QA of Example 3 representing the role of the initiator in the
Needham-Shroeder protocol. Recall that xskA and xpkB where free in QA. Assume that QB is a
process representing the role of the receiver with xskB and xpkA as free variables. The following
process models an unbounded number of sessions of the Needham-Schoeder protocol between
honest or dishonest agents where the public keys and private keys are ideally distributed.

!i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).(
QA{sk[A]/xskA

,pk(sk[B]) /xpkB
} | QB{sk[B]/xskB

,pk(sk[A]) /xpkA
})
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where H ∈ AH and D ∈ AD.

3.4 Logical formulas

To express security property, we introduce a first order logic on configurations. It will be particu-
larly convenient to specify the properties expected from a “good” PKI. We consider the following
atomic formula.

– u = v and u 6= v where u, v are terms
– x $ y and x 6$ y where x, y are term variables
– τ1 = τ2 where τ1, τ2 are parametrized types
– 6`x where x is a term variable

A valuation is a configuration K = (E ;P ;Φ;σ;µ). The satisfaction relation |=c of atomic
formulas is defined as

K |=c x $ y iff x = y
K |=c u = v iff uσ↓ = vσ↓
K |=c 6`x iff ∀M ∈ Recipe(E , Φ).Msg(MΦ)

implies MΦ↓ 6= xσ↓
K |=c τ1 =A τ2 iff ∃γ1, γ2 ∈ T.∃A1, . . . , An ∈ A.

τ1 = γ1[A1, . . . , An] ∧ τ2 = γ2[A1, . . . , An]

and is lifted as usual to logic formulas with boolean connectors ∧,∨ and universal and existential
quantification of parametrized agent and type variables. Moreover, we consider universal quan-
tification of term variables over parametrized type: ∀x ∈ τ.φ with x ∈ Xt, τ ∈ T . Its satisfaction
relation is defined as: K |=c ∀x ∈ τ.φ iff ∀x ∈ µ(τ),K |=c φ. Similarly, we also consider existential
quantification of term variables.

We say that a process P satisfies a formula φ, denoted P |= φ, if φ holds in an accessible
configuration, that is, K |=c φ for any configuration K such that P →∗ K.

Example 5. Consider a type sk and a process !i agent(X, {H[i], D[i]}).P where P contains a single
assignment variable [x :=sk(X) u]. The formula

∀A ∈ AH .∀y, z ∈ sk(A).y = z

expresses that any two sessions of some honest agent always assign x to the same term. Note that
the formula does not say anything about sessions of dishonest agents.

Secrecy. To model secrecy preservation, we consider an additional type secret, yielding a set
of types T that contains at least {sk,pk, sig,vk, secret}. We assume that variables that should
remain confidential are assigned the type secret. Then secrecy can be generically defined by the
following formula φsec.

∀τ ∈ secretH .∀x ∈ τ. 6`x

This formula states that any variable of type secretA for A honest should not be deducible (for
any of its instantiations).

Example 6. Continuing Example 3, we can require secrecy of the nonce na generated by A and
the nonce nb as received by A by simply modifying process QA as follows.

newA na.[z :=secret[A,B] na].
outA(c, aenc(〈pk(xskA), na〉, ypkB)).in.(c, y)
if na = proj1(proj2(adec(y, xskA))) then
if ypkB = proj1(adec(y, xskA)) then
[z′ :=secret[A,B] proj2(proj2(adec(y, xskA)))].
outA(c, aenc(proj2(proj2(adec(y, xskA))), ypkB))
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Authentication. In the literature, authentication properties are usually modeled using events.
In our formalism, variables assignments can play such a role. Consider for example two types ev1
and ev2 contained in T . The authentication property modeling a correspondence between the two
types can be defined by the following formula φauth.

∀τ ∈ ev1H .∀x ∈ τ.∃τ ′ ∈ ev2H .∃y ∈ τ ′.τ =A τ
′ ∧ x = y

Informally, the formula indicates that whenever a variable x of type ev1[A1, . . . , An] is assigned
a term with honest agents A1, . . . , An then there exists a variable y of type ev2[A1, . . . , An] must
have been assigned previously with the same term. We could also consider injective authentication
by further requiring the variable y to be unique, which can be expressed by ∀z ∈ τ ′.y 6= z ∨ y $ z.

Example 7. Continuing Example 3, authentication can be expressed through φauth and adding in
QA the assignment [x :=ev2[A,B] 〈nA, proj2(proj2(adec(y, xskA)))〉] and similarly in QB but with
the type ev1.

Composable properties. In this paper, we will show that our composition result preserves any
composable property, that is, a closed formula from our logic where quantification of agents are
over honest agents, i.e. of the form ∀A ∈ S and ∃A ∈ S with S ⊆ AH , and where any atomic
formula u = v and u 6= v involves only variables (u, v ∈ X ).

4 Composition hypotheses

In this section we formalize the hypothesis that underlie our composition theorem. Since the
development is rather technical we include here a small roadmap for this section. We begin (Section
4.1) with formalizing the guarantees that we view as minimal for any PKI as skecthed in Section 2.1.
Next, in Section 4.2, we formalize the composition of an arbitrary PKI protocol P with an arbitrary
other protocol Q. Most of the development here consists of syntactical restrictions which essentially
force that the composition between protocol P and Q.

The rest of the section deals with more subtle interactions between P and Q. In Section 4.3 we
explain how to deal with private keys: they should be only be used as key material in cryptographic
algorithms and, if sent as payload, they should be tagged. We discuss in Sections 4.3 and 4.4
two distinct approaches to ensure that the use of common primitives does not lead to unwanted
interference between the two composed components. Our theorem can employ either of the two
approaches.

We discuss each of the more subtle hypothesis that we require through the prism of an example
that motivates it. For simplicity, both the discussions and the formalism that we develop in this
paper consider the case of two party protocols; our results can be lifted to n-party protocols.

4.1 PKI properties

We consider PKIs that establish keys both for encryption and signatures. We model these types of
keys through a set T of types for assignment variables that includes the types sk,pk, sig and vk

respectively for asymmetric private keys, asymmetric public keys, signing keys, and verification
keys. Agents do not necessarily share the same values for keys, in particular, an agent A may
think that C’s public key is pkC while B believes that C’s public key is pkC′. We do not want to
discard this possibility (since as discussed in Section 2.5, this is a possible attack against a PKI).
We model this possibility using our notion of parametrized types. Specifically, we consider types
of the form sk[A], pk[A,B], sig[A] and vk[A,B] where pk[A,B] (resp. vk[A,B]) represents the
asymmetric public (resp. verification) key of B as viewed by A.

As stated in Section 2.1, we informally demand that a PKI satisfies the following properties.

– An honest agent has a unique public/private key pair and a unique verification/signing key
pair.
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– Honest agents of course have pairwise distinct private/signing keys.
– Keys are consistently distributed, that is, honest agents know each other public and verification

keys.
– Private/signing keys of honest agents are indeed private.

For asymmetric encryption keys, these properties are captured through the formula φasy below.
Each line corresponds to a bullet above.

φasy =̂ ∀A,B ∈ AH .∀x, y ∈ sk[A].x = y
∧∀x ∈ sk[A].∀y ∈ sk[B].A = B ∨ x 6= y)
∧∀x ∈ sk[A].∀y ∈ pk[B,A].pk(x) = y)
∧∀x ∈ sk[A]. 6`x)

We model the analogous property of a good PKI w.r.t. signing/verification keys with a formula
φsig obtained from φasy by replacing sk, pk and pk respectively by sig, vk and vk.

Finally, the overall guarantee that a PKI should offer are the two properties above together
with the requirement that the keys used for signing/verification are different from those used for
encryption/decryption:

φPKI =̂φasy ∧ φsig ∧ ∀A,B ∈ AH .∀x ∈ sk[A].∀y ∈ sig[B].x 6= y

The last part of φPKI indicates that signing keys and private asymmetric keys should be pairwise
distinct.

Example 8. Consider the PKI protocol modeled by the process P in Example 2. The protocol satis-
fies our security requirement: C[P [0, 0]] |= φPKI where C[ ] is the context !i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).
that declares the agents.

4.2 Composition Setup

In the previous section we introduced the security guarantee which we require from protocol P
(when analyzed in isolation). From this point onwards we consider the interaction between P and
Q. We start by defining the composition between a PKI protocol P and an arbitrary protocol Q.
Formally, we first consider a process P [ A, B ] representing a PKI protocol that establishes long
term keys for two agents A and B. Second, we consider two processes QA and QB modeling the
roles of a two-agents protocol Q in which keys are assumed to be already distributed. Our goal
is to identify on which conditions on P and Q their combination remains secure. Formally, the
combination of Q using the PKI P is expressed by the following process.

!i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).P [QA, QB ]

This process models an unbounded number of sessions between honest and dishonest agents.
Since we consider two-agent protocols, we assume w.l.o.g. the following properties on P and

Q.

H1. xskA, ypkB , xsigA, yvkB are the only possible free variables of QA, QA is a role of A and the hole

A in P is in the scope of [xskA :=sk[A] u], [ypkB :=pk[A,B] v], [xsigA :=sig[A] w], [yvkB :=vk[A,B]

r] for some u, v, w, r. We require the analogous hypothesis for QB and B . Moreover, the sets
of bound names and free names in P and Q are distinct.

This hypothesis simply formalises the setting and ensures that the process P [QA, QB ] avoids name
clashes and is closed, meaning that the free variables of QA and QB will be instantiated.

Moreover, we demand that the only shared keys are those that the PKI protocol P generates
and passes to Q. Both protocols may generate other keys, but these cannot be shared. In particular,
P and Q may not share long term keys.

H2. for all n[A1, . . . , Ap] ∈ pn(P [ A, B ]), for all m[B1, . . . , Bq] ∈ pn(Q1, Q2), n 6= m.
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4.3 Tagging

As discussed in Section 2, a PKI infrastructure and a protocol Q do not immediately yield a secure
composition. We first need to get rid of the behaviors explained in Section 2.2 where the PKI
infrastructure P intereferes with a protocol Q as they use the same primitives and the same keys.

Similarly to the approach of Arapinis, Cheval, and Delaune [2] we consider a setting where
P and Q may use arbitrary primitives, except for the shared ones, that should be the standard
primitives. Formally, we consider the following common signature F0 = F0

c ] F0
d where F0

d =
{sdec/2, rsdec/2, adec/2, radec/3, check/2, proj1/1, proj2/1} and F0

c = {senc/2, rsenc/3, aenc/2, raenc/3, pk/1, sign/2,
vk/1, 〈 〉/2, h/1}. The associated rewriting system R0 has been defined in Example 1.

We also consider two disjoints signatures for P and Q, namely FP ,FQ, as well as their asso-
ciated rewriting systems RP ,RQ and equational theories EP ,EQ.

Tagging of private keys We first need to guarantee that Q does not manipulare the structure of
private keys, to avoid the “related keys” example of Section 2.6. Such related keys will be tolerated
under the condition that Q never “opens” a private keys nor sends them as payload unless they
are tagged (in principle, private keys should not be sent in payload anyway). Formally, assume
that FQ contains two function symbols tagk and untagk such that untagk(tagk(x))→ x ∈ RQ and
tagk, untagk do not appear in any other rewrite rules in RQ or in EQ. The next hypothesis states
how private keys are tagged when used as payload:

H3. Process P [ A, B ] is built over FP ∪ F0, process QA, QB are built over FQ ∪ F0 \ {untagk}
and in QA and QB , the private and signing keys provided by the PKI can only be used in key
position with adec, radec, sign respectively or as the argument of tagk.

Tagging processes As illustrated in Section 2.2, primitives shared between P and Q should be
tagged. For instance, tagging an encryption senc(u, k) may be done by encrypting u alongside some
constant t, i.e. senc(〈t, u〉, k). As for the tags on private keys, we do not wish to specify exactly
how tags are implemented. Therefore, for all i ∈ {P,Q}, we assume the existence of two function
symbols tagi and untagi such that untagi(tagi(x)) → x ∈ RQ and tagi, untagi do not appear in
any other rewrite rules in Ri or in Ei.

Definition 2 (Tagged terms and processes). Let i ∈ {P,Q}. We define the set of i-tagged
terms, denoted TagT(i), as the smallest set of term built on F i∪F0 such that for all u1, . . . , un ∈
TagT(i), for all f/n ∈ F i ∪ F0,

– u ∈ TagT(i) if u ∈ N ∪N ∪ Xt
– untagi(f(u1, . . . , un)) ∈ TagT(i) if f ∈ {sdec, adec, rsdec, radec, check}
– f(tagi(u1), u2, . . . , un) ∈ TagT(i) if f ∈ {senc, aenc, rsenc, raenc, sign}
– f(u1, . . . , un) ∈ TagT(i) when f ∈ {h, 〈 〉, proj1, proj2, vk, pk} ∪ F i \ {untagi}

A process is said to be i-tagged if for all terms u contained in an action of the process ( i.e. input,
output, conditional and variable assignment), u ∈ TagT(i).

We can now state our condition for tagged processes:

C1. P [ A, B ] is P -tagged and QA, QB are Q-tagged

4.4 Disjoint public keys

Considering tagged protocols P and Q is an efficient way to ensure that honest agents do not
confuse messages from P with messages from Q. While simple, such a tagging assumption is rarely
met in practice. Even simple protocols such as the Needham-Schroeder-Love protocol would not
be covered by our composition result. We propose here an alternative assumption that is best
explained going back to the example described in Section 2.2 where the executions of P and Q
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may interfere with each other. To avoid such interferences, we need to make sure that the set of
keys that are used for encryption and signatures in P is disjoint from the set of keys used in Q.
Such a condition may however be difficult to check. We therefore formulate a stronger assumption,
usually met in practice.

Specifically, we assume that the only public/private keys dynamically generated by P and Q
are those passed from P to Q. This assumption is often met in practice, e.g. for our NSL example.
This is informally stated as follows.

C2. All terms in P [ A, B ] used in key positions w.r.t. F0 are ground, that is, P only uses keys
known in advance.

C3. All terms in QA, QB used in key positions w.r.t. F0 are either ground and disjoint from the
terms in P [ A, B ] used in key positions w.r.t. F0 or in {xskA, ypkB , xsigA, yvkB , xskB , ypkA, xsigB , yvkA}.
Similarly, Q uses only known keys or keys from P .

Note that these assumptions only restrict keys used in the common signatures. P and Q may of
course freely create keys provided they use a different encryption/signing scheme.

It then remains to ensure that the keys established by P (and therefore shared with Q) are
distinct from the other keys used by P . This property can be expressed in our logic by considering
a special type test ∈ T , and a process P ′ obtained from P by adding assignments of the form
[x :=test t] where x a fresh variable, for any t appearing in P as key position w.r.t. the common
signature F0. None of these shared terms should collide with the PKI keys established by P .

C4. P ′ |= ∀x ∈ test.∀y ∈ skH .∀z ∈ sigH .x 6= y ∧ x 6= z ∧ x 6= pk(y) ∧ x 6= vk(z).

Example 9. Continuing Example 2, the only keys used in key position are sig[S] (in the role of the
server) and vk(sig[S]) (when A and B check the certificates). Since none of these keys is freshly
bound, the process P ′[ A, B ] can simply be the process P [ A, B ] | [z1 :=test sig[S]] | [z2 :=test

vk(sig[S])]. Moreover, it is easy to show that no honest agent can be assigned the public key nor
the verification key of the server, meaning that P [ A, B ] satisfies the condition C4.

As previously mentioned, to ensure secure composition, we need either our protocols to verify
the disjoint-keys hypotheses or the tagging hypotheses. Therefore, we can state the following
hypothesis that gathers both cases:

H4. either condition C1 holds or conditions C2, C3 and C4 hold.

5 Composition results

The previous section lists necessary assumptions to avoid interferences between a PKI protocol P
and a subsequent protocol Q. We are therefore ready to state our result: if Q is secure and if P is
a good PKI then Q may securely use P for the establishment of its keys. In fact, we note that such
a composition result (still) does not hold in general since a good PKI provides weaker guarantees
than an ideal distribution of the keys as usually assumed in the analysis of Q as exemplified in
Section 2 We therefore need to introduce a more permissive Q which is the final ingredient to our
main composition result.

5.1 Permissive Q

Our “confusing material” example in Section 2.3 shows that Q should be analysed without assum-
ing dishonest keys to be honestly generated and distributed. Instead, a permissive Q should be
considered, where dishonest keys are simply provided by the attacker. The goal of this section is
to formally define permissive Q. We assume d ∈ N to be a fresh public channel (that is, a name
not used elsewhere) and that the names sk and sig do not occur in QA and QB .

Recall that Q = QA | QB and xskA, ypkB , . . . are the only possible free variables of Q
(cf H1). The ideal instantiation of the private variables and public variables of an agent A are
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σpriv
A = {sk[A]/xskA

,sig[A] /xsigA
} and σpub

B = {pk(sk[B])/ypkB
,vk(sig[B]) /yvkB

} respectively. Similarly,

we define σpriv
B and σpub

A . However, if A is dishonest, he should be able to chose his public and
verification keys freely, i.e., they are under the control of the attacker. Formally, we define

– IpubA [ ] = inB(d, ypkA).inB(d, yvkA).

– IpubB [ ] = inA(d, ypkB).inA(d, yvkB).

In the previous section, we stated all the hypotheses that we rely on to ensure a secure com-
position between the PKI P and the protocol Q. For our first main result, we consider that a
permissive Q satisfies the secrecy property.

Permissive Q is the protocol Q where honest keys are ideally distributed (and private keys
remain private) while dishonest ones are under the control of the attacker.

Definition 3 (Permissive Q). Let Q = QA | QB be a process satisfying assumptions H1 and
H2. We define permissive Q, denoted Qperm, as the following process:

!i agent(A, {H[i]}).!j agent(B, {H[j]}).
(OA[QA]σpriv

A σpub
B | OB [QB ]σpriv

B σpub
A )

|!i agent(A, {D[i]}).!j agent(B, {H[j]}).IpubA [OB [QB ]]σpriv
B

|!i agent(A, {H[i]}).!j agent(B, {D[j]}).IpubB [OA[QA]]σpriv
A

where OA[ ] = outA(d, 〈pk(xskA), ypkB , vk(xsigA), yvkB〉).[z1 :=secret[A] xskA].[z2 :=secret[A] xsigA].
with z1, z2 fresh and similarly for OB [ ].

The process OA[ ] simply outputs the public keys of A and B as viewed by A and indicates that the
private keys of A should stay secret, and similarly for OB [ ]. The first part of Qperm corresponds
to sessions between honest agents, where all keys are ideally distributed while the second (resp.
third) part of Qperm corresponds to sessions between an honest B (resp. A) and a dishonest A
(resp. B).

If permissive Q is secure, then Q can safely be composed with a good PKI.

Theorem 1. Let P [ A, B ] be a context process and Q = QA | QB be a process such that P and
Q satisfy hypotheses H1 to H4. Let φ be a composable property.

If the following conditions are satisfied

– !i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).
P [OA, OB ] |= φPKI (that is, P is a secure PKI)

– Qperm |= φsec ∧ φ (that is, Q is a secure protocol)

then P [QA, QB ] is secure, that is

!i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).P [QA, QB ] |= φ

where φsec =̂ ∀τ ∈ secretH .∀x ∈ τ. 6`x.

Note that we require P [OA, OB ] to satisfy φPKI and not just P . This is because we need to
make sure that P remains a secure PKI even when the public keys are indeed public.

Interestingly, the permissive version of a protocol can easily be encoded and analysed in
ProVerif. This is the first lesson learned from our work: if you wish to analyze a protocol Q
independently of the underlying PKI, you should analyze permissive Q instead of the ideal (stan-
dard) Q. As we shall see in the next section, it may be sufficient to analyse the ideal version of Q,
at the price of additional assumptions on either P or Q.
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5.2 Composition with an “ideal Q”

As far as we know, in symbolic models protocols are never analyzed in their “permissive” version.
Instead, all existing libraries consider all keys to be properly generated and distributed, including
those of dishonest parties. We will say that libraries consider ideal protocols. As illustrated by
our “confusing material” example in Section 2.3, such ideal protocols are indeed too abstract and
may be flawed when used in conjunction with a true PKI. So a natural question arrises: what
about the hundreds of protocols that have already been analyzed? Should all these analysis start
over? In this section, we study under which conditions it is sufficient to analyze an ideal protocol
Q. Clearly, secure composition requires to a corresponding strenghtening of the guarantees of the
PKI.

We first define formally “ideal Q”. It consists of the protocol Q where all keys are ideally
distributed.

Definition 4 (Ideal Q). Let Q = QA | QB be a process satisfying assumptions H1 and H2. We
define ideal Q, denoted Qideal, as the following process:

!i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).
(OA[QA]σpriv

A σpub
B | OB [QB ]σpriv

B σpub
A )

where OA[ ], OB [ ], σpriv
A , σpriv

B σpub
A σpub

B have been defined in Section 5.1.

Process QA is instantiated by the expected private keys σpriv
A and public keys σpub

B of B and
similarly for QB .

Tagged public keys As illustrated by our “confusing material” example in Section 2.3, when
public keys are used as payload, they may interfere with other parts of the protocol. To avoid
such intereferences, we need public keys to be “isolated”. So, similarly to the case of private keys
(Assumption H9), we now require that public keys used as payload are isolated within a tag. We
further require that only PKI keys may be used for asymmetric encryption/decryption in Q. This
is more formally stated as follows.

H5. In the processes QA and QB , the public and verification keys provided by the PKI can only
be used in key position with aenc, raenc, check respectively or below a tag tagk. Moreover, only
the private, public, signing, verification keys provided by the PKI can be used in key position
with the common signature or below a tag tagk.

Such an assumption is trivially satisfied when public keys are not used as payload but only for
encryption. However, a lesson learned from our analysis is that for protocols that use public key
as payloads then either permissive Q should be analyzed or tagging public keys is necessary.

Ideal PKI Even if public keys are properly used in Q, the attacker can control dishonest public
keys and interferes with Q’s behavior, as exemplified in Section 2.5 where we show unexpected
behaviors if honest agents do not share the same view of dishonest keys. Therefore, we consider an
additional property which ensures that public and verification keys of dishonest agents are consis-
tently distributed among honest agents. This is formally captured by formula φideal as follows.

φideal =̂ ∀A,B ∈ AH .∀C,D ∈ A.
∀x ∈ pk[A,C].∀y ∈ pk[B,D].C = D ⇔ x = y

∧ ∀x ∈ vk[A,C].∀y ∈ vk[B,D].C = D ⇔ x = y
∧ ∀x ∈ pk[A,C].∀y ∈ vk[A,C].x 6= y

The first line ensures that all agents share the same public key for a given agent C and that
conversely, public keys of distinct agents are pairwise distinct. The second lines states the same
property for verification keys. Finally, public and verification keys should of course be distinct.
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Such strong guarantees are typically met when public keys are issued by a (trusted) authority,
for example a governmental agency that issues electronic IDs.

The next theorem establishes that analysis of the ideal version of a protocol Q still enables
secure composition with a PKI protocol P , provided that P satisfies φPKI and φideal.

Theorem 2. Let P [ A, B ] be a context process and Q = QA | QB be a process such that P and
Q satisfy hypotheses H1 to H5. Let φ be a composable property.

If the following conditions are satisfied

– C[P [OA, OB ]] |= φPKI ∧ φideal (that is, P is an ideal PKI)
– Qideal |= φsec ∧ φ (that is, Q is an ideal secure protocol)

then P [QA, QB ] is secure, that is C[P [QA, QB ]] |= φ where C[ ] = !i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}). .

6 Conclusion

Standalone analysis of protocols that rely on long term asymmetric keys typically assumes idealized
key distribution through some PKI. Yet, this property is not naturally guaranteed by standard
PKIs. We have therefore initiated a study of the conditions under which the composition of PKIs
(for both asymmetric encryption and digital signatures) with arbitrary protocols that require such
keys yields a secure system.

We have shown that this is possible through modular analysis which considers the two pro-
tocols separately and requires minimal, easy to implement and verify conditions on how the two
components of the composition interact. In short, we have identified several useful recommenda-
tions. To deal with the weaker guarantees offered by PKIs, the permissive version of the protocol
that uses PKI keys should be analyzed rather than its ideal version. In addition, to eliminate
unwanted interference between the two components of the composition the protocols should not
share any keys (beyond those that the PKI distributes). In fact, standards already suggest that
this should be the case – our analysis confirms that this guarantee helps guarantee the desired
composability between protocols. Finally, we have shown that under some conditions, security
analysis of protocols that assumes idealized key distribution is sound if the PKI also guarantees a
consistent distribution of dishonest keys.

In our study, we also identified several cases where composition is not secure, and provided
examples. Some of these examples are contrived. As future work, we plan to explore whether real
case protocols cannot indeed be composed, or alternatively, identify why “realistic” examples do
not run into the same issues and formalize the corresponding theorems.
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A Tagging

We extend in this section the tagging scheme presented in [2]. In these paper, a tag is systematically
added in all encryptions and signatures of the common signature. It allows us to ensure that a
message coming from the protocol Q is not assimilated as a message of the protocol P , and vice
versa.

Example 10. Consider two simple process P = outA(c, senc(s, k)) andQ = inA(c, x).outA(c, sdec(x, k)).
Individually, P and Q both preserve the secrecy of s however P | Q and P · Q do not preserves
the secrecy s.

Similarly [2], we consider that protocols can only share a fix set of primitives that we denote
by Σ0 as defined as follows:

Σ0 = {sdec, senc, adec, aenc, pk, 〈, 〉, proj1, proj2, sign, check, vk, h}

We associate to Σ0 a rewrite system R0 defined as follows:

sdec(senc(x, y), y)→ x check(sign(x, y), vk(y))→ x
adec(aenc(x, pk(y)), y)→ x proji(〈x1, x2〉)→ xi with i ∈ {1, 2})
rsdec(rsenc(x, y, z), z)→ x radec(raenc(x, y, pk(z)), z)→ x

We also consider a family of signatures Σ1, . . . , ΣNsig
disjoint from each other and disjoint from

Σ0. In order to tag a process, we introduce a new family of signatures Σtag
1 , . . . , Σtag

Nsig
. For each

η ∈ {1, . . . , Nsig}, we have that Σtag
η = {tagη, untagη} where tagη and untagη are two function

symbols of arity 1 that we will use for tagging. The role of the tagη function is to tag its argument
with the tag η. The role of the untagη function is to remove the tag. To model this interaction
between tagη and untagη, we consider the rewrite system: Rtag

η = {untagη(tagη(x))→ x}.
Note that even though we consider the composition of only two protocols, say P and Q, we still

consider Nsig disjoint signatures. In fact, we will assume that P relies on some of the signatures
Σ1, . . . , ΣNsig

while Q relies on the remaining signature. In term of signature, it would have
been similar to consider a unique signature for P and a unique signature for Q, in addition to
the common signature. However, the resulting tagged process would have been different. Indeed,
tagging a process is syntactical transformation that depends on the signature we consider. Hence,
if P (or Q) already correspond to the composition of tagged processes then P is in fact uniformly
tagged. What matters is that the tags used in P differs from the one used in Q. As such, we split
the set {1, . . . , Nsig} into two disjoint sets α and β. Given a set γ ⊆ {1, . . . , Nsig}, we will denote

Σγ =̂
⋃
η∈γ Ση Σtag

γ =̂
⋃
η∈γ Σ

tag
η Σ+

γ =̂Σγ ∪Σtag
γ

Eγ =̂
⋃
η∈γ Eη Etag

γ =̂
⋃
η∈γ Etag

η E+
γ =̂ Eγ ∪ Etag

γ

Definition 5. Let η ∈ {1, . . . , Nsig}. We define the set of tagged terms w.r.t. η, denoted TagT(η),
as a set of elements of the form (u,Ks,Ka) where u is term built on Σ+

η ∪ Σ0 and Ks,Ka

are sets of terms built on Σ+
η ∪ Σ0. Moreover, TagT(η) is the smallest set such that for all

(u1,K
1
s ,K

1
a), . . . , (un,K

n
s ,K

n
a ) ∈ TagT(η), for all f/n ∈ Σ, for all v ∈ N ∪ X , if we denote

Ks = K1
s ∪ . . . ∪Kn

s and Ka = K1
a ∪ . . . ∪Kn

a then

1. (v, ∅, ∅) ∈ TagT(η)
2. (f(u1, . . . , un),Ks ∪ {un},Ka) if f ∈ {senc, rsenc, sdec, rsdec}
3. (f(u1, . . . , un),Ks,Ka ∪ {un}) if f ∈ {aenc, raenc, check}
4. (f(u1, . . . , un),Ks,Ka ∪ {pk(un)}) ∈ TagT(η) if f ∈ {adec, radec}
5. (f(u1, . . . , un),Ks,Ka ∪ {vk(un)}) ∈ TagT(η) if f = sign
6. (untagη(f(u1, . . . , un)),Ks,Ka) ∈ TagT(η) if f ∈ {sdec, adec, rsdec, radec, check}
7. (f(tagη(u1), u2, . . . , un),Ks,Ka) ∈ TagT(η) if f ∈ {senc, aenc, rsenc, raenc, sign}
8. (f(u1, . . . , un),Ks,Ka) ∈ TagT(η) when f ∈ {h, 〈 〉, proj1, proj2, vk, pk, tagη, tagkη} ∪Ση

22



Definition 6. Let η ∈ {1, . . . , Nsig}. We define the set of fully tagged terms w.r.t. η, denoted
FTagT(η), as {u | (u, ∅, ∅) ∈ TagT(η)}.

From a process representing a composition of two protocols, it is not necessary clear which part
of the process comes from one of the protocol or from the other. However, in order to correctly tag
the complete process, we need to know which tag to use for each individual actions. In [?,2], the
authors consider that a process is colored by the indices from {1, . . . , p}. Typically, they augment
the syntax of process with index from {1, . . . , p} representing the tag we should use in order to
tag the process.

Definition 7 (Colored plain process). A colored plain process is a plain process where all
outputs, input, conditionals, events and assignments are annotated by an element of {1, . . . , Nsig}.
Moreover, we require that all actions colored by η ∈ {1, . . . , Nsig} can only contain terms in the
signature Σ+

η ∪Σ0. Given a set γ ⊆ {1, . . . , Nsig}, we say than an action is colored with γ if this
action is colored by η ∈ {1, . . . , Nsig}.

Definition 8 (Fully tagged process). Consider a set η ⊆ {1, . . . , Nsig}. We say that P is fully
tagged w.r.t. η if all actions of P are colored by η and all terms contained in an action of P are
in FTagT(η).

B Material for combination

To handle the different signatures and equational theories, we consider the notion of ordered
rewriting. It has been shown that by applying the unfailing completion procedure to E where
E = R1 ] E1 ] R2 ] E2 ] . . . ] RNsig

] ENsig
is the union of disjoint rewriting systems and

equational theories (Fi,Ri,Ei) where Fi = F ic ]F id (for all i, j, we have that Fi ∩Fj = ∅), we can
derive a (possibly infinite) set of equations O such that on ground terms:

1. the relations =O and =R,E are equal,
2. the rewriting system →O is convergent.

Since the relation →O is convergent on ground terms, we define M↓R,E (or briefly M↓) as the
unique normal form of the ground term M for →O. These notations are extended as expected to
sets of terms.

We now introduce our notion of factors and state some properties on them w.r.t. the different
equational theories. A similar notion is also used in [?].

Definition 9 (factors). Let M ∈ T (Σ,N ∪ X ). The factors of M , denoted Fct(M), are the
maximal syntactic subterms of M that are alien to M

Lemma 1. Let M be a ground term such that all its factors are in normal form and root(M) ∈ Σi.
Then

– either M↓ ∈ Fct(M) ∪ {nmin},
– or root(M↓) ∈ Σi and Fct(M↓) ⊆ Fct(M) ∪ {nmin}.

Lemma 2. Let t be a ground term with t = C1[u1, . . . , un] where C1 is a context built on Σi,
i ∈ {1, . . . , p} and the terms u1, . . . , un are the factors of t in normal form. Let C2 be a context built
on Σi (possibly a hole) such that t↓ = C2[uj1 , . . . , ujk ] with j1, . . . , jk ∈ {0 . . . n} and u0 = nmin
(the existence is given by Lemma 1). We have that for all ground terms v1, . . . , vn in normal form
and alien to t, if

for every q, q′ ∈ {1 . . . n} we have uq = uq′ ⇔ vq = vq′

then C1[v1, . . . , vn]↓ = C2[vj1 , . . . , vjk ] with v0 = nmin.

A proof of these lemmas can be found in [?,?].
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C Name replacement

Now that we have fixed some notations, we have to explain how the replacement will be applied on
the shared process to extract the disjoint case. Actually a same term will be abstracted differently
depending on the context which is just above it.

In this section given γ ⊆ {1, . . . , Nsig}, and given S1, . . . , SNsig
sets, we will denote Sγ the set⋃

i∈γ Si. Let us consider α and β two sets such that α ∪ β = {1, . . . , p} and α ∩ β = ∅. Moreover,
we consider the predicate Pkeys(Ks,Ka) to hold if and only if

– Ks = [Ksi]
Nsig

i=1 , Ka = [Kai]
Nsig

i=1 , and
– for all i, j ∈ {1, . . . , p}, if i 6= j then Ksi ∩ Ksj = ∅ and Kai ∩ Kaj = ∅, and
– for all i ∈ {1, . . . , p}, for all u ∈ Kai, root(u) ∈ {vk, pk}

for some sets Ks1, . . . ,KsNsig
,Ka1, . . . ,KaNsig

of ground messages in normal form. We will also

sometimes assimilate Ks and Ka respectively for the sets
⋃Nsig

i=1 Ksi and
⋃Nsig

i=1 Kai.

Definition 10. Let u be a ground message in normal form. Let Ks = [Ksi]
Nsig

i=1 and Ka = [Kai]
Nsig

i=1

two sequences of of sets of messages in normal form. We define tagrootKs,Ka(u), namely the tag of
the root of u w.r.t. Ks and Ka as follows:

– tagrootKs,Ka(u) = ⊥ when u ∈ N ∪ X ;
– tagrootKs,Ka(u) = i if u = f(u1, . . . , un) and either

• f ∈ Σ+
i ; or

• f ∈ {senc, rsenc} and either un ∈ Ksi or root(u1) = tagi and un 6∈ Ks ; or
• f ∈ {aenc, raenc} and either un ∈ Kai or root(u1) = tagi and un 6∈ Ka; or
• f ∈ sign and either vk(u2) ∈ Kai or root(u1) = tagi and vk(u2) 6∈ Ka

– tagrootKs,Ka(u) = 0 otherwise.

Definition 11 (Compatibility). Let ρα, ρβ be two mappings from X to N . We define the set
Compatible(ρα, ρβ) as the smallest set such that for all substitutions σ of ground messages in
normal form, if for all γ ∈ {α, β}, for all x, y ∈ dom(σ) ∩ dom(ργ), xσ =E yσ ⇔ xργ = yργ then
σ ∈ Compatible(ρα, ρβ).

For all σ ∈ Compatible(ρα, ρβ), for all γ ∈ {α, β}, we define the extension of ργ w.r.t. σ,
denoted ρσγ , as follows:

– dom(ρσγ ) = {xσ | x ∈ dom(ργ) ∩ dom(σ)}, and
– for any x ∈ dom(ργ) ∩ dom(σ), ρσγ (xσ) =̂ ργ(x) .

Note that ρσγ and ρσβ are injective.
Similarly to [2], we introduce a function that will transform a message in normal form into

its abstraction. However, in this paper, we relax some hypothesis on the management of public
keys. In particular, in [2], they only allow names as argument for the function symbol pk and vk.
Furthermore, they also consider some restriction on the shape of the keys that can be passed down
from one protocol to the other, e.g. it cannot be a pair or a hash. For the rest of this paper, we
consider an infinite set Nabs ⊆ N such that nmin 6∈ Nabs.

Definition 12 (Setup). A setup is a tuple (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) where:

– ρα, ρβ are two mappings from X to Nabs; and
– µα, µβ are two injective mappings from ground terms to Nabs; and
– Ks, Ka are two sequences of sets of ground terms in normal form; and
– Hα,Hβ are two sets of ground terms in normal form; and
– σ is a substitution of ground messages in normal form.

Moreover, the following properties are satisfied:

1. Pkeys(Ks,Ka) and σ ∈ Compatible(ρα, ρβ)
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2. dom(ρσα), dom(ρσβ), dom(µα), dom(µβ), Hα and Hβ are pairwise disjoint except the pairs
(dom(ρσα),dom(µα)), (dom(ρσβ),dom(µβ)), (dom(ρσα),Hα) and (dom(ρσβ),Hβ)

3. img(ρσα), img(ρσβ), img(µα), img(µβ) are pairwise disjoint
4. img(ρα, ρβ , µα, µβ) ⊆ Nabs and names(img(σ),dom(ρσα, ρ

σ
β , µα, µβ),Ks,Ka,Hα,Hβ)∩Nabs = ∅

5. nmin 6∈ dom(ρσα, ρ
σ
β , µα, µβ) ∪ Ks

6. ∀γ ∈ {α, β}, ∀t ∈ dom(µγ), tagrootKs,Ka(t) 6∈ γ ∪ {0}
7. ∀γ ∈ {α, β}, ∀t ∈ dom(ρσγ ), tagrootKs,Ka(t) 6∈ γ and if tagrootKs,Ka(t) = 0 then root(t) ∈
{pk, vk, 〈 〉, h}

8. ∀t ∈ Hα ∪ Hβ, root(t) ∈ {pk, vk, h}
9. Ka ∩ dom(ρσα, ρ

σ
β) = ∅, Kaα ∩ Hα = ∅ and Kaβ ∩ Hβ = ∅

Definition 13 (Transformation). Let S be a setup. The transformation functions of S are two
mappings tr and trH from {α, β} and terms to terms, and defined as follows: For all γ ∈ {α, β},
for all terms u,

1. tr(γ, u) = uρσγ when u ∈ dom(ρσγ )
2. otherwise tr(γ, u) = trH(γ, u) when u ∈ Hγ
3. otherwise tr(γ, u) = uµγ when u ∈ dom(µγ)
4. otherwise tr(γ, u) = u when u is a name
5. otherwise tr(γ, u) = f(trω(u1), . . . , trω(un)) when u = f(u1, . . . , un), ω = γ (resp. α, β) and

tagrootKs,Ka(u) = 0 (resp. ∈ α, ∈ β).

For all γ ∈ {α, β}, for all terms u,

6. trH(γ, u) = uµγ when u ∈ dom(µγ)
7. otherwise trH(γ, u) = f(trH(γ, u1), . . . , trH(γ, un)) when u = f(u1, . . . , un) and either f = 〈 〉 or

f ∈ {pk, vk, h} and u ∈ Hγ
8. otherwise trH(γ, u) = tr(γ, u).

In the rest of this paper, we will also denote trH(γ, u) and trH(γ, u) by trHγ(u) and trHγ(u)
respectively.

Lemma 3. Let S be a setup and let tr and trH the transformation functions of S. Let t1 and
t2 be ground messages in normal form such that names(t1, t2) ∩ Nabs = ∅. We have that for all
γ, ω ∈ {α, β}, for all δ, δ′ ∈ {tr, trH}, δ(γ, t1) = δ′(ω, t2) implies t1 = t2.

Proof. We prove the result by induction on max(|t1|, |t2|).

Base case max(|t1|, |t2|) = 1: Let γ, ω ∈ {α, β}. Let δ, δ′ ∈ {tr, trH}. In such a case, we have that
t1, t2 ∈ N ∪A ∪N . Note that by Property 8 of Definition 12, t1, t2 6∈ Hγ ∪ Hω.

We do a small case analysis:

– Case δ(γ, t1) ∈ img(ρσγ ): In such a case, δ′(ω, t2) ∈ img(ρσγ ). By Properties 4 and 3 of Defi-
nition 12 and since names(t1, t2) ∩ Nabs = ∅, we deduce that δ = δ′ = tr and γ = ω′. Thus,
δ(γ, t1) = t1ρ

σ
γ = t2ρ

σ
γ = δ′(ω, t2). But ρσγ is injective. Therefore, we conclude that t1 = t2.

– Case δ′(ω, t2) ∈ img(ρσω): Similar to previous case.
– Case δ(γ, t1) ∈ img(µγ): In such a case, δ′(ω, t2) ∈ img(µγ). By Properties 4 and 3 of Defini-

tion 12 and since names(t1, t2)∩Nabs = ∅, we deduce that γ = ω′. Moreover, by Definition 13,
we deduce that δ(γ, t1) = t1µγ = t2µγ = δ′(ω, t2). But µγ is injective. Therefore, we conclude
that t1 = t2.

– Case δ(ω, t2) ∈ img(µω): Similar to previous case.
– Otherwise, by Definition 13, we deduce that δ(γ, t1) = t1 and δ′(ω, t2) = t2 meaning that
t1 = t2.

Inductive step max(|t1|, |t2|) > 1: Assume w.l.o.g. that |t1| > 1. Thus, there exists a symbol
function f and terms u1, . . . un such that t1 = f(u1, . . . un). Let γ, ω ∈ {α, β}. Let us first assume
that δ = tr. We do a case analysis on t1 which is in normal form.
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– Case t1 ∈ dom(ρσγ ): In such a case δ(γ, t1) ∈ img(ρσγ ) and we can apply the same reasoning as
in the base case.

– Case t1 ∈ Hγ : By Property 8 of Definition 12, we deduce that f ∈ {pk, vk, h}. Moreover, by
Property 6 of Definition 12, we also deduce that t1 6∈ dom(µγ). Hence trHγ(t1) = f(trHγ(u1),
. . . , trHγ(un)). Thus, root(trHω(t2)) ∈ f. If δ′ = tr then we deduce from Definition 13 that there
exist v1, . . . , vn such that f(v1, . . . , vn) = t2. Moreover, we also know that either t2 ∈ Hω and
so δ′(t2, ω) = f(trHω(v1), . . . , trHω(vn)) or else there exists ω′ ∈ {α, β} such that δ′(t2, ω) =
f(trω′(v1), . . . , trω′(vn)). Therefore, in all cases, we obtain that there exists δ′′ ∈ {tr, trH},
ω′ ∈ {α, β} such that δ′(t2, ω

′) = f(δ′′(v1, ω
′), . . . , δ′′(vn, ω

′)). Hence for all i ∈ {1, . . . , n},
trHγ(ui) = δ′′(vi, ω

′). By our inductive hypothesis, we obtain that for all i ∈ {1, . . . , n},
ui = vi which allows us to conclude that t1 = t2.

– Case t1 ∈ dom(µγ): In such a case, δ(γ, t1) ∈ img(µγ) and we can apply the same reasoning
as in the base case.

– Otherwise there exists γ′ ∈ {α, β} such that δ(γ, t1) = f(trγ′(u1), . . . , trγ′(un)). Therefore,
we deduce that root(δ′(ω, t2)) = f. If δ′ = tr then we deduce from Definition 13 that there
exists v1, . . . , vn such that f(v1, . . . , vn) = t2. Moreover, we also know that either t2 ∈ Hω and
so δ′(t2, ω) = f(trHω(v1), . . . , trHω(vn)) or else there exists ω′ ∈ {α, β} such that δ′(t2, ω) =
f(trω′(v1), . . . , trω′(vn)). Therefore, in all cases, we obtain that there exists δ′′ ∈ {tr, trH},
ω′ ∈ {α, β} such that δ′(t2, ω

′) = f(δ′′(v1, ω
′), . . . , δ′′(vn, ω

′)). Hence for all i ∈ {1, . . . , n},
trγ′(ui) = δ′′(vi, ω

′). By our inductive hypothesis, we obtain that for all i ∈ {1, . . . , n}, ui = vi
which allows us to conclude that t1 = t2.

Assume now that δ = trH. Once again we do a case analysis on t1.

– Case t1 ∈ dom(µγ): In such a case δ(γ, t1) ∈ img(µγ) and we can apply the same reasoning as
in the base case.

– Case f = 〈 〉 or f ∈ {pk, vk, h} and t1 ∈ Hγ : In such a case, δ(γ, t1) = f(trHγ(u1), . . . , trHγ(un)).
Hence, root(δ′(ω, t2)) = f. If δ′ = tr then we deduce from Definition 13 that there exists
v1, . . . , vn such that f(v1, . . . , vn) = t2. Moreover, t2 ∈ Hω and so δ′(t2, ω) = f(trHω(v1), . . . ,
trHω(vn)) or else there exists ω′ ∈ {α, β} such that δ′(t2, ω) = f(trω′(v1), . . . , trω′(vn)). There-
fore, in all cases, we obtain that there exists δ′′ ∈ {tr, trH}, ω′ ∈ {α, β} such that δ′(t2, ω

′) =
f(δ′′(v1, ω

′), . . . , δ′′(vn, ω
′)). Hence for all i ∈ {1, . . . , n}, trHγ(ui) = δ′′(vi, ω

′). By our induc-
tive hypothesis, we obtain that for all i ∈ {1, . . . , n}, ui = vi which allows us to conclude that
t1 = t2.

– Otherwise δ(γ, t1) = trγ(t1): We already covered that case. ut

Consider a setup (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) and its tranformation functions tr and trH.
We will denote by tr(Ks) and tr(Ka) respectively the sequences [trγ(Ksi) | γ ∈ {α, β} ∧ i ∈ γ]pi=1

and [trγ(Kai) | γ ∈ {α, β} ∧ i ∈ γ]pi=1.

Lemma 4. Let S be a setup and let tr and trH the transformation functions of S. Let u be a
ground message in normal form such that names(u) ∩Nabs = ∅. Let γ ∈ {α, β}. We have that:

– trγ(u) and trHγ(u) are in normal form; and
– root(trγ(u)) 6= root(u) implies root(trγ(u)) = ⊥ and u ∈ dom(ρσγ , µγ); and
– root(trHγ(u)) 6= root(u) implies root(trHγ(u)) = ⊥ and u ∈ dom(µγ); and
– tagroottr(Ks),tr(Ka)(trγ(u)) 6= tagrootKs,Ka(u) implies tagroottr(Ks),tr(Ka)(trγ(u)) = ⊥ and u ∈

dom(ρσγ , µγ); and
– tagroottr(Ks),tr(Ka)(trHγ(u)) 6= tagrootKs,Ka(u) implies tagroottr(Ks),tr(Ka)(trHγ(u)) = ⊥ and u ∈

dom(µγ).

Proof. We prove this result by induction on |u|.
Base case |u| = 1: In such a case, we have that u ∈ N ∪ A ∪ N meaning that root(u) = ⊥ and
tagrootKs,Ka(u). By Definition 13, we also have that trγ(u), trHγ(u) ∈ N ∪A∪N . Therefore, trγ(u)
and trHγ(u) are in normal form, root(trγ(u)) = root(trHγ(u)) = ⊥ and tagroottr(Ks),tr(Ka)(trγ(u)) =
tagroottr(Ks),tr(Ka)(trHγ(u)) = ⊥. Hence the result holds.
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Inductive |u| > 1: In such a case, u = f(u1, . . . , un). Let us first consider trγ(u). We do a case
analysis on u.

Case u ∈ dom(ρσγ ): In such case, by Definition 13, we have that trγ(u) ∈ img(ρσγ ) ⊆ Nabs. Thus,

trγ(u) is in normal form. Moreover, root(trγ(u)) = ⊥ and u ∈ dom(ρσγ ). Similarly, we have that
tagroottr(Ks),tr(Ka)(trγ(u)) = ⊥ and u ∈ dom(ρσγ ). Therefore the result holds.

Otherwise case u ∈ Hγ : In such a case, by Properties 8 and 6, we deduce that f ∈ {pk, vk, h}
and u 6∈ dom(µγ). Thus, trγ(u) = f(trHγ(u1), . . . , trHγ(un)). By inductive hypothesis, we deduce
that for all i ∈ {1, . . . , n}, trHγ(ui) is in normal form and so trγ(u) is in normal form. Moreover,
root(trγ(u)) = root(u) and tagroottr(Ks),tr(Ka)(trγ(u)) = tagrootKs,Ka(u) = 0. Therefore, the result
holds.

Otherwise case u ∈ dom(µγ): In such case, by Definition 13, we have that trγ(u) ∈ img(µγ) ⊆
Nabs. Thus, trγ(u) is in normal form. Moreover, root(trγ(u)) = ⊥ and u ∈ dom(µγ). Similarly,
tagroottr(Ks),tr(Ka)(trγ(u)) = ⊥ and u ∈ dom(µγ). Therefore the result holds.

Otherwise case u = C[v1, . . . , vm] where C is built on Σ+
j with j ∈ {1, . . . , p}, C is different from a

hole and for all k ∈ {1, . . . ,m}, vk are factors in normal form of u: Let ω ∈ {α, β} such that j ∈ ω.
We deduce that tagrootKs,Ka(u) ∈ ω. Let p a position of C different from a hole. Since root(u|p) ∈
Σ+
j , we obtain that tagrootKs,Ka(u|p) ∈ ω. Note that by Properties 8 and 7 of Definition 12, we

deduce that for all positions p of C different from a hole, u|p 6∈ dom(ρσω) ∪ Hω. Therefore, by
Definition 13, we obtain that trγ(u) = C[trω(v1), . . . , trω(vm)]. Since C is not a hole, we know
that |v1| < |u|, . . . , |vm| < |u|. Thanks to our inductive hypothesis on v1, . . . , vm, we have that
trω(v1), . . . , trω(vm) are in normal form and trω(v1), . . . , trω(vm) are factors of trγ(u). Recall that
u is in normal form, meaning that C[v1, . . . , vm]↓ = C[v1, . . . , vm]. By Lemmas 2 and 3, we deduce
that

C[trω(v1), . . . , trω(vm)]↓ = C[trω(v1), . . . , trω(vm)]

i.e. trγ(u)↓ = trγ(u). Furthermore, we have root(trγ(u)) = root(u) and tagroottr(Ks),tr(Ka)(trγ(u)) =
tagrootKs,Ka(u).

Otherwise case f ∈ Σ0: By Definition 13, there exists ω ∈ {α, β} such that trγ(u) = f(trω(u1),
. . . , trω(un)). Note that since u is a message, f ∈ {senc, rsenc, aenc, raenc, pk, sign, vk, h, 〈 〉}. In
this case, we have that trγ(u)↓ = f(trω(u1)↓, . . . , trω(un)↓). Since by inductive hypothesis, trω(uk)
is in normal form, for all k ∈ {1, . . . , n}, we can deduce that trγ(u) is also in normal form and
root(trγ(u)) = f = root(u). We do a case analysis on f to determine tagroottr(Ks),tr(Ka)(trγ(u)):

Case 1, f ∈ {pk, vk, h, 〈 〉}: In such a case, by Definition 10, we obtain that tagrootKs,Ka(u) =
tagroottr(Ks),tr(Ka)(trγ(u)) = 0.

Case 2, f ∈ {senc, rsenc}, tagrootKs,Ka(u) ∈ ε, ε ∈ {α, β}: Let i ∈ ε such that tagrootKs,Ka(u) =
i. First of all, by Definition 13, we know that trγ(u) = f(trε(u1), . . . , trε(un)). Moreover, by Def-
inition 10, we know that either (a) un ∈ Ksi or (b) root(u1) = tagi and un 6∈ Ks. In case (a),
by definition of tr(Ks), we have trε(Ksi) = tr(Ks)i. Therefore, trε(um) ∈ tr(Ks)i meaning that
tagroottr(Ks),tr(Ka)(trγ(u)) = i. In case (b), root(u1) = tagi implies tagrootKs,Ka(u1) = i. Therefore,
by Properties 7 and 6 of Definition 12, we deduce that u1 6∈ dom(ρσε , µε). Hence, by apply-
ing our inductive hypothesis on u1, we deduce that root(trε(u1)) = tagi. Hence it remains to
prove that trε(um) 6∈ tr(Ks). We prove this by contradiction. If trε(un) ∈ tr(Ks) then there exist
ε′ ∈ {α, β} and w ∈ Ks such that trε′(w) = trε(un). Note that by Property 4 of Definition 12,
names(Ks) ∩ Nabs = ∅. Hence by Lemma 3, we deduce that w = un and so un ∈ Ks which is a
contradiction with our hypothesis un 6∈ Ks. Hence, we conclude that tagroottr(Ks),tr(Ka)(trγ(u)) = i.

Case 3, f ∈ {senc, rsenc}, tagrootKs,Ka(u) = 0: In such a case, trγ(u) = f(trγ(u1), . . . , trγ(un)).
Moreover, by Definition 10, we know that un 6∈ Ks and root(u1) 6∈ {tag1, . . . , tagp}. By our induc-
tive hypothesis on u1, we deduce that root(trγ(u1)) 6∈ {tag1, . . . , tagp}. Assume by contradiction
that trγ(un) ∈ Ks. In such a case, there exist ε ∈ {α, β} and w ∈ Ks such that trγ(un) = trε(w).
Note that by Property 4 of Definition 12, names(Ks) ∩ Nabs = ∅. Hence by Lemma 3, we deduce
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that w = un and so un ∈ Ks which is a contradiction with un 6∈ Ks. Hence, trγ(un) 6∈ tr(Ks) and
so tagroottr(Ks),tr(Ka)(trγ(u)) = 0.

Case 4, f ∈ {aenc, raenc}, tagrootKs,Ka(u) ∈ ε, ε ∈ {α, β}: Similar to the case 2.2 (by replacing
Ks by Ka in the proof).

Case 5, f ∈ {aenc, raenc}, tagrootKs,Ka(u) = 0: Similar to the case 2.3 (by replacing Ks by Ka
in the proof).

Case 6, f = sign, tagrootKs,Ka(u) ∈ ε, ε ∈ {α, β}: Let i ∈ ε such that tagrootKs,Ka(u) = i. In
such a case, trγ(u) = sign(trε(u1), trε(u2)). By Definition 10, we know that either (a) vk(u2) ∈
Kai or (b) root(u1) = tagi and vk(u2) 6∈ Ka. In case (a), we have tagrootKs,Ka(vk(u2)) = 0.
Note that by Property 9 of Definition 12, vk(u2) 6∈ Hε and vk(u2) 6∈ dom(ρσε ). Also note that
by Property 6 of Definition 12, vk(u2) 6∈ dom(µε). Therefore, by Definition 13, we deduce that
trε(vk(u2)) = vk(trε(u2)). Since trε(vk(u2)) ∈ tr(Ka)ε by definition, we obtain that vk(trε(u2)) ∈
tr(Ka)ε and so tagroottr(Ks),tr(Ka)(trγ(u)) = i. In case (b), root(u1) = tagi implies tagrootKs,Ka(u1) =
i. Therefore, by Property 7 of Definition 12, we deduce that u1 6∈ dom(ρσε ). Hence, by applying
our inductive hypothesis on u1, we deduce that root(trε(v1)) = tagi. Hence it remains to prove
that vk(trε(u2)) 6∈ tr(Ka). We prove this by contradiction. If vk(trε(u2)) ∈ tr(Ka) then there exist
ε′ ∈ {α, β} and vk(w) ∈ Ka such that trε′(vk(w)) = vk(trε(u2)). Since tagrootKs,Ka(vk(w)) = 0
and root(trε′(vk(w))) = vk, we deduce from Definition 13 that either trε′(vk(w)) = vk(trε′(w)) or
trε′(vk(w)) = vk(trHε′(w)). By Property 4 of Definition 12, we know that names(w) ∩ Nabs = ∅.
Moreover, we already know that names(u)∩Nabs = ∅. Hence, by Lemma 3, we obtain that u2 = w
which would imply that vk(u2) ∈ Ka. Hence a contradiction with our hypothesis vk(u2) 6∈ Ka.
Thus, we conclude that tagrootKs,Ka(trγ(u)) = i.

Case 7, f = sign, tagrootKs,Ka(u) = 0: In such a case, by Definition 10, we know that vk(u2) 6∈ Ka
and root(u1) 6∈ {tag1, . . . , tagp}. By our inductive hypothesis on u1, we deduce that root(trγ(u1)) 6∈
{tag1, . . . , tagp}. We show that vk(trγ(u2)) 6∈ δ(Ka). Assume by contradiction that vk(trγ(u2)) ∈
δ(Ka). Thus, there exist ε ∈ {α, β} and vk(w) ∈ Ka such that trε(vk(w)) = vk(trγ(u2)). Since
tagrootKs,Ka(vk(w)) = 0 and root(trε(vk(w))) = vk, we deduce from Definition 13 that either
trε(vk(w)) = vk(trε(w)) or trε(vk(w)) = vk(trHε′(w)). By Property 4 of Definition 12, we know
that names(w) ∩ Nabs = ∅. Moreover, we already know that names(u) ∩ Nabs = ∅. Hence, by
Lemma 3, we obtain that u2 = w which would imply that vk(u2) ∈ Ka. Hence a contradiction
with our hypothesis vk(u2) 6∈ Ka. Thus, we conclude that tagrootKs,Ka(trγ(u)) = 0.

This conclude the proof for the different properties on trγ(u). It remains to show the properties
on trHγ(u). We do a case analysis on u.

Case u ∈ dom(µγ): In such case, by Definition 13, we have that trHγ(u) ∈ img(µγ) ⊆ Nabs.
Thus, trHγ(u) is in normal form. Moreover, root(trHγ(u)) = ⊥ and u ∈ dom(µγ). Similarly,
tagroottr(Ks),tr(Ka)(trHγ(u)) = ⊥ and u ∈ dom(µγ). Therefore the result holds.

Otherwise case f = 〈 〉 or f ∈ {pk, vk, h} and u ∈ Hγ : In such a case, trHγ(u) = f(trHγ(u1), . . . ,
trHγ(un)). Hence root(trHγ(u)) = root(u) and tagroottr(Ks),tr(Ka)(trHγ(u)) = tagrootKs,Ka(u) = 0.
Moreover, by our inductive hypothesis, we obtain that for all i ∈ {1, . . . , n}, trHγ(ui) is in normal
form hence, we conclude that trHγ(u) is in normal form. Therefore, the result holds.

Otherwise trHγ(u) = trγ(u): Case already covered. ut

Lemma 5. Let S be a setup and let tr and trH the transformation functions of S. Let t1 and
t2 be ground messages in normal form such that names(t1, t2) ∩ Nabs = ∅. We have that for all
δ, δ′ ∈ {tr, trH}, for all γ, ω ∈ {α, β}, δ(γ, t1) ∈ st(δ′(ω, t2)) implies t1 ∈ st(t2).

Proof. We prove the result by induction on |t2|.

Base case |t2| = 1: In such a case, t2 ∈ N ∪ N ∪ A and so δ(γ, t1) = δ′(ω, t2). By Lemma 3, we
obtain that t1 = t2.

Inductive step |t2| > 1: There exists a symbol function f and terms u1, . . . un such that t2 =
f(u1, . . . un). By Lemma 4, we know that either root(δ′(ω, t2)) = ⊥ or root(δ′(ω, t2)) = f. In the
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former case, we obtain that δ(γ, t1) = δ′(ω, t2) and so we conclude with Lemma 3. In the latter case,
by Definition 13, we deduce that there exist ω′ ∈ {α, β} and δ′′ ∈ {tr, trH} such that δ′(ω, t2) =
f(δ′′(ω′, u1), . . . , δ′′(ω′, un)). Thus, δ(γ, t1) ∈ st(δ′(ω, t2)) implies either δ(γ, t1) = δ′(ω, t2) or there
exists k ∈ {1, . . . , n} such that δ(γ, t1) ∈ st(δ′′(ω′, uk)). In the former case, we can once again
conclude with Lemma 3. In the latter case, we conclude by inductive hypothesis on uk. ut

D Executed terms

For all substitution σ of ground terms in normal form, for all γ ∈ {α, β}, we denote by trγ(σ) the
substitution such that dom(σ) = dom(trγ(σ)) and for all x ∈ dom(trγ(σ)), xtrγ(σ) = trγ(xσ).

Definition 14. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let γ ∈ {α, β}. Let i ∈ γ.
Let u be a ground term. We define the two predicates PS〈 〉(u, γ) and PSe-keys(u, i) as follows:

– PS〈 〉(u, γ) iff for all p ∈ Pos(u), u|p ∈ dom(ρσγ ) implies there exists p′ strict prefix of p such

that root(u|p′) 6= 〈 〉.
– PSe-keys(u, i) iff u 6∈ dom(ρσγ ) ∪ (Ka \ Kai) and if root(u) ∈ {pk, vk} then
• u|1 ∈ dom(ρσγ )⇒ u 6∈ Hγ
• u|1 6∈ dom(ρσγ )⇒ PS〈 〉(u|1, γ)

Lemma 6. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let γ ∈ {α, β}. For all ground
term u, if names(u) ∩Nabs = ∅ and PS〈 〉(u, γ) then trγ(u) = trHγ(u).

Proof. We prove this result by induction on |u|.

Base case |u| = 1: In such a case, u ∈ N ∪ A ∪ N . Note that by our hypothesis, we know that
u 6∈ dom(ρσγ ). If u ∈ Hγ then we directly have by Definition 13 that trγ(u) = trHγ(u). Else if
u ∈ dom(µγ) then we know by Definition 13 that trHγ(u) = uµγ . Moreover, since u 6∈ dom(ρσγ ), we
also obtain that trγ(u) = uµγ and so the result holds. Else, by Definition 13 (Case 8), we directly
obtain that trγ(u) = trHγ(u).

Inductive step |u| > 1: In such a case, we deduce that u = f(u1, . . . , un) for some function symbol
f and ground terms u1, . . . , un. Let us do a case analysis on u.

– u ∈ dom(ρσγ ): This case is impossible by our hypothesis.
– u ∈ Hγ : Once again the result directly holds by Definition 13.
– u ∈ dom(µγ): We obtain directly by Definition 13 that trγ(u) = trHγ(u)
– Otherwise: By Definition 13, we know that either f = 〈 〉 and trHγ(u) = f(trHγ(u1), . . . , trHγ(un))

or else trHγ(u) = trγ(u). In the latter case, the result directly holds. In the former case, we
also know by Definition 13 that trγ(u) = f(trγ(u1), . . . , trγ(un)). Let us now show that we can
apply our inductive hypothesis on u1, . . . , un. We already know that for all i ∈ {1, . . . , n},
|ui| < |u|. Moreover, since ui ∈ st(u), we directly have that names(ui) ∩ Nabs = ∅. Lastly, let
p ∈ Pos(ui) such that ui|p ∈ dom(ρσγ ). Hence, i ·p ∈ Pos(u). Hence by our hypothesis on u, we
obtain that there exists p′ strict prefix of i · p such that root(u|p′) 6= 〈 〉. But f = 〈 〉. Hence, we
deduce that there exist q strict prefix of p such that root(u|i·q) 6= 〈 〉. Lastly, root(u|i·q) 6= 〈 〉
implies root(ui|q) 6= 〈 〉. Therefore, we can apply our inductive hypothesis u1, . . . , un meaning
that for all i ∈ {1, . . . , n}, trHγ(ui) = trγ(ui) and so trγ(u) = trHγ(u). ut

Lemma 7. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let γ ∈ {α, β}. Let i ∈ γ.
For all ground term u, for all f ∈ {pk, vk}, if names(u) ∩ Nabs = ∅ and PSe-keys(f(u), i) then
trγ(f(u)) = trHγ(f(u)) = f(trγ(u)).

Proof. Let us do a case analysis on f(u).

– Case f(u) ∈ dom(ρσγ ): Such a case is impossible since we know from PSe-keys(f(u), i) that f(u) 6∈
dom(ρσγ ).

29



– Otherwise case f(u) ∈ Hγ : In such a case, we know by definition that trγ(f(u)) = trHγ(f(u)).
Note that by Property 6 of Definition 12, we deduce that f(u) 6∈ dom(µγ). Hence, trγ(f(u)) =
f(trHγ(u)). However, since PSe-keys(f(u), i) and f(u) ∈ Hγ , we deduce that u 6∈ dom(ρσγ ) and so

PS〈 〉(u, γ). By Lemma 6, we obtain that trHγ(u) = trγ(u) which allows us to conclude.

– Otherwise case f(u) ∈ dom(µγ): Such a case is impossible by Property 6 of Definition 12.
– Otherwise: We deduce that trγ(f(u)) = f(trγ(u)). Moreover, since f(u) 6∈ Hγ ∪ dom(µγ), we

also know by definition that trHγ(f(u)) = trγ(f(u)). This allow us to conclude. ut

Definition 15. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let u be a message in normal
form. We define the predicate PSgen(u) to hold iff for all γ ∈ {α, β}, for all i ∈ γ, for all p ∈ Pos(u),

– if tagrootKs,Ka(u|p) = i and root(u|p) = f/n then ∃j ∈ {1, . . . , n}.¬PS〈 〉(u|p·j , γ) implies f ∈
{senc, rsenc, sign, tagki}, j = n and u|p·n ∈ dom(ρσγ )

– if tagrootKs,Ka(u|p) = 0 and root(u|p) = f/n 6∈ {pk, vk, h, 〈 〉} then for all j ∈ {1, . . . , n},
PS〈 〉(u|p·j , γ).

Definition 16 (e-terms). Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let γ ∈ {α, β}.
Let i ∈ γ. We define the set of executed terms w.r.t. S and i, denoted E-termsi(S), as the
smallest set such that (u,Ks,Ka) ∈ E-termsi(S) when the following properties hold:

1. (u,Ks,Ka) ∈ TagT(i) and u 6∈ dom(ργ)
2. Ksσ↓ ⊆ Ksi and Kaσ↓ ⊆ Kai
3. names(u) ∩Nabs = ∅, names(u) ∩ dom(ρσγ , µγ) = ∅ and nmin 6∈ names(u)

4. fv(u) ⊆ dom(σ) and ∀x ∈ fv(u), PSgen(u) and either x ∈ dom(ργ) or PS〈 〉(xσ, γ)

5. for all p ∈ Pos(u), if u|p ∈ dom(ργ) then either there exists p′ such that p = p′ · 1 and
root(u|p′) ∈ {vk, pk, tagki} or there exist f/n ∈ {senc, rsenc, sdec, rsdec, adec, radec, sign} and p′

such that p = p′ · n and root(u|p′) = f
6. for all p ∈ Pos(u), if root(u|p) ∈ {pk, vk, h, 〈 〉} then PSe-keys(u|pσ↓, i)
7. for all p ∈ Pos(u), if root(u|p) ∈ {proj1, proj2} then PSe-keys(u|p·1σ↓, i)
8. for all p ∈ Pos(u), if root(u|p) = sign then PSe-keys(vk(u|p·2)σ↓, i)
9. for all p ∈ Pos(u), if root(u|p) ∈ {adec, radec} then PSe-keys(pk(u|p·2)σ↓, i)

10. for all p ∈ Pos(u), for all f/n ∈ {aenc, raenc, check}, if root(u|p) = f then PSe-keys(u|p·nσ↓, i)
11. for all p ∈ Pos(u), for all f/n ∈ {senc, rsenc, sdec, rsdec}, if root(u|p) = f then u|p·nσ↓ 6∈ Ks\Ksi

Lemma 8. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let γ ∈ {α, β}. Let i ∈ γ. For all
(u,Ks,Ka) ∈ E-termsi(S), for all (v,K ′s,K

′
a) ∈ TagT(i), if v ∈ st(u), v 6∈ dom(ργ), K ′s ⊆ Ks

and K ′a ⊆ Ka then (v,K ′s,K
′
a) ∈ E-termsi(S).

Proof. Direct from Definition 16. ut

Lemma 9. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let γ ∈ {α, β}. Let i ∈ γ. For all
(u,Ks,Ka), (u′,K ′s,K

′
a) ∈ E-termsi(S), for all p ∈ Pos(u), if u|p ∈ X \dom(ργ) and u|pσ = u′σ↓

then there exists (v,K ′′s ,K
′′
a ) ∈ E-termsi(S) such that:

– uσ and u′σ being messages implies vσ is a message
– v = u[u′]p and vσ↓ = uσ↓

Proof. Direct from Definitions 5 and 16. ut

D.1 Link between σ and trγ(σ) in an executed term

Lemma 10. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup and let tr and trH be the trans-
formation functions of S. Let γ ∈ {α, β}. Let i ∈ γ. Let (u,Ks,Ka) ∈ E-termsi(S). If uσ is a
message then utrγ(σ)↓ = trHγ(uσ↓) = trγ(uσ↓), PSgen(uσ↓), PS〈 〉(uσ↓, γ) and utrγ(σ) is a message.
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Proof. By Property 1 of Definition 16, we know that there existsKs andKa such that (u,Ks,Ka) ∈
TagT(i). We prove the result by induction on |u|.

Base case |u| = 1: In such a case, u ∈ N ∪N ∪A∪X . If u ∈ N ∪N ∪A, we know from Definition 13
that trγ(u), trHγ(u) ∈ N∪N∪A and so trγ(u)↓ = trγ(u) and trHγ(u)↓ = trHγ(u). Note that we also
have that uσ↓ = u. Thanks to Property 3 of Definition 16, we know that u 6∈ dom(ρσγ , µγ). Lastly,
thanks to Property 8 of Definition 12, we also know that u 6∈ Hγ . Hence trγ(u) = trHγ(u) = u.
This allows us to deduce that trγ(uσ↓) = trHγ(uσ↓) = u = utrγ(σ)↓. Note that since u 6∈ dom(ρσγ )

and u ∈ N ∪ N ∪ A ∪ X , we directly obtain that PSgen(uσ↓) and PS〈 〉(uσ↓, γ). Hence the result
holds.

Otherwise, we have u ∈ X . By Definition 12, we know that σ is a substitution of ground
messages in normal form meaning that uσ↓ = uσ. Hence, by Lemma 4, we obtain that trγ(uσ)
and trHγ(uσ) are in normal form. Moreover, by Properties 4 and 1 of Definition 16, we know that
PSgen(uσ↓) and PS〈 〉(uσ↓, γ). Hence, by Property 4 of Definition 12 and by Lemma 6, we obtain

that trHγ(uσ) = trγ(uσ). Lastly, by definition of trγ(σ), we have utrγ(σ)↓ = trγ(uσ)↓ = trγ(uσ).
With uσ↓ = uσ, the result holds.

Inductive case |u| > 1: In such a case, we have u = f(u1, . . . , un) for some terms u1, . . . , un and
function symbol f. We do a case analysis on f following Definition 5.

Case 2 of Definition 5: In such a case, we know that f ∈ {senc, rsenc, sdec, rsdec}, for all j ∈
{1, . . . , n}, (uj ,K

j
s ,K

j
a) ∈ TagT(i) for someKj

s ,K
j
a andKs = {un}∪

⋃n
j=1K

j
s andKa =

⋃n
j=1K

j
a.

By Property 5 of Definition 16, we know that for all j ∈ {1, . . . , n − 1}, uj 6∈ dom(ργ). If un ∈
dom(ργ) then untrγ(σ)↓ = trγ(unσ)↓. But thanks to Property 2 of Definition 12, we deduce that
trγ(unσ) = unσρ

σ
γ ∈ Nabs. Hence trγ(unσ)↓ = trγ(unσ) and untrγ(σ) is a message. Moreover, by

Property 4 of Definition 16, we know that PSgen(unσ).

Moreover, by Lemma 8, we deduce that for all j ∈ {1, . . . , n− 1}, (uj ,K
j
s ,K

j
a) ∈ E-termsi(S)

and if un 6∈ dom(ργ) then (un,K
n
s ,K

n
a ) ∈ E-termsi(S). Hence, we can apply our inductive

hypothesis on u1, . . . , un−1 and on un when un 6∈ dom(ργ) meaning that for all j ∈ {1, . . . , n},
trγ(ujσ↓) = ujtrγ(σ)↓, ujtrγ(σ) is a message, PSgen(ujσ↓) and if ¬PS〈 〉(ujσ↓, γ) then j = n and

un ∈ dom(ργ).
If f ∈ {senc, rsenc} then we deduce that uσ↓ = f(u1σ↓, . . . , unσ↓). Note that by Properties 8

and 6 of Definition 12, we know that uσ↓ 6∈ Hγ and uσ↓ 6∈ dom(µγ). Hence by Definition 13,
we obtain that trγ(uσ↓) = trHγ(uσ↓). Moreover, we know that unσ↓ ∈ Ksi thanks to Prop-
erty 2 of Definition 16. Therefore, tagrootKs,Ka(uσ↓) = i. By Properties 8, 7 and 6 of Defini-
tion 12, we deduce that uσ↓ 6∈ dom(ρσγ , µγ) and uσ↓ 6∈ Hγ . Therefore, we obtain trγ(uσ↓) =
f(trγ(u1σ↓), . . . , trγ(unσ↓)). By our inductive hypothesis, we obtain trγ(uσ↓) = f(u1trγ(σ)↓, . . . ,
untrγ(σ)↓). Since f ∈ {senc, rsenc}, we conclude that trHγ(uσ↓) = trγ(uσ↓) = f(u1trγ(σ), . . . ,
untrγ(σ))↓ = utrγ(σ)↓ and utrγ(σ) is a message. Since root(uσ↓) = f and uσ↓ 6∈ dom(ρσγ ),

we directly obtain that PS〈 〉(uσ↓, γ). Lastly, we know that tagrootKs,Ka(uσ↓) = i and for all

j ∈ {1, . . . , n}, PSgen(ujσ↓) and if ¬PS〈 〉(ujσ↓, γ) then j = n and un ∈ dom(ργ). Thus, we di-

rectly obtain that PSgen(uσ↓) holds.
If f ∈ {sdec, rsdec} then n = 2 and uσ being a message implies that there exist g/m ∈

{senc, rsenc}, v1, . . . , vm such that u1σ↓ = g(v1, . . . , vm), u2σ↓ = vm and uσ↓ = v1. Note that
u2σ↓ ∈ Ksi thanks to Property 2 of Definition 16. Hence, tagrootKs,Ka(u1σ↓) = i. By Properties 7, 8
and 6 of Definition 12, we deduce that u1σ↓ 6∈ dom(ρσγ , µγ) and u1σ↓ 6∈ Hγ . Therefore, we obtain
that trγ(u1σ↓) = g(trγ(v1), . . . , trγ(vm)). However, utrγ(σ)↓ = f(u1trγ(σ)↓, u2trγ(σ)↓)↓. By our in-
ductive hypothesis, we deduce that utrγ(σ)↓ = f(trγ(u1σ↓), trγ(u2σ↓))↓ = f(g(trγ(v1), . . . , trγ(vm)),
trγ(vm))↓. Hence, utrγ(σ)↓ = trγ(v1) = trγ(uσ↓). Note that we already proved that for all
j ∈ {1, 2}, ujtrγ(σ) is a message, PSgen(ujσ↓) and if ¬PS〈 〉(ujσ↓, γ) then j = 2 and u2 ∈ dom(ργ).

Therefore for utrγ(σ) to be a message, we only need to show that utrγ(σ)↓ is a constructor term.
But we proved that utrγ(σ)↓ = trγ(v1) ∈ st(trγ(u1σ↓)). Hence, utrγ(σ) is a message. More-
over, uσ↓ ∈ st(u1σ↓) and PSgen(u1σ↓) implies by Definition 15 that PSgen(uσ↓). Lastly, we know

that tagrootKs,Ka(u1σ↓) = i, PSgen(u1σ↓), uσ↓ = v1 and u1σ↓ = g(v1, . . . , vm). Thus by Defini-
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tion 15, we deduce that PS〈 〉(v1, γ) and so PS〈 〉(uσ↓, γ). Moreover, by Lemma 6, we obtain that

trγ(uσ↓) = trHγ(uσ↓). Hence the result holds.

Case 3 of Definition 5: In such a case, we know that f ∈ {aenc, raenc, check}, for all j ∈ {1, . . . , n},
(uj ,K

j
s ,K

j
a) ∈ TagT(i) for some Kj

s ,K
j
a and Ks =

⋃n
j=1K

j
s and Ka = {un} ∪

⋃n
j=1K

j
a. By

Property 5 of Definition 16, we deduce that for all j ∈ {1, . . . , n}, uj 6∈ dom(ργ). Hence by
Lemma 8, we deduce that for all j ∈ {1, . . . , n}, (uj ,K

j
s ,K

j
a) ∈ E-termsi(S). Hence, we can

apply our inductive hypothesis on uj meaning that trHγ(ujσ↓) = trγ(ujσ↓) = ujtrγ(σ)↓, ujtrγ(σ)
is a message, PSgen(ujσ↓) and PS〈 〉(ujσ↓, γ).

If f ∈ {aenc, raenc} then we deduce that uσ↓ = f(u1σ↓, . . . , unσ↓). We know that unσ↓ ∈ Kai
thanks to Property 2 of Definition 16. Therefore, tagrootKs,Ka(uσ↓) = i. By Properties 6, 7
and 8 of Definition 12, we deduce that uσ↓ 6∈ dom(ρσγ , µγ) and uσ↓ 6∈ Hγ . Therefore, we ob-
tain trHγ(uσ↓) = trγ(uσ↓) = f(trγ(u1σ↓), . . . , trγ(unσ↓)). By our inductive hypothesis, we obtain
trγ(uσ↓) = f(u1trγ(σ)↓, . . . , untrγ(σ)↓). Since f ∈ {aenc, raenc}, we conclude that trHγ(uσ↓) =
trγ(uσ↓) = f(u1trγ(σ), . . . , untrγ(σ))↓ = utrγ(σ)↓ and utrγ(σ) is a message. Since root(uσ↓) =
f and uσ↓ 6∈ dom(ρσγ ), we also obtain that PS〈 〉(uσ↓, γ). Lastly, since for all j ∈ {1, . . . , n},
PS〈 〉(ujσ↓, γ) and PSgen(ujσ↓), we deduce that PSgen(uσ↓). Hence the result holds.

If f = check then n = 2 and uσ being a message implies that there exist v1, v2 such that u1σ↓ =
sign(v1, v2), u2σ↓ = vk(v2) and uσ↓ = v1. Note that u2σ↓ ∈ Kai thanks to Property 2 of Defini-
tion 16. Hence, tagrootKs,Ka(u1σ↓) = i. By Properties 7, 8 and 6 of Definition 12, we deduce that
u1σ↓ 6∈ dom(ρσγ , µγ) and u1σ↓ 6∈ Hγ . Therefore, we obtain that trγ(u1σ↓) = sign(trγ(v1), trγ(v2)).

Note that by Property 10 of Definition 16, we know that PSe-keys(vk(v2), i). Hence by Lemma 7,
trγ(vk(v2)) = vk(trγ(v2)). However, utrγ(σ)↓ = f(u1trγ(σ)↓, u2trγ(σ)↓)↓. By our inductive hypoth-
esis, we deduce that utrγ(σ)↓ = f(trγ(u1σ↓), trγ(u2σ↓))↓ = f(sign(trγ(v1), trγ(v2)), vk(trγ(v2)))↓.
Thus utrγ(σ)↓ = trγ(v1) = trγ(uσ↓). Note that we already proved that for all j ∈ {1, 2}, ujtrγ(σ)
is a message, PSgen(ujσ↓) and PS〈 〉(ujσ↓, γ). Therefore for utrγ(σ) to be a message, we only need to

show that utrγ(σ)↓ is a constructor term. But we proved that utrγ(σ)↓ = trγ(v1) ∈ st(trγ(u1σ↓)).
Hence, utrγ(σ) is a message. Moreover, uσ↓ ∈ st(u1σ↓) and PSgen(u1σ↓) implies by Definition 15

that PSgen(uσ↓). Lastly, we know that tagrootKs,Ka(u1σ↓) = i, PSgen(u1σ↓), uσ↓ = v1 and u1σ↓ =

sign(v1, v2). Thus by Definition 15, we deduce that PS〈 〉(v1, γ) and so PS〈 〉(uσ↓, γ). Moreover, by

Lemma 6, we obtain that trγ(uσ↓) = trHγ(uσ↓). Hence the result holds.

Case 4 of Definition 5: In such a case, we know that f ∈ {adec, radec} and n = 2, for all j ∈ {1, 2},
(uj ,K

j
s ,K

j
a) ∈ TagT(i) for some Kj

s ,K
j
a and Ks =

⋃n
j=1K

j
s and Ka = {pk(un)} ∪

⋃n
j=1K

j
a. By

Property 5 of Definition 16, we deduce that u1 6∈ dom(ργ). If u2 ∈ dom(ργ) then u2trγ(σ)↓ =
trγ(u2σ)↓. But thanks to Property 2 of Definition 12, we deduce that trγ(u2σ) = u2σρ

σ
γ ∈ Nabs.

Hence trγ(u2σ)↓ = trγ(u2σ) and u2trγ(σ) is a message. Moreover, by Property 4 of Definition 16,
we know that PSgen(u2σ).

Moreover, by Lemma 8, we deduce that (u1,K
1
s ,K

1
a) ∈ E-termsi(S) and if u2 6∈ dom(ργ)

then (u2,K
2
s ,K

2
a) ∈ E-termsi(S). Hence, we can apply our inductive hypothesis on u1 and on u2

when u2 6∈ dom(ργ) meaning that for all j ∈ {1, 2}, trγ(ujσ↓) = ujtrγ(σ)↓, ujtrγ(σ) is a message,
PSgen(ujσ↓) and if ¬PS〈 〉(ujσ↓, γ) then j = 2 and u2 ∈ dom(ργ).

Since uσ is a message then there exist g/m ∈ {aenc, raenc} (g = aenc when f = adec else
g = raenc) and v1, . . . , vm such that u1σ↓ = g(v1, . . . , vm), pk(u2σ↓) = vm and uσ↓ = v1. Note
that pk(u2σ↓) ∈ Kai thanks to Property 2 of Definition 16. Hence, tagrootKs,Ka(u1σ↓) = i. By
Properties 7, 8 and 6 of Definition 12, we deduce that u1σ↓ 6∈ dom(ρσγ , µγ) and u1σ↓ 6∈ Hγ . There-
fore, we obtain that trγ(u1σ↓) = g(trγ(v1), . . . , trγ(vm)). Note that by Property 9 of Definition 16,
we know that PSe-keys(pk(u2σ↓), i). Hence by Lemma 7, trγ(pk(u2σ↓)) = pk(trγ(u2σ↓)).

However, utrγ(σ)↓ = f(u1trγ(σ)↓, u2trγ(σ)↓)↓. Hence utrγ(σ)↓ = f(trγ(u1σ↓), trγ(u2σ↓))↓ =
f(g(trγ(v1), . . . , trγ(vm)), trγ(u2σ↓))↓ with trγ(vm) = pk(trγ(u2σ↓)). Thus utrγ(σ)↓ = trγ(v1) =
trγ(uσ↓). Note that we already proved that for all j ∈ {1, 2}, ujtrγ(σ) is a message, PSgen(ujσ↓) and

if ¬PS〈 〉(ujσ↓, γ) then j = 2 and u2 ∈ dom(ργ). Therefore for utrγ(σ) to be a message, we only need

to show that utrγ(σ)↓ is a constructor term. But we proved that utrγ(σ)↓ = trγ(v1) ∈ st(trγ(u1σ↓)).
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Hence, utrγ(σ) is a message. Moreover, uσ↓ ∈ st(u1σ↓) and PSgen(u1σ↓) implies by Definition 15

that PSgen(uσ↓). Lastly, we know that tagrootKs,Ka(u1σ↓) = i, PSgen(u1σ↓), uσ↓ = v1 and u1σ↓ =

g(v1, v2). Thus by Definition 15, we deduce that PS〈 〉(v1, γ) and so PS〈 〉(uσ↓, γ). Moreover, by

Lemma 6, we obtain that trγ(uσ↓) = trHγ(uσ↓). Hence the result holds.

Case 5 of Definition 5: In such a case, we know that f = sign, n = 2 and for all j ∈ {1, 2},
(uj ,K

j
s ,K

j
a) ∈ TagT(i) for some Kj

s ,K
j
a and Ks =

⋃2
j=1K

j
s and Ka = {vk(u2)} ∪

⋃n
j=1K

j
a. By

Property 5 of Definition 16, we deduce that u1 6∈ dom(ργ). If u2 ∈ dom(ργ) then u2trγ(σ)↓ =
trγ(u2σ)↓. But thanks to Property 2 of Definition 12, we deduce that trγ(u2σ) = u2σρ

σ
γ ∈ Nabs.

Hence trγ(u2σ)↓ = trγ(u2σ) and u2trγ(σ) is a message. Moreover, by Property 4 of Definition 16,
we know that PSgen(u2σ).

Moreover, by Lemma 8, we deduce that for all (u1,K
1
s ,K

1
a) ∈ E-termsi(S) and if u2 6∈ dom(ργ)

then (u2,K
2
s ,K

2
a) ∈ E-termsi(S). Hence, we can apply our inductive hypothesis on u1 and on u2

when u2 6∈ dom(ργ) meaning that for all j ∈ {1, 2}, trγ(ujσ↓) = ujtrγ(σ)↓, ujtrγ(σ) is a message,
PSgen(ujσ↓) and if ¬PS〈 〉(ujσ↓, γ) then j = 2 and u2 ∈ dom(ργ).

Since f = sign, we deduce that uσ↓ = sign(u1σ↓, u2σ↓). Moreover, we know that vk(unσ↓) ∈ Kai
thanks to Property 2 of Definition 16. Therefore, tagrootKs,Ka(uσ↓) = i. By Properties 8, 7
and 6 of Definition 12, we deduce that uσ↓ 6∈ dom(ρσγ , µγ) and uσ↓ 6∈ Hγ . Therefore, we ob-
tain trγ(uσ↓) = sign(trγ(u1σ↓), trγ(u2σ↓)). By our inductive hypothesis, we obtain trγ(uσ↓) =
sign(u1trγ(σ)↓, u2trγ(σ)↓). We conclude that trγ(uσ↓) = sign(u1trγ(σ), u2trγ(σ))↓ = utrγ(σ)↓
and utrγ(σ) is a message. Since root(uσ↓) = sign and uσ↓ 6∈ dom(ρσγ ), we directly obtain that

PS〈 〉(uσ↓, γ). Lastly, we know that tagrootKs,Ka(uσ↓) = i and for all j ∈ {1, 2}, PSgen(ujσ↓) and

if ¬PS〈 〉(ujσ↓, γ) then j = 2 and u2 ∈ dom(ργ). Thus, we directly obtain that PSgen(uσ↓) holds.

Lastly, by Lemma 6, we obtain that trγ(uσ↓) = trHγ(uσ↓). Hence the result holds.

Case 6 of Definition 5: In such a case, we know that n = 1, f = untagi and there exist g ∈
{sdec, adec, rsdec, radec, check} and (v1,K

1
s ,K

1
a), (v2,K

2
s ,K

2
a) ∈ TagT(i) such that u1 = g(v1, v2),

Ks = K1
s∪K2

s andKa = K1
a∪K2

a . By Property 5 of Definition 16, we deduce that v1 6∈ dom(ργ) and
if v2 ∈ dom(ργ) then f ∈ {sdec, rsdec}. Furthermore, if v2 ∈ dom(ργ) then v2trγ(σ)↓ = trγ(v2σ)↓.
But thanks to Property 2 of Definition 12, we deduce that trγ(v2σ) = v2σρ

σ
γ ∈ Nabs. Hence

trγ(v2σ)↓ = trγ(v2σ) and v2trγ(σ) is a message. Moreover, by Property 4 of Definition 16, we
know that PSgen(v2σ).

Moreover, by Lemma 8, we deduce that (v1,K
1
s ,K

1
a) ∈ E-termsi(S) and if v2 6∈ dom(ργ)

then (v2,K
2
s ,K

2
a) ∈ E-termsi(S). Hence, we can apply our inductive hypothesis on v1 and on v2

when v2 6∈ dom(ργ) meaning that for all j ∈ {1, 2}, trγ(vjσ↓) = vjtrγ(σ)↓, vjtrγ(σ) is a message,
PSgen(vjσ↓) and if ¬PS〈 〉(vjσ↓, γ) then j = 2, g ∈ {sdec, rsdec} and v2 ∈ dom(ργ).

We know that uσ↓ is a message. Hence, there exist a function symbol g′/m and w1, . . . , wm such
that g′ = senc (resp. aenc, rsenc, raenc and sign) and uσ↓ = w1, v1σ↓ = g′(tagi(w1), w2, . . . , wm)
and v2σ↓ = wm (resp. pk(v2σ↓) = wm, v2σ↓ = wm, pk(v2σ↓) = vm and v2σ↓ = vk(wm)) when
g = sdec (resp. adec, rsdec, radec and check). Note that by Property 11 (resp. 9, 11, 9 and 10)
of Definition 16, we deduce that tagrootKs,Ka(g

′(tagi(w1), w2, . . . , wn)) = i. By Properties 8, 7
and 6 of Definition 12, we deduce that v1σ↓, tagi(w1) 6∈ dom(ρσγ , µγ) and v1σ↓ 6∈ Hγ . Therefore,
we obtain that trγ(v1σ↓) = g′(tagi(trγ(w1)), . . . , trγ(wm)). Moreover, Lemma 7, we also deduce
that trγ(pk(v2σ↓)) = pk(trγ(v2σ↓)) when g ∈ {adec, radec} and trγ(vk(wm)) = vk(trγ(wm)) when
g = check.

However, utrγ(σ)↓ = untagi(g(v1trγ(σ)↓, v2trγ(σ)↓))↓. Hence utrγ(σ)↓ = untagi(g(trγ(v1σ↓),
trγ(v2σ↓)))↓ = untagi(g(g′(tagi(trγ(w1)), . . . , trγ(wm)), trγ(v2σ↓)))↓ with trγ(wm) = trγ(v2σ↓)
when g ∈ {sdec, rsdec}, with trγ(wm) = pk(trγ(v2σ↓)) when g ∈ {adec, radec} and trγ(v2σ↓) =
vk(trγ(wm)) when g = check. Thus utrγ(σ)↓ = trγ(w1) = trγ(uσ↓). Note that we already proved
that for all j ∈ {1, 2}, vjtrγ(σ) is a message, PSgen(vjσ↓) and if ¬PS〈 〉(vjσ↓, γ) then j = 2,

g ∈ {sdec, rsdec} and v2 ∈ dom(ργ). Therefore for utrγ(σ) to be a message, we only need to
show that utrγ(σ)↓ is a constructor term. But we proved that utrγ(σ)↓ = trγ(w1) ∈ st(trγ(v1σ↓)).
Hence, utrγ(σ) is a message. Moreover, uσ↓ ∈ st(v1σ↓) and PSgen(v1σ↓) implies by Definition 15
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that PSgen(uσ↓). Lastly, we know that tagrootKs,Ka(v1σ↓) = i, PSgen(v1σ↓), uσ↓ = w1 and v1σ↓ =

g′(tagi(w1), w2, . . . , wm). Thus by Definition 15, we deduce that PS〈 〉(w1, γ) and so PS〈 〉(uσ↓, γ).

Moreover, by Lemma 6, we obtain that trγ(uσ↓) = trHγ(uσ↓). Hence the result holds.

Lemma 11. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup and let tr and trH be the trans-
formation functions of S. Let γ ∈ {α, β}. Let i ∈ γ. Let (u,Ks,Ka) ∈ E-termsi(S). If utrγ(σ) is
a message then uσ is message.

Proof. We prove this result by induction on |u|.
Base case |u| = 1: In such a case, by Lemma 4, we know that either u ∈ N ∪ N ∪ A or u ∈ X .
Since img(σ) is a set of ground messages in normal form, we deduce that uσ is a message.

Inductive step |u| > 1: There exists f/n and u1, . . . , un such that u = f(u1, . . . , un). By Property 1
of Definition 16, we know that (u,Ks,Ka) ∈ TagT(i). We do a case analysis on the different cases
of Definition 5.

Cases 2,3,4,5,8 of Definition 5 with f 6∈ Σi : In such a case, (u1,K
1
s ,K

1
a), . . . , (un,K

n
s ,K

n
a ) ∈

TagT(i) for some K1
s ,K

1
a , . . . ,K

n
s ,K

n
a . Moreover, by Lemma 8 and Property 5 of Definition 16,

we deduce that for all j ∈ {1, . . . , n}, (uj ,K
j
s ,K

j
a) 6∈ E-termsi(S) implies uj ∈ dom(ργ). If

uj ∈ dom(ργ) then we have that ujσ is a message since img(σ) is a set of ground messages in normal
form. Otherwise, by inductive hypothesis and since utrγ(σ) being a message implies ujtrγ(σ) being
a message, we obtain that ujσ is a message. Therefore, we deduce that for all j ∈ {1, . . . , n},
ujσ is a message. Hence, we only need to prove that uσ↓ does not contain destructor function
symbol. If f ∈ {senc, rsenc, aenc, raenc, sign, h, 〈 〉, vk, pk, tagi} then the result directly holds. Else
f ∈ {sdec, rsdec, check, adec, radec, proj1, proj2} and in such a case, because utrγ(σ) is a message, we
have

– Case f = sdec: trγ(u1σ↓) = senc(v1, v2) and trγ(u2σ↓) = v2 for some v1, v2. By Lemma 4
and by Property 9 of Definition 12, we deduce that u1σ↓ = senc(V1, V2) and trγ(u1σ↓) =
senc(trω(V1), trω(V2)) for some V1, V2, ω. Hence, trω(V2) = trγ(u2σ↓) which implies by Lemma 3
that V2 = u2σ↓. Thus, uσ↓ = V1. Since u1σ is a message than we conclude that uσ↓ does not
contain destructor function symbol which allows us to conclude.

– Case f = rsdec: Similar to the previous case.
– Case f = check: trγ(u1σ↓) = sign(v1, v2) and trγ(u2σ↓) = vk(v2) for some v1, v2. By Lemma 4,

we deduce that u1σ↓ = sign(V1, V2) and u2σ↓ = vk(V3) for some V1, V2, V3. Note that we
showed that u2σ is a message. Moreover, by Property 10 of Definition 16 and by Lemma 7, we
obtain that trγ(u2σ↓) = vk(trγ(V3)). Moreover, by Property 9 of Definition 12, we also have
trγ(u1σ↓) = sign(trω(V1), trω(V2)) for some ω. This gives us vk(trω(V2)) = vk(trγ(V3)) and so
V2 = V3 by Lemma 3. Thus, uσ↓ = V1. Since u1σ is a message than we conclude that uσ↓
does not contain destructor function symbol which allows us to conclude.

– Case f = adec: trγ(u1σ↓) = aenc(v1, pk(v2)) and trγ(u2σ↓) = v2 for some v1, v2. By Lemma 4,
we deduce that u1σ↓ = aenc(V1, pk(V2)) and u2σ↓ = V3 for some V1, V2 and V3. Moreover,
we also obtain that trγ(u1σ↓) = aenc(trω(V1), pk(δ(ω, V2))) and trγ(u2σ↓) = trγ(V3) for some
δ ∈ {tr, trH} and ω. Thus, δ(ω, V2) = trγ(V3). By Lemma 3, we obtain that V2 = V3. Therefore,
uσ↓ = V1. Since u1σ is a message than we conclude that uσ↓ does not contain destructor
function symbol which allows us to conclude.

– Case f = radec: Similar to previous case.
– Case projj , j = 1, 2: trγ(u1σ↓) = 〈v1, v2〉. By Lemma 4, we deduce that u1σ↓ = 〈V1, V2〉 for

some V1, V2. Hence uσ↓ = Vj . Since u1σ is a message than we conclude that uσ↓ does not
contain destructor function symbol which allows us to conclude.

Recall that given two terms u and v, and given a substitution σ, σ |= u = v iff uσ↓ is a message,
vσ↓ is a message and uσ↓ = vσ↓.

Lemma 12. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup and let tr and trH be the trans-
formation functions of S. Let γ ∈ {α, β}. Let i ∈ γ. Let (u,Ks,Ka), (v,K ′s,K

′
a) ∈ E-termsi(S).

We have σ |= u = v if and only if trγ(σ) |= u = v.
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Proof. By definition, we know that σ |= u = v if and only if uσ↓ is a message, vσ↓ is a message
and uσ↓ = vσ↓. By Lemmas 11 and 10, we obtain that uσ↓ and vσ↓ are messages if and only if
trγ(uσ↓) and trγ(vσ↓) are messages. Moreover, Lemma 10 also gives us that trγ(()uσ↓) = utrγ(σ)↓
and trγ(vσ↓) = vtrγ(σ)↓. Therefore, if σ |= u = v then utrγ(σ)↓ is a message, vtrγ(σ)↓ is a message
and trγ(uσ↓) = trγ(vσ↓) which implies utrγ(σ)↓↓ = vtrγ(σ)↓↓. Hence trγ(σ) |= u = v. On the other
hand, if trγ(σ)↓↓ |= u = v then uσ↓ is a message, vσ↓ is a message and trγ(uσ↓) = trγ(vσ↓). By
Lemma 3, we deduce that uσ↓ = vσ↓ and so σ |= u = v. ut

E Derived frame

In the next definition, we will need to consider a total order on variables from X . For some
minimality purpose, we will consider a special variable x0 ∈ X that will only use for defining such
orders (meaning that this variable never appear in processes and is never used in the derivation
of a process). Moreover, given a set of name E and a frame Φ, we define Recipe(E , Φ) as the set of
terms M such that fv(M) ⊆ dom(Φ), names(M) ∩ E and MΦ is a message.

Definition 17. Let (σ, ρα, ρβ , µα, µβ ,Ks,Ka) ∈ Setup. Let Φ be a substitution of ground messages
in normal form. Let E be a set of names. Let ≺ a strict total order on variables. Let γ ∈ {α, β}.
Let i ∈ γ. Let x be a variable.

We define PνE.Φ≺ (v, x) the predicate to hold iff for all M ∈ Recipe(E , Φ), if for all y ∈ fv(M),
y ≺ x then MΦ↓ 6= v.

We define MuTerms(v, x,≺, E , Φ) as the set such that if root(v) ∈ {h, pk, vk}, v = C[v1, . . . , vn]
and

– for all p ∈ Pos(C), C|p 6= implies root(v|p) ∈ {pk, vk, h, 〈 〉} and PνE.Φ≺ (v|p, x)
– for all j ∈ {1, . . . , n} either root(vi) 6∈ {h, pk, vk, 〈 〉} or ¬PνE.Φ≺ (vi, x)

then {vi | i ∈ {1, . . . , n} ∧ PνE.Φ≺ (vi, x)} = MuTerms(v, x,≺, E , Φ).

Definition 18 (Derived Frame). Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. We
define the set DFrame(S) as the smallest set such that for all substitutions Φ of ground terms in
normal form, for all sets E of names, for all relation ≺ on variables, for all mapping µcol from
dom(Φ) ∪ dom(σ) to {1, . . . , p}, if the following conditions hold:

1. dom(Φ) ∩ dom(σ) = ∅
2. for all γ ∈ {α, β}, for all x ∈ dom(ργ), xµcol 6∈ γ
3. ≺ is a strict total order on dom(Φ) ∪ dom(σ) ∪ {x0} such that for all x ∈ dom(Φ) ∪ dom(σ),

x0 ≺ x
4. img(ρα, ρβ) ⊆ E, (nmin ∪ img(µα, µβ)) ∩ E = ∅ and names(Φ) ∩Nabs = ∅
5. for all x ∈ dom(Φ) (resp. dom(σ)), either

(a) there exist γ ∈ {α, β}, i ∈ γ and (u,Ks,Ka) ∈ E-termsi(S) such that i = xµcol, uσ↓ = xΦ
(resp. xσ), uσ is a message and for all z ∈ fv(u), z ≺ x and either zµcol = i or z ∈ dom(ργ)

(b) there exists M ∈ Recipe(E , Φ) such that fv(M) ⊆ {z | z ≺ x} and MΦ↓ = xΦ (resp. xσ)

6. for all γ, ω ∈ {α, β}.γ 6= ω, for all terms v, v ∈ dom(Hγ) if and only if there exist (x, u) ∈
ProTerm(Φ,S), u′ ∈ st(u) such that

(a) xµcol ∈ ω and u′σ↓ = v; and
(b) root(v) ∈ {h, pk, vk}; and
(c) PνE.Φ≺ (v, x).

Moreover, we have MuTerms(v, x,≺, E , Φ) ⊆ dom(µγ).
7. for all (x, u), (y, v) ∈ ProTerm(Φ,S), if xµcol 6= yµcol then for all n ∈ N ∩ names(u) ∩

names(v), n 6∈ E

then (E , Φ,≺, µcol) ∈ DFrame(S) where ProTerm(Φ,S) denote the sets of elements of the form
(x, u) where x ∈ dom(Φ) ∪ dom(σ) and x satisfies Property 5a with the term u.
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Definition 19. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup and let tr and trH be the
transformation functions of S. Let (E , Φ,≺, µcol) ∈ DFrame(S).

We denote by tr(Φ) the substitution such that:

– dom(Φ) = dom(tr(Φ))
– for all x ∈ dom(Φ), for all γ ∈ {α, β}, xµcol ∈ γ implies xtr(Φ) = trγ(xΦ)

In the rest of this section, we will try to show that if a term is deducible in a frame, then its
abstract version is also deducible in the abstract version of the frame. In order to do so, we need
to consider a measure on terms that will be useful in the proofs.

Definition 20. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S).

We define the measureME,Φ≺ defined on terms M such that fv(M) ⊆ dom(Φ) and names(M)∩E =

∅ and such that ME,Φ≺ (M) = (x, |M |) when the following properties hold:

– if fv(M) = ∅ then x = x0 else x ∈ fv(M)
– for all z ∈ fv(M), x 6≺ z
– |M | denotes the size of the term M , i.e. the number of symbols that occur in M .

Moreover, we consider the strict total order relation < such that given two terms M1,M2 with
ME,Φ≺ (M1) = (x1, i1) and ME,Φ≺ (M2) = (x2, i2), ME,Φ≺ (M1) <ME,Φ≺ (M2) when either x1 ≺ x2 or
x1 = x2 and i1 < i2.

E.1 Tagged factors

Definition 21. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S).
Let t be a ground message in normal form. Let γ, ω ∈ {α, β} such that γ 6= ω. We define Fctγ(t)
as the smallest set such that:

– Fctγ(t) = {(t, ε)} when t ∈ N\{n ∈ names(u)∪{nmin} | (x, u) ∈ ProTerm(Φ,S)∧xµcol ∈ γ}
– Fctγ(f(t1, . . . , tn)) =

⋃n
i=1{(u, i·p) | (u, p) ∈ Fctγ(ti)} when f ∈

⋃
i∈γ Σi∪{tagi}∪{pk, vk, h, 〈 〉}

– Fctγ(tagki(t)) = {(u, 1 · p) | (u, p) ∈ Fctγ(t)} when i ∈ γ and t 6∈ dom(ρσγ )
– Fctγ(f(t1, . . . , tn)) = {(u, 1 · p) | (u, p) ∈ Fctγ(t1)} when tagrootKs,Ka(f(t1, . . . , tn)) ∈ γ and

f ∈ Σ0

– Fctγ(t) = {(t, ε)} when tagrootKs,Ka(t) ∈ ω or when tagrootKs,Ka(t) = 0 and root(t) 6∈ {pk, vk, h, 〈 〉}.

Definition 22. Let t be a ground message in normal form. Let γ ∈ {α, β}. Let u, v two terms.
Let p ∈ Pos(t). We define the predicate PFct((u, p), t, v) to hold if and only if when u = v or there
exists q ∈ Pos(t) such that:

– root(v) ∈ {pk, vk, h}
– v = t|q
– q < q
– ∀q′ ∈ Pos(t), q < q′ < p implies root(t|q′) ∈ {pk, vk, h, 〈 〉}.

We define the predicate PmFct((u, p), t, v) to hold if and only if PFct((u, p), t, v) and for all terms
v′, PFct((u, p), t, v

′) implies v′ ∈ st(v).

Lemma 13. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S).
Let γ ∈ {α, β}. Let i ∈ γ. For all (u,Ks,Ka) ∈ E-termsi(S), for all (t, p) ∈ Fctγ(uσ↓), if uσ is a
message and names(u) ⊆ {n ∈ names(u) | (x, v) ∈ ProTerm(Φ,S) ∧ xµcol ∈ γ} then there exist
a term v, x ∈ fv(u) \ dom(ργ) and q ∈ Pos(xσ) such that:

– (t, q) ∈ Fctγ(xσ)
– PFct((t, p), uσ↓, v)
– PmFct((t, q), xσ, v).
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Proof. We prove this result by induction on |u|. Since (u,Ks,Ka) ∈ E-termsi(S), we know that
Property 1 of Definition 16 holds, meaning that (u,Ks,Ka) ∈ TagT(γ).

Base case |u| = 1: In such a case, u ∈ N ∪ N ∪ A or u ∈ X \ dom(ργ). If u ∈ N ∪ N ∪ A then
uσ↓ = u and by hypothesis, u ∈ {n ∈ names(u) | (x, v) ∈ ProTerm(Φ,S) ∧ xµcol ∈ γ} meaning
that Fctγ(uσ↓) = ∅. Hence u ∈ X \dom(ργ) and so uσ↓ = uσ. Note that PFct((t, p), uσ, t) meaning
that there exists a term v such that PmFct((t, p), uσ, v). Therefore, the result holds with q = p, x = u
and v.

Inductive step |u| > 1: In such a case, u = f(u1, . . . , un). We can do a case analysis on u following
Definition 5:

– Case f ∈ {senc, rsenc, aenc, raenc, sign}: In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓). Moreover,
since (u,Ks,Ka) ∈ E-termsi(S), we deduce that tagrootKs,Ka(uσ↓) = i. Hence Fctγ(uσ↓) =
{(v, 1 . . . q) | (v, q) ∈ Fctγ(u1σ↓)}. Therefore, there exists p′ ∈ Pos(u1σ↓) such that p = 1 · p′
and (t, p′) ∈ Fctγ(u1σ↓). Thanks to Lemma 8 and by Definition 5 and 16, we deduce that
there exist K ′s,K

′
a such that (u1,K

′
s,K

′
a) ∈ E-termsi(S). Moreover, names(u1) ⊆ names(u)

thus names(u1) ⊆ {n ∈ names(u) | (x, v) ∈ ProTerm(Φ,S) ∧ xµcol ∈ γ}. Therefore, by
our inductive hypothesis on (u1,K

′
s,K

′
a) and (t, p′), we deduce that there exist a term v,

x ∈ fv(u1) \ dom(ργ) and q ∈ Pos(xσ) such that

• (t, q) ∈ Fctγ(xσ)
• PFct((t, p

′), u1σ↓, v)
• PmFct((t, q), xσ, v)

Since fv(u1) ⊆ fv(u) and uσ↓ = f(u1σ↓, . . . , unσ↓), we obtain that x ∈ fv(u) \ dom(ργ) and
PFct((t, 1 · p′), uσ↓, v). Hence the result holds.

– Case f ∈ {〈 〉, pk, vk, h, tagi, tagki}: In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓). Moreover, by
Definition 21, since (t, p) ∈ eFctγ(uσ↓), we obtain that Fctγ(uσ↓) =

⋃n
j=1{(v, j · q) | (v, q) ∈

Fctγ(ujσ↓)} and f = tagki implies u1σ↓ 6∈ dom(ρσγ ). Therefore, there exist j ∈ {1, . . . , n}
and p′ ∈ Pos(ujσ↓) such that p = j · p′ and (t, p′) ∈ Fctγ(ujσ↓). Thanks to Lemma 8
and by Definition 5 and 16, we deduce that there exist K ′s,K

′
a such that (uj ,K

′
s,K

′
a) ∈

E-termsi(S). Moreover, names(uj) ⊆ names(u) thus names(uj) ⊆ {n ∈ names(u) | (x, v) ∈
ProTerm(Φ,S) ∧ xµcol ∈ γ}. Thus, by our inductive hypothesis on (uj ,K

′
s,K

′
a) and (t, p′),

we deduce that there exist a term v, x ∈ fv(uj) \ dom(ργ) and q ∈ Pos(xσ) such that

• (t, q) ∈ Fctγ(xσ)
• PFct((t, p

′), ujσ↓, v)
• PmFct((t, q), xσ, v)

Since fv(uj) ⊆ fv(u) and uσ↓ = f(u1σ↓, . . . , unσ↓), we obtain that x ∈ fv(u) \ dom(ργ) and
PFct((t, j · p′), uσ↓, v). Hence the result holds.

– Case f ∈ {sdec, rsdec, adec, radec, check}: We know that uσ is a message. Therefore, we de-
duce that there exists g ∈ {senc, rsenc, aenc, raenc, sign} and v1, . . . , vm such that u1σ↓ =
g(v1, . . . , vm) and uσ↓ = v1. Moreover, we also know from Definition 16 that tagrootKs,Ka(u1σ↓) =
i. Hence Fctγ(u1σ↓) = {(v, 1 · q) | (v, q) ∈ Fctγ(v1)}. Since (t, p) ∈ Fctγ(uσ↓), we deduce that
(t, 1 · p) ∈ Fctγ(u1σ↓). Thanks to Lemma 8 and by Definition 5 and 16, we deduce that
there exist K ′s,K

′
a such that (u1,K

′
s,K

′
a) ∈ E-termsi(S). Moreover, names(u1) ⊆ names(u)

thus names(u1) ⊆ {n ∈ names(u) | (x, v) ∈ ProTerm(Φ,S) ∧ xµcol ∈ γ}. Therefore, by
our inductive hypothesis on (u1,K

′
s,K

′
a) and (t, 1 · p), we deduce that there exist a term v,

x ∈ fv(u1) \ dom(ργ) and q ∈ Pos(xσ) such that

• (t, q) ∈ Fctγ(xσ)
• PFct((t, 1 · p), u1σ↓, v)
• PmFct((t, q), xσ, v)

Note that by Definition 21, v = t or root(v) ∈ {pk, vk, h}. Moreover, we know that t ∈ st(v1)
and so it implies that v ∈ st(v1) meaning that PFct((t, p), v1, v). Lastly, fv(uj) ⊆ fv(u) implies
x ∈ fv(u) \ dom(ργ) and so the result holds.

– Case f = untag : Similar to the previous case.
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– Case f ∈ Σi: Since such a case, uσ↓ = f(u1σ↓, . . . , unσ↓)↓. Hence, there exists C[ , . . . , ]
and v1, . . . , vm such that C[v1, . . . , vm] = f(u1σ↓, . . . , unσ↓) and v1, . . . , vm are factors of
f(u1σ↓, . . . , unσ↓). Thanks to Lemma 1, we deduce that there exists D and i1, . . . , ik ∈
{0, . . . ,m} such that uσ↓ = D[vi1 , . . . , vik ] and v0 = nmin. Following Definition 21, we de-

duce that Fctγ(uσ↓) =
⋃k
j=1{(v, pij · q) | (v, q) ∈ Fctγ(vij )} where pi1 , . . . , pim are the po-

sitions of vi1 , . . . , vik in uσ↓. Considering that (t, p) ∈ Fctγ(uσ↓), there exist j ∈ {1, . . . , k}
and p′ ∈ Pos(vij ) such that p = pij · p′ and (t, p′) ∈ Fctγ(vij ). Moreover, since v0 = nmin
then we deduce that ij 6= 0 and so there exists ` ∈ {1, . . . , n} such that either u`σ↓ = vij
or vij ∈ Fct(u`σ↓). In both cases, we obtain that if p′′ is the position of vij in u`σ↓ then
(t, p′′ · p′) ∈ Fctγ(u`σ↓). By applying our induct
We know that (t, p) ∈ Fctγ(uσ↓). By Definition 21, it implies that root(t) 6∈ Σi. Thanks to
Lemma 8 and by Definition 5 and 16, we deduce that there existK ′s,K

′
a such that (u`,K

′
s,K

′
a) ∈

E-termsi(S). Moreover, names(u`) ⊆ names(u) thus names(u`) ⊆ {n ∈ names(u) | (x, v) ∈
ProTerm(Φ,S)∧xµcol ∈ γ}. Thus, by our inductive hypothesis on (u`,K

′
s,K

′
a) and (t, p′′ ·p′),

we deduce that there exist a term v, x ∈ fv(u`) \ dom(ργ) and q ∈ Pos(xσ) such that
• (t, q) ∈ Fctγ(xσ)
• PFct((t, p

′′ · p′), u`σ↓, v)
• PmFct((t, q), xσ, v)

Note that by Definition 21, v = t or root(v) ∈ {pk, vk, h}. Moreover, we know that t ∈ st(vij )
and so it implies that v ∈ st(vij ) ⊆ st(uσ↓) meaning that PFct((t, p), uσ↓, v). Lastly, fv(uj) ⊆
fv(u) implies x ∈ fv(u) \ dom(ργ) and so the result holds. ut

Definition 23. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let t be a ground message
in normal form. We define AFct(t) as the smallest set such that:

– AFct(t) = Fctγ(t) ∪ {(v, p · q) | (u, p) ∈ Fctγ(t) ∧ (v, q) ∈ AFct(u)} when tagrootKs,Ka(t) ∈ γ
and γ ∈ {α, β}

– AFct(f(t1, . . . , tn)) =
⋃n
i=1{(v, i · p) | (v, p) ∈ AFct(ti)} when tagrootKs,Ka(t) = 0

Lemma 14. Let S be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S). For all M ∈ Recipe(E , Φ), for
all γ ∈ {α, β}, for all (t, p) ∈ Fctγ(MΦ↓), there exist N ∈ Recipe(E , Φ) and n ∈ N such that:

– qM = 1 · . . . · 1, |qM | = n and N |qM = M and for all q < qM , N |q ∈ {proj1, proj2}
– one of the following properties holds:
• PmFct((t, p),MΦ↓, NΦ↓)
• there exists q ∈ Pos(NΦ↓) such that (t, q) ∈ AFct(NΦ↓) and ∀u, PmFct((t, p),MΦ↓, u) ⇔
PmFct((t, q), NΦ↓, u).

Proof. Let ω ∈ {α, β} such that ω 6= γ. We prove this result by induction on |MΦ↓|.

Base case |MΦ↓| = 1: In such a case, MΦ↓ ∈ N ∪N ∪A. Hence, by Definition 21, t = MΦ↓ and
p = ε. Moreover, PmFct((t, p),MΦ↓,MΦ↓) meaning that the result holds with N = M .

Inductive step |MΦ↓| > 1: Otherwise, MΦ↓ = f(u1, . . . , un). If tagrootKs,Ka(MΦ↓) ∈ γ then by Def-
inition 23, Fctγ(MΦ↓) ⊆ AFct(MΦ↓). Hence (t, p) ∈ AFct(MΦ↓) and so the result directly holds
with N = M . If tagrootKs,Ka(MΦ↓) ∈ ω or tagrootKs,Ka(MΦ↓) = 0 with f 6∈ {pk, vk, h, 〈 〉} then by
Definition 21, Fctγ(MΦ↓) = {(MΦ↓, ε)} and so t = MΦ↓ and p = ε. Since PmFct((t, p),MΦ↓,MΦ↓),
the result directly holds with N = M . Else we obtain that f ∈ {pk, vk, h, 〈 〉}. By Definition 21,
we deduce that Fctγ(MΦ↓) =

⋃n
i=1{(v, i · p) | (v, p) ∈ Fctγ(ui)}. Thus, there exists i ∈ {1, . . . , n}

and p′ ∈ Pos(ui) such that p = i · p′ and (t, p′) ∈ Fctγ(ui). Let us do another case analysis on f:

If f = 〈 〉 then n = 2 and proji(M)Φ↓ = ui. Note that if ME,Φ≺ (M) = (x, |M |) for some x then

ME,Φ≺ (proji(M)) = (x, |proji(M)|). Hence by applying our inductive hypothesis on proji(M) and
(t, p′), we deduce that there exists N ∈ Recipe(E , Φ) such that

– ME,Φ≺ (x, |N |) = (x, |N |)
– one of the following properties holds:
• PmFct((t, p

′), proji(M)Φ↓, NΦ↓)
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• there exists q ∈ Pos(NΦ↓) such that (t, q) ∈ AFct(NΦ↓) and ∀u, PmFct((t, p
′), proji(M)Φ↓,

u)⇔ PmFct((t, q), NΦ↓, u).

Since f = 〈 〉 then by Definition 22, ∀u, PmFct((t, p
′), proji(M)Φ↓, u) ⇔ PmFct((t, p),MΦ↓, u). This

allows us to conclude that one of the following properties holds:

– PmFct((t, p),MΦ↓, NΦ↓)
– there exists q ∈ Pos(NΦ↓) such that (t, q) ∈ AFct(NΦ↓) and ∀u, PmFct((t, p),MΦ↓, u) ⇔
PmFct((t, q), NΦ↓, u).

Hence the result holds.
If f ∈ {pk, vk, h} then n = 1. Since (t, p) ∈ Fctγ(MΦ↓), we deduce that either (a) PmFct((t, p),

MΦ↓,MΦ↓) or (b) there exists q, q′ such that p = q · q′, tagrootKs,Ka(MΦ↓|) ∈ γ. In case (a), the
result holds with M = N . In case (b), let us take the pair (q, q′) where |q| is the smallest. In
such that a case, PmFct((MΦ↓|q, q),MΦ↓,MΦ↓) and (t, q′) ∈ Fctγ(MΦ↓|q). But by Definition 23,
we obtain that (t, q′) ∈ AFct(MΦ↓|q). Thus a quick induction on |q| allows us to prove that
(t, p) ∈ AFct(MΦ↓). Thus the result also holds with M = N . ut

Lemma 15. Let S be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S). Let γ ∈ {α, β}. Let (x, u) ∈
ProTerm(Φ,S) such that xµcol ∈ γ. For all (t, p) ∈ Fctγ(uσ↓), there exist M ∈ Recipe(E , Φ), a
term v and q ∈ Pos(MΦ↓) such that:

– ME,Φ≺ (M) < (x, 1)
– PFct((t, p), uσ↓, v)
– either (t, q) ∈ AFct(MΦ↓) and PmFct((t, q),MΦ↓, v)) or MΦ↓ = v.

Proof. By Definition 18, (x, u) ∈ ProTerm(Φ,S) implies that there exists Ks,Ka such that
(u,Ks,Ka) ∈ E-termsxµcol

(S) and uσ is a message. Thus, by Lemma 13, there exist a term v,
x′ ∈ fv(u) \ dom(ργ) and q ∈ Pos(xσ) such that

– (t, q) ∈ Fctγ(x′σ)
– PFct((t, p), uσ↓, v)
– PmFct((t, q), x

′σ, v).

Once again by Definition 18, x′ ∈ fv(u) \ dom(ργ) implies x′ ≺ x and x′µcol = xµcol. Hence,
we obtain that either there exists u′ such that (x′, u′) ∈ ProTerm(Φ,S) or there exists M ∈
Recipe(E , Φ) such that ME,Φ≺ (M) < (x′, 1) and MΦ↓ = x′σ.

In the latter case, we obtain that ME,Φ≺ (M) < (x, 1) and (t, q) ∈ Fctγ(MΦ↓). Hence by
Lemma 14, there exists N ∈ Recipe(E , Φ) such that:

– ME,Φ≺ (N) < (x′, 1) < (x, 1)
– one of the following properties holds:
• PmFct((t, q),MΦ↓, NΦ↓): In such a case, since x′σ = MΦ↓ and PmFct((t, q), x

′σ, v), we deduce
that NΦ↓ = v and so the result holds.

• there exists q′ ∈ Pos(NΦ↓) such that (t, q′) ∈ AFct(NΦ↓) and ∀u, PmFct((t, q),MΦ↓, u)⇔
PmFct((t, q

′), NΦ↓, u): In such a case, we know that PmFct((t, q), x
′σ, v) meaning PmFct((t, q),

MΦ↓, v) and so PmFct((t, q
′), NΦ↓, v). To summarize, we haveME,Φ≺ (N) < (x, 1), PmFct((t, q

′),
NΦ↓, v) and (t, q′) ∈ AFct(NΦ↓). Hence the result holds.

In the former case ((x′, u′) ∈ ProTerm(Φ,S)), by our inductive hypothesis on (x′, u′), we
obtain that there exists M ∈ Recipe(E , Φ), a term v′ and q′ ∈ Pos(MΦ↓) such that:

– ME,Φ≺ (M) < (x′, 1)
– PFct((t, q), u

′σ↓, v′)
– either (t, q′) ∈ AFct(MΦ↓) and PmFct((t, q

′),MΦ↓, v′)) or MΦ↓ = v′.

Since x′ ≺ x thenME,Φ≺ (M) < (x, 1). Moreover, with x′σ = u′σ↓, PmFct((t, q), x
′σ, v) and PFct((t, q),

u′σ↓, v′), we deduce that v′ ∈ st(v). Since PFct((t, p), uσ↓, v), we deduce that PFct((t, p), uσ↓, v′).
Thus, the result holds with M , v′ and q′. ut
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Lemma 16. Let u be a ground message in normal form. For all (t, p) ∈ AFct(u), for all γ ∈
{α, β}, one of the following properties holds:

– there exist (v, q) ∈ Fctγ(u) and p′ ∈ Pos(v) such that (t, p′) ∈ AFct(v) and p = q · p′.
– (t, p) ∈ Fctγ(u).

Proof. Let us denote ω ∈ {α, β} such that γ 6= ω. We prove this lemma by induction on |u|.

Base case |u| = 1: In such a case, AFct(u) = ∅ and so the result trivially holds.

Inductive step |u| > 1: Otherwise, u = f(u1, . . . , un). We do a case analysis on u:

– Case tagrootKs,Ka(u) ∈ γ: AFct(u) = Fctγ(u)∪{(r, q ·q′) | (v, q) ∈ Fctγ(u)∧(r, q′) ∈ AFct(v)}.
Therefore, either (t, p) ∈ Fctγ(u) or there exist (v, q) ∈ Fctγ(u) and q′ such that p = q · q′ and
(t, q′) ∈ AFct(v). In both cases, the result holds.

– Case tagrootKs,Ka(u) ∈ ω: Fctγ(u) = {(u, ε)}. Thus, by considering (v, q) = (u, ε), we deduce
that (t, p) ∈ AFct(u) and p = ε · p. Hence the result holds.

– Case tagrootKs,Ka(u) = 0 and root(u) 6∈ {pk, vk, h, 〈 〉}: In such a case, Fctγ(u) = {(u, ε)}.
Therefore, the result holds with (v, q) = (u, ε) and p′ = p.

– Case tagrootKs,Ka(u) = 0 and root(u) ∈ {pk, vk, h, 〈 〉}: In such a case, AFct(u) =
⋃n
i=1{(v, i·q) |

(v, q) ∈ AFct(ui)} and Fctγ(u) =
⋃n
i=1{(v, i · q) | (u, q) ∈ Fctγ(ui)}. Hence there exist

i ∈ {1, . . . , n} and p′ ∈ Pos(ui) such that (t, p′) ∈ AFct(ui) and p = i · p′. Thus, by our
inductive hypothesis on ui, we obtain that either (a) (t, p′) ∈ Fctγ(ui) or (b) there exist
(v, q) ∈ Fctγ(ui) and q′ ∈ Pos(v) such that (t, q′) ∈ AFct(v) and p′ = q · q′. In case (a),
(t, p′) ∈ Fctγ(ui) implies that (t, i · p′) ∈ Fctγ(u) and so (t, p) ∈ Fctγ(u). Thus the result
holds. In case (b), (v, i · q) ∈ Fctγ(u), q′ ∈ Pos(v), (t, q′) ∈ AFct(v) and p = (i · q) · q′.
Therefore, the result holds. ut

Lemma 17. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S).
For all M ∈ Recipe(E , Φ), for all (t, p) ∈ AFct(MΦ↓), there exist N ∈ Recipe(E , Φ) and qN ∈
Pos(N) such that

– ME,Φ≺ (N |qN ) <ME,Φ≺ (M)
– for all q < qN , N |q ∈ {proj1, proj2}
– PFct((t, p),MΦ↓, NΦ↓)

Proof. We prove this result by induction on ME,Φ≺ (M).

Base case ME,Φ≺ (M) = (x0, 0): Trivial since no recipe has size 0.

Inductive step ME,Φ≺ (M) > (x0, 0): Assume first that |M | = 1. In such a case, M ∈ N ∪ A ∪ N
or M ∈ dom(Φ). If M 6∈ dom(Φ) then MΦ↓ = M and AFct(MΦ↓) = ∅ which contradicts the
fact that (t, p) ∈ AFct(MΦ↓). Therefore, M ∈ dom(Φ). Let γ ∈ {α, β} such that Mµcol ∈ γ. By
Definition 18, we know that either Property 5a or 5b of the definition holds. If Property 5b holds
then the result directly holds by application on our inductive hypothesis. Therefore, let us assume
that Property 5a holds, meaning that there exists u such that (M,u) ∈ ProTerm(Φ,S). From
Lemma 16, we deduce that one of the following properties hold:

1. (t, p) ∈ Fctγ(MΦ↓).
2. there exist (v, q) ∈ Fctγ(MΦ↓) and p′ ∈ Pos(v) such that (t, p′) ∈ AFct(v) and p = q · p′

In Case (1), by Lemma 15, we deduce that there exists N ∈ Recipe(E , Φ), a term v and q ∈
Pos(NΦ↓) such that ME,Φ≺ (N) <ME,Φ≺ (M), PFct((t, p),MΦ↓, v) and either (t, q) ∈ AFct(NΦ↓)
and PmFct((t, q), NΦ↓, v) or NΦ↓ = v.

In the latter case, the result directly holds. In the former case, we can apply our inductive
hypothesis on N and (t, q) meaning that there exist N ′ ∈ Recipe(E , Φ) and qN ′ ∈ Pos(N ′) such
that:

– ME,Φ≺ (N ′|qN′ ) <ME,Φ≺ (N) <ME,Φ≺ (M); and
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– for all q′ < qN ′ , N ′|q′ ∈ {proj1, proj2}; and
– PFct((t, q), NΦ↓, N ′Φ↓).

Since PmFct((t, q), NΦ↓, v), PFct((t, q), NΦ↓, N ′Φ↓) implies thatN ′Φ↓ ∈ st(v). But PFct((t, p),MΦ↓, v).
Therefore, PFct((t, p),MΦ↓, N ′Φ↓).

In Case (2), by Lemma 15, we deduce that there exists N ∈ Recipe(E , Φ), a term w and r ∈
Pos(NΦ↓) such that ME,Φ≺ (N) <ME,Φ≺ (M), PFct((v, q),MΦ↓, w) and either (v, r) ∈ AFct(NΦ↓)
and PmFct((v, r), NΦ↓, w) or NΦ↓ = w.

In the former case, by our inductive hypothesis on N and (v, r), we deduce that there exists
N ′ ∈ Recipe(E , Φ) and qN ′ ∈ Pos(N ′) such that

– ME,Φ≺ (N ′|qN′ ) <ME,Φ≺ (N) <ME,Φ≺ (M); and
– for all q′ < qN ′ , N ′|q′ ∈ {proj1, proj2}; and
– PFct((v, r), NΦ↓, N ′Φ↓).

Let us denote r = r′′ · r′ such that NΦ↓|r′′ = N ′Φ↓. By Definition 23, (t, p′) ∈ AFct(v), p = q · p′
and (v, q) ∈ Fctγ(MΦ↓) implies that (t, r′ · p′) ∈ AFct(N ′Φ↓). Note that since for all q′ < qN ′ ,

N ′|q′ ∈ {proj1, proj2}, there exists q′′ such that (t, q′′·r′·p′) ∈ AFct(N ′|qN′Φ↓). ButME,Φ≺ (N ′|qN′ ) <

ME,Φ≺ (M) hence by our inductive hypothesis, we deduce that there exists N ′′ ∈ Recipe(E , Φ) and
qN ′′ such that:

– ME,Φ≺ (N ′′|q′′) <ME,Φ≺ (N ′|qN′ )
– for all q < qN ′′ , N ′′|q ∈ {proj1, proj2}
– PFct((t, q

′′ · r′ · p′), N ′|qN′Φ↓, N ′′Φ↓)

Note that PFct((t, q
′′ · r′ · p′), N ′|qN′Φ↓, N ′′Φ↓) implies root(N ′′Φ↓) 6= 〈 〉. Thus we obtain that

PFct((t, r
′ · p′), N ′Φ↓, N ′′Φ↓). Hence N ′′Φ↓ ∈ st(N ′Φ↓). Moreover, PFct((v, r), NΦ↓, N ′Φ↓) and

PmFct((v, r), NΦ↓, w) implies that N ′Φ↓ ∈ st(w). Lastly, PFct((v, q),MΦ↓, w) implies w ∈ st(MΦ↓).
Therefore, we deduce that N ′′Φ↓ ∈ st(MΦ↓) and so PFct((t, p),MΦ↓, N ′′Φ↓).

In the latter case, we have PFct((v, q),MΦ↓, NΦ↓). But by Definition 23, if we denote q = r′′ ·r′
such that MΦ↓|r′′ = NΦ↓ then (t, p′) ∈ AFct(v) implies that (t, r′ · p′) ∈ AFct(NΦ↓). By our
inductive hypothesis, we deduce that there exist N ′ ∈ Recipe(E , Φ) and qN ′ such that

– ME,Φ≺ (N ′|qN′ ) <ME,Φ≺ (N) <ME,Φ≺ (M); and
– for all q′ < qN ′ , root(N ′|q′) ∈ {proj1, proj2}; and
– PFct((t, r

′ · p′), NΦ↓, N ′Φ↓).

Since PFct((v, q),MΦ↓, NΦ↓), q = r′′ · r′ and p = q · p′, we obtain that PFct((t, p),MΦ↓, N ′Φ↓)
which allows us to conclude.

Assume now that |M | > 1 and so M = f(M1, . . . ,Mn). We do a case analysis on f.

– Case f ∈ Σ0 \ {sdec, rsdec, adec, radec, check} when tagrootKs,Ka(MΦ↓) = 0. In such a case,
MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓). Moreover, by Definition 23, we know that there exist i ∈
{1, . . . , n} and p′ ∈ Pos(MiΦ↓) such that (t, p′) ∈ AFct(MiΦ↓). By applying our inductive
hypothesis on Mi and (t, p′), we conclude.

– Case f ∈ Σ0 \ {sdec, rsdec, adec, radec, check} when tagrootKs,Ka(MΦ↓) ∈ γ with γ ∈ {α, β}.
In such a case, MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓). By Definitions 23 and 21, we deduce that either
(t, p′) ∈ Fctγ(M1Φ↓) and p = 1 · p′ or there exist (v, q) ∈ Fctγ(M1Φ↓) and q′ such that
p = 1 ·q ·q′ and (t, q′) ∈ AFct(v). In the former case, by Lemma 14, we obtain that there exists
N ∈ Recipe(E , Φ) and qN such that N |qN = M1, for all q < qN , root(N |q) ∈ {proj1, proj2} and
one of the following properties holds:
• PmFct((t, p

′),M1Φ↓, NΦ↓): Note that since root(MΦ↓) 6∈ {pk, vk, h}, PmFct((t, p
′),M1Φ↓, NΦ↓)

implies PmFct((t, p),MΦ↓, NΦ↓). Thus the result directly holds sinceME,Φ≺ (M1) <ME,Φ≺ (M)
• there exists q ∈ Pos(NΦ↓) such that (t, q) ∈ AFct(NΦ↓) and for all u, PmFct((t, p

′),M1Φ↓, u)⇔
PmFct((t, q), NΦ↓, u): Note that (t, q) ∈ AFct(NΦ↓) implies (t, p′) ∈ AFct(M1Φ↓). By ap-
plying our inductive hypothesis on (t, p′) and M1, there exist N ′ and qN ′ such that
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∗ ME,Φ≺ (N ′|qN′ ) <ME,Φ≺ (M1) <ME,Φ≺ (M); and
∗ for all q′ < qN ′ , root(N ′|q′) ∈ {proj1, proj2}; and
∗ PFct((t, p

′),M1Φ↓, N ′Φ↓) which implies PFct((t, p),MΦ↓, N ′Φ↓)
In the latter case, (v, q) ∈ Fctγ(M1Φ↓) and (t, q′) ∈ AFct(v) implies that (t, q·q′) ∈ AFct(M1Φ↓).
We conclude by applying our inductive hypothesis on (t, q · q′) and M1Φ↓.

– Case f ∈ {sdec, rsdec, adec, radec, check}: We know that MΦ is a message. Hence, there ex-
ists g ∈ {senc, rsenc, aenc, raenc, sign} and u1, . . . , un such that M1Φ↓ = g(u1, . . . , un) and
MΦ↓ = u1. Note that if tagrootKs,Ka(M1Φ↓) then we directly have by definition that (t, 1 ·p) ∈
AFct(M1Φ↓) and so we conclude by applying our inductive hypothesis. If tagrootKs,Ka(M1Φ↓) ∈
γ with γ ∈ {α, β} then from Lemma 16 we also obtain that (t, 1 · p) ∈ AFct(M1Φ↓) which
allows us to conclude.

– Case f ∈ Σi, i ∈ γ, γ ∈ {α, β}: In such a case MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓)↓ = u↓. ut

E.2 Potential deducible terms

Definition 24. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let t be a ground message
in normal form. We define DFct(t) the smallest set such that:

– DFct(f(u1, . . . , un)) = {f(u1, . . . , un)} ∪
⋃
i=1 DFct(ui) when f ∈ {pk, vk, h, 〈 〉} ∪ {tagi, tagki |

i ∈ {α, β}} and t 6= tagki(t
′) for some i ∈ γ, γ ∈ {α, β} and t′ ∈ dom(ρσγ )

– DFct(f(u1, . . . , un)) = {f(u1, . . . , un)} ∪DFct(u1) when f ∈ {senc, rsenc, aenc, raenc, sign}
– DFct(f(u1, . . . , un)) =

⋃n
i=1 DFct(ui) when f ∈ Σα ∪Σβ

Lemma 18. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let γ ∈ {α, β}. Let i ∈ γ. For
all (u,Ks,Ka) ∈ E-termsi(S), for all t ∈ DFct(uσ↓), if uσ is a message then

– either there exists (v,K ′s,K
′
a) ∈ E-termsi(S) such that v ∈ st(u), root(v) = root(t) and

vσ↓ = t.
– or there exists x ∈ fv(u) \ dom(ργ) such that t ∈ DFct(xσ).

Proof. We prove the result by induction on |u|.

Base case |u| = 1: In such a case, u ∈ N∪A∪N or u ∈ X\dom(ργ) (by Property 1 of Definition 16).
By Definition 24, t ∈ DFct(uσ↓) implies that u 6∈ N ∪A∪N . Therefore, u ∈ X \dom(ργ). Hence,
we directly obtain the result.

Inductive step |u| > 1: Otherwise by Definition 16, we know that (u,Ks,Ka) ∈ TagT(i). Hence
we do a case analysis on the Definition 5:

Case 2,3,5 of Definition 5 when u = f(u1, . . . , un) and f ∈ {sign, senc, rsenc, aenc, raenc}: In such
a case, we know that uσ↓ = f(u1σ↓, . . . , unσ↓). Moreover, by Definition 24, we also know that either
t = uσ↓ or t ∈ DFct(u1σ↓). In the former case, the result directly holds. Note that by Lemma 8
and since u1 6∈ dom(ργ), we deduce that there exists K ′s,K

′
a such that (u1,K

′
s,K

′
a) ∈ E-termsi(S)

and t ∈ DFct(u1σ↓). We conclude by applying our inductive hypothesis on (u1,K
′
s,K

′
a).

Case 2,3,4 of Definition 5 when u = f(u1, . . . , un) and f ∈ {check, sdec, rsdec, adec, radec}: In
such a case, we know that uσ is a message, meaning that there exist g ∈ {sign, senc, rsenc, aenc, raenc}
and v1, . . . , vm such that u1σ↓ = g(v1, . . . , vm) and uσ↓ = v1. Therefore, by Definition 24, we know
that DFct(uσ↓) ⊆ DFct(u1σ↓). Note that by Lemma 8 and since u1 6∈ dom(ργ), we deduce that
there exists K ′s,K

′
a such that (u1,K

′
s,K

′
a) ∈ E-termsi(S). We conclude by applying our inductive

hypothesis on (u1,K
′
s,K

′
a).

Case 6,7 of Definition 5: Similar to the two previous cases.

Case 8 of Definition 5 when u = f(u1, . . . , un) and f ∈ Σγ : In such a case uσ↓ = f(u1σ↓, . . . , unσ↓).
Note that t ∈ DFct(uσ↓) implies root(t) 6∈ Σγ . Thus, by Lemma 1 and by Definition 24, we deduce
that there exists j ∈ {1, . . . , n} such that t ∈ DFct(ujσ↓). Therefore, by Definition 24, we know
that DFct(uσ↓) ⊆ DFct(ujσ↓). Note that by Lemma 8 and since uj 6∈ dom(ργ), we deduce that
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there exists K ′s,K
′
a such that (uj ,K

′
s,K

′
a) ∈ E-termsi(S). We conclude by applying our inductive

hypothesis on (uj ,K
′
s,K

′
a).

Case 8 of Definition 5 when u = f(u1, . . . , un) and f ∈ {proj1, proj2}: Similar to case 2,3,4 when
f ∈ {check, sdec, rsdec, adec, radec}.

Case 8 of Definition 5 when u = f(u1, . . . , un) and f ∈ {pk, vk, h, 〈 〉, tagi, tagki}: In such a
case, we know that uσ↓ = f(u1σ↓, . . . , unσ↓). Moreover, if f = tagki then n = 1. In such a case,
if ui ∈ dom(ργ) then by Definition 24, we obtain that DFct(uσ↓) = ∅ which contradicts our
hypothesis t ∈ DFct(uσ↓). As such, we deduce that for all j ∈ {1, . . . , n}, uj 6∈ dom(ργ) and so
by Lemma 8, we deduce that there exists Kj

s ,K
j
a such that (uj ,K

j
s ,K

j
a) ∈ E-termsi(S). From

Definition 24, either t = uσ↓ or there exists j ∈ {1, . . . , n} such that t ∈ DFct(ujσ↓). In the former
case, the result directly holds, otherwise we can apply our inductive hypothesis on (uj ,K

j
s ,K

j
a)

which allows us to conclude. ut

Lemma 19. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S).
For all (x, u) ∈ ProTerm(Φ,S), for all t ∈ DFct(uσ↓),

– either there exist (x′, u′) ∈ ProTerm(Φ,S) and (v,Ks,Ka) ∈ E-termsx′µcol
(S) such that

¬(x ≺ x′), xµcol = x′µcol, v ∈ st(u′), root(v) = root(t) and vσ↓ = t.

– there exists M ∈ Recipe(E , Φ) such that ME,Φ≺ (M) < (x, 1) and t ∈ DFct(MΦ↓)

Proof. We prove this result by induction on x with respect to the order ≺.

Base case x = x0: Such a case is impossible since we assumed that x0 6∈ dom(Φ) ∪ dom(σ).

Inductive step x0 ≺ x: In such a case, (x, u) ∈ ProTerm(Φ,S) implies that there exist γ ∈ {α, β},
i ∈ γ and Ks,Ka such that i = xµcol, (u,Ks,Ka) ∈ E-termsi(S), uσ is a message and xΦσ = uσ↓.
By Lemma 18, we deduce that:

– either there exists (v,K ′s,K
′
a) ∈ E-termsi(S) such that v ∈ st(u), root(v) = root(t) and

vσ↓ = t: In such a case, the result directly holds.
– or there exists y ∈ fv(u) \ dom(ργ) such that t ∈ DFct(yσ). By Definition 18, we know that

either Property 5a or Property 5b holds on y. If Property 5b of Definition 18 holds on y then
the result directly holds too. Otherwise, Property 5a of Definition 18 holds on y and so there
exists u′ such that yµcol = i, (y, u′) ∈ ProTerm(Φ,S) and t ∈ DFct(u′σ↓). We conclude by
applying ur inductive hypothesis on (y, u′). ut

Lemma 20. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S).
For all M ∈ Recipe(E , Φ), for all f(t1, . . . , tn) ∈ DFct(MΦ↓),

– either there exist (x, u) ∈ ProTerm(Φ,S) and (v,Ks,Ka) ∈ E-termsxµcol
(S) such that

ME,Φ≺ (M) ≥ (x, 1), v ∈ st(u), root(v) = f and vσ↓ = f(t1, . . . , tn).

– there exists M1, . . . ,Mn ∈ Recipe(E , Φ) such that for all i ∈ {1, . . . , n},ME,Φ≺ (Mi) <ME,Φ≺ (M)
and MiΦ↓ = ti.

Proof. We prove this result by induction on ME,Φ≺ (M).

Base case ME,Φ≺ (M) = (x0, 0): Such a case is impossible since no recipes has size 0.

Inductive step MEc,Φ
≺ (M) > (x0, 0): Assume first that |M | = 1. In such a case, f(t1, . . . , tn) ∈

DFct(MΦ↓) and Definition 24 allows us to deduce that M ∈ dom(Φ). Hence from Definition 18,
we know that either Property 5b of Definition 18 holds on M or Property 5a. If it is the former
then there exists N ∈ Recipe(E , Φ) such that MEc,Φ

≺ (N) <MEc,Φ
≺ (M) and NΦ↓ = MΦ↓. Thus,

we conclude by applying our inductive hypothesis on N . If it is the latter, then there exists u such
that (M,u) ∈ ProTerm(Φ,S) and f(t1, . . . , tn) ∈ DFct(uσ↓). By Lemma 19, we know that

– either there exist (x′, u′) ∈ ProTerm(Φ,S) and (v,Ks,Ka) ∈ E-termsx′µcol
(S) such that

¬(M ≺ x′), Mµcol = x′µcol, v ∈ st(u′), root(v) = f and vσ↓ = f(t1, . . . , tn).
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– there exists N ∈ Recipe(E , Φ) such thatME,Φ≺ (N) <ME,Φ≺ (M) and f(t1, . . . , tn) ∈ DFct(NΦ↓)

In the latter case, we conclude by applying our inductive hypothesis on N . In the former case, the
result directly holds since ¬(M ≺ x′) implies ME,Φ≺ (M) ≥ (x′, 1).

Assume now that |M | > 1. Therefore, assume that M = g(M1, . . . ,Mm). We do a case analysis
on g.

– Case g ∈ {pk, vk, h, 〈 〉}∪{tagi, tagki | i ∈ {α, β}}: In such a case, MΦ↓ = g(M1Φ↓, . . . ,MmΦ↓).
Moreover, f(t1, . . . , tn) ∈ DFct(MΦ↓) implies that MΦ↓ 6= tagki(t) for some i ∈ γ, γ ∈ {α, β}
and t ∈ dom(ρσγ ). Note that by Definition 24, we also have that either f(t1, . . . , tn) = MΦ↓
or there exists i ∈ {1, . . . ,m} such that f(t1, . . . , tn) ∈ DFct(MiΦ↓). In the former case, we

have in fact f = g, n = m and for all i ∈ {1, . . . , n}, MiΦ↓ = ti and ME,Φ≺ (Mi) <ME,Φ≺ (M).
Therefore, the result holds. In the latter case, we conclude by applying our inductive hypothesis
on Mi.

– Case g ∈ {senc, rsenc, aenc, raenc, sign}: Similar to the previous case. Indeed, MΦ↓ = g(M1Φ↓,
. . . ,MmΦ↓). Moreover, by Definition 24, we also have that either f(t1, . . . , tn) = MΦ↓ or
f(t1, . . . , tn) ∈ DFct(M1Φ↓). In the former case, the result holds and in the latter case, we
conclude by applying our inductive hypothesis.

– Case g ∈ {sdec, rsdec, adec, radec, check}: Since MΦ is a message, we deduce that there exists
g′ ∈ {senc, rsenc, raenc, sign} and v1, . . . , vk such that M1Φ↓ = g′(v1, . . . , vk) and v1 = MΦ↓.
By Definition 24, we obtain that DFct(MΦ↓) ⊆ DFct(M1φ↓) meaning that we conclude by
applying our inductive hypothesis on M1.

– Case g ∈ {proj1, proj2}: Similar to previous case.
– Case g ∈ Σi, i ∈ γ, γ ∈ {α, β}: In such a case, MΦ↓ = g(M1Φ↓, . . . ,MmΦ↓)↓. From Defini-

tion 24, we know that f 6∈ Σi. Thus by Lemma 1, we deduce that there exists i ∈ {1, . . . ,m}
such that f(t1, . . . , tn) ∈ DFct(MiΦ↓). We conclude by applying our inductive hypothesis on
Mi. ut

E.3 Link between the frames Φ and tr(Φ)

Lemma 21. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup. Let (E , Φ,≺, µcol) ∈ DFrame(S).
For all γ, ω ∈ {α, β}.γ 6= ω, for all i ∈ ω, for all terms t, for all (x, u) ∈ ProTerm(Φ,S), for all
(u′,Ks,Ka) ∈ E-termsi(S), for all context C built on {pk, vk, h, 〈 〉}, for all terms t1, . . . , tn, if
the following properties hold:

– t = C[t1, . . . , tn] = u′σ↓
– xµcol = i
– u′ ∈ st(u)
– root(u′) = root(t)
– for all p ∈ Pos(C), C|p 6= implies PνE.Φ≺ (t|p, x)
– for all j ∈ {1, . . . , n}, ¬PνE.Φ≺ (tj , x) or root(tj) 6∈ {pk, vk, h, 〈〉}

then the following properties hold:

– for all j ∈ {1, . . . , n}, PνE.Φ≺ (tj , x) implies that either tj ∈ NΦ,S
ω or tagrootKs,Ka(tj) ∈ ω

– for all p ∈ Pos(C), root(C|p) ∈ {pk, vk, h} implies t|p ∈ Hγ

Proof. Let us first show that for all j ∈ {1, . . . , n}, PνE.Φ≺ (tj , x) implies that either tj ∈ NΦ,S
ω or

tagrootKs,Ka(tj) ∈ ω. Let us assume that tj 6∈ NΦ,S
ω and tagrootKs,Ka(tj) 6∈ ω. As such, assume

that pj ∈ Pos(C) such that t|pj = tj . In such a case, if tj ∈ N then tj ∈ N \ NΦ,S
ω and so

(tj , pj) ∈ Fctω(t). If tj 6∈ N then tagrootKs,Ka(tj) 6∈ ω implies that tagrootKs,Ka(tj) ∈ γ ∪ {0}. Note

that since PνE.Φ≺ (tj , x) then root(tj) 6∈ {pk, vk, h, 〈〉}. Thus (tj , pj) ∈ Fctω(t).
Therefore, we obtained that for all j ∈ {1, . . . , n}, PνE.Φ≺ (tj , x) implies (tj , pj) ∈ Fctω(t).

Moreover, by Lemma 13, we deduce that there exists a term v, y ∈ fv(u′) \ dom(ρω) and q ∈
Pos(yσ) such that:
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– (tj , q) ∈ Fctω(yσ)
– PFct((tj , pj), u

′σ↓, v)
– PmFct((tj , q), yσ, v)

Note that PFct((tj , pj), u
′σ↓, v) implies there exists p′ ∈ Pos(C) such that p′ ≤ pj and t|p′ = v.

Therefore, we obtain that PνE.Φ≺ (v, x). By Definition 18 and by Lemma 15, we obtain that there
exists M ∈ Recipe(E , Φ), a term v′ and q′ ∈ Pos(MΦ↓) such that:

– ME,Φ≺ (M) < (x, 1)
– PFct((tj , q), yσ, v

′)
– PmFct((tj , q

′),MΦ↓, v′)
– (tj , q

′) ∈ AFct(MΦ↓)

Note that PFct((tj , q), yσ, v
′) and PmFct((tj , q), yσ, v) implies that once again that there exists

p′ ∈ Pos(C) such that p′ ≤ pj , t|p′ = v′ and so PνE.Φ≺ (v′, x). By Lemma 17, (tj , q
′) ∈ AFct(MΦ↓)

implies that there exist N ∈ Recipe(E , Φ) and qN ∈ Pos(N) such that:

– ME,Φ≺ (N |qN ) <ME,Φ≺ (M)
– for all q < qN , N |q ∈ {proj1, proj2}
– PFct((tj , q

′),MΦ↓, NΦ↓)

Once again since PmFct((tj , q
′),MΦ↓, v′), PFct((tj , q

′),MΦ↓, NΦ↓) and there exists p′ ∈ Pos(C)
such that p′ ≤ pj , t|p′ = v′ then we obtain that there exists p′′ ∈ Pos(C) such that p′′ ≤ pj ,

t|p′′ = NΦ↓. But we know that ME,Φ≺ (N |qN ) < ME,Φ≺ (M), for all q < qN , N |q ∈ {proj1, proj2}
and ME,Φ≺ (M) < (x, 1). Therefore, ME,Φ≺ (N) < (x, 1) which is a contradiction with the fact that
for all p ∈ Pos(C), C|p 6= implies PνE.Φ≺ (t|p, x). We thus conclude that either tj ∈ NΦ,S

ω or
tagrootKs,Ka(tj) ∈ ω.

Let us now prove that p ∈ Pos(C), root(C|p) ∈ {pk, vk, h} implies t|p ∈ Hω. Let p ∈ Pos(C)
such that root(C|p) ∈ {pk, vk, h}. In such a case, we deduce that t|p ∈ DFct(u′σ↓). By relying on
Lemma 18, 19 and Definition 18, we obtain that one of the following properties holds:

– there exists (y, v) ∈ ProTerm(Φ,S) and (v′,K ′s,K
′
a) ∈ E-termsi(S) such that ¬(x ≺ y),

yµcol = i, v′ ∈ st(v), root(v′) = root(t|p) and v′σ↓ = t|p.
– there exists M ∈ Recipe(E , Φ) such that ME,Φ≺ (M) < (x, 1) and t|p ∈ DFct(MΦ↓).

In the first case, since we know that PνE.Φ≺ (t|p, x) holds and since ¬(x ≺ y), we directly have that
PνE.Φ≺ (t|p, y). Moreover, i ∈ ω and so we deduce from Definition 18 that t|p ∈ Hγ .

In the second case, since PνE.Φ≺ (t|p, x) and ME,Φ≺ (M) < (x, 1), we can apply Lemma 20 and
obtain that there exists (y, v) ∈ ProTerm(Φ,S) and (v′,K ′s,K

′
a) ∈ E-termsyµcol

(S) such that

(y, 1) ≤ ME,Φ≺ (M), v′ ∈ st(v), root(v′) = root(t|p) and v′σ↓ = t|p. If yµcol ∈ ω then we obtain
as previously that t|p ∈ Hγ . Hence, it remains the case where yµcol ∈ γ. Note that PνE.Φ≺ (t|p, x)
implies that there exists j ∈ {1, . . . , n} and pj ∈ Pos(C) such that p ≤ pj and PνE.Φ≺ (tj , x). But
we proved that either tj ∈ NΦ,S

ω or tagrootKs,Ka(tj) ∈ ω.
As such, if we denote p′j such that pj = p · p′j then we obtain that (tj , p

′
j) ∈ Fctγ(v′σ↓). By

Lemma 13, we deduce that there exists a term w, z ∈ fv(v′)\dom(ργ) and q ∈ Pos(zσ) such that:

– (tj , q) ∈ Fctγ(zσ)
– PFct((tj , p

′
j), v

′σ↓, w)
– PmFct((tj , q), zσ, w)

Note that PFct((tj , p
′
j), v

′σ↓, w) implies there exists p′ ∈ Pos(C) such that p < p′ ≤ p · p′j and

t|p′ = w. Therefore, we obtain that PνE.Φ≺ (w, x). By Definition 18 and by Lemma 15, we obtain
that there exists M ′ ∈ Recipe(E , Φ), a term w′ and q′ ∈ Pos(MΦ↓) such that:

– ME,Φ≺ (M ′) < (y, 1) ≤ME,Φ≺ (M) < (x, 1)
– PFct((tj , q), zσ, w

′)
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– PmFct((tj , q
′),M ′Φ↓, w′)

– (tj , q
′) ∈ AFct(M ′Φ↓)

Once again, we deduce that there exists p′ ∈ Pos(C) such that t|p′ = w′ and so PνE.Φ≺ (w′, x).
Lastly, by applying Lemma 17 on (tj , q

′) and M ′, we deduce that existence of N ∈ Recipe(E , Φ)

such that ME,Φ≺ (N) < (x, 1) and PFct((tj , q
′),M ′Φ↓, NΦ↓). But PFct((tj , q

′),M ′Φ↓, NΦ↓) and
PmFct((tj , q

′),M ′Φ↓, w′) implies that there exists p′′ ∈ Pos(C) such that t|p′ = NΦ↓ with p′′ ≤ pj .
Thus, we know that PνE.Φ≺ (NΦ↓, x) holds which is a contradiction. We therefore conclude that the
case yµcol ∈ γ is impossible and so the result holds. ut

Lemma 22. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup and let tr and trH be the trans-
formation functions of S. Let (E , Φ,≺, µcol) ∈ DFrame(S). Assume the following property:

for all t ∈ dom(ρσα) ∪ dom(ρσβ), νE .tr(Φ) 6` trα(t) and νE .tr(Φ) 6` trβ(t)

For all M ∈ Recipe(E ∪ Nabs, Φ), for all γ ∈ {α, β}, if there exist N ∈ Recipe(E , tr(Φ)) such
that N tr(Φ)↓ = trγ(MΦ↓) then PS〈 〉(MΦ↓, γ).

Proof. Let us show that for all M ∈ Recipe(E ∪ Nabs, Φ), for all γ ∈ {α, β}, if there exists N ∈
Recipe(E , tr(Φ)) and p ∈ Pos(MΦ↓) such that:

– MΦ↓|p ∈ dom(ρσγ )
– for all p′ strict prefix of p, root(MΦ↓|p′) = 〈 〉
– N tr(Φ)↓ = trγ(MΦ↓)

then there exist L ∈ Recipe(E , tr(Φ)), ω ∈ {α, β} and t ∈ dom(ρσα, ρ
σ
β) such that Ltr(Φ)↓ = trω(t).

We show this result by induction on |p|.

Base case |p| = 0: In such a case, MΦ↓ ∈ dom(ρσγ ) and since N tr(Φ)↓ = trγ(MΦ↓), the result
holds with L = N , ω = γ and t = MΦ↓.

Inductive step |p| > 0: In such a case, p = i · p′ for some strict prefix p′ and i ∈ N. Hence, by
hypothesis, we know that root(MΦ↓) = 〈 〉. Thus, MΦ↓ = 〈t1, t2〉 and i ∈ {1, 2}. Moreover, by con-
sidering M ′ = proji(M), we obtain that M ′Φ↓ = ti, MΦ↓|p = M ′Φ↓|p′ and for all p′′ strict prefix of
p′, i ·p′′ is a strict prefix of p and so root(MΦ↓|i·p′) = 〈 〉 which implies root(M ′Φ↓|p′′) = 〈 〉. Lastly,
we know that N tr(Φ)↓ = trγ(MΦ↓). Since root(MΦ↓) = 〈 〉, we deduce from Properties 8 and 6
of Definition 12 that MΦ↓ 6∈ Hγ ∪ dom(µγ). Moreover, we assumed that MΦ↓ 6∈ dom(ρσγ ). There-
fore, we conclude that N tr(Φ)↓ = 〈trγ(t1), trγ(t2)〉. Hence, proji(N)tr(Φ)↓ = trγ(ti). By applying
our inductive hypothesis on proji(M) and γ, we conclude that there exists L ∈ Recipe(E , tr(Φ)),
ω ∈ {α, β} and t ∈ dom(ρσα, ρ

σ
β) such that Ltr(Φ)↓ = trω(t). Hence the result holds. ut

Lemma 23. Let S = (ρα, ρβ , µα, µβ ,Hα,Hβ , σ,Ks,Ka) be a setup and let tr and trH be the trans-
formation functions of S. Let (E , Φ,≺, µcol) ∈ DFrame(S). Assume the following hypothesis:

H1- for all t ∈ dom(ρσα) ∪ dom(ρσβ), νE .tr(Φ) 6` trα(t) and νE .tr(Φ) 6` trβ(t)

For all M ∈ Recipe(E ∪ Nabs, Φ), there exist two terms Mα,Mβ ∈ Recipe(E , tr(Φ)) such that
for all γ ∈ {α, β}, Mγtr(Φ)↓ = trγ(MΦ↓).

Proof. Let us denote E ∪Nabs by E ′. Let M ∈ Recipe(E ′, Φ). Note that w.l.o.g. we can assume that
M↓ = M sinceM↓Φ↓ = MΦ↓. Let γ ∈ {α, β}. For the purpose of this proof, we define the predicate
P (γ,M) to hold if and only if there exists Mγ ∈ Recipe(E , tr(Φ)) such that Mγtr(Φ)↓ = trγ(MΦ↓).
Therefore, we need to show that for all M ∈ Recipe(E ′, Φ), M↓ = M implies P (α,M) and P (β,M).

We prove this result by induction on ME,Φ≺ (M).

Base case ME,Φ≺ (M) = (x0, 0): Such a case is impossible since there is no term M with |M | = 0.

Inductive step ME,Φ≺ (M) > (x0, 0): First, notice that MΦ↓ = C[u1, . . . , un] where C is built over

{〈 〉}, and for all i ∈ {1, . . . , n}, root(ui) 6= 〈 〉. Before showing the main result, we show the two
properties:
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Property U1: We first show that for all γ, η ∈ {α, β}.γ 6= η, if P (γ,M) and for all i ∈ {1, . . . , n},
ui ∈ Hγ ∪ dom(µγ) implies there exists N ∈ Recipe(E , tr(Φ)) such that N tr(Φ)↓ = trη(ui) then
P (η,M).

Let us assume that P (γ,M) and for all i ∈ {1, . . . , n}, ui ∈ Hγ ∪ dom(µγ) implies there exists
N ∈ Recipe(E , tr(Φ)) such that N tr(Φ)↓ = trη(ui). Considering that C is built over {〈 〉}, P (γ,M)
and by our hypothesis H1, notice that for all ε ∈ {α, β}, trε(MΦ↓) = C[trε(u1), . . . , trε(un)] and
for all i ∈ {1, . . . , n}, ui 6∈ dom(ρσα, ρ

σ
β) and there exists Ni ∈ Recipe(E , Φ) such that NiΦ↓ = ui.

We will show that for all i ∈ {1, . . . , n}, there exists Nη
i ∈ Recipe(E , tr(Φ)) such that Nη

i tr(Φ)↓ =
trη(ui). With such property, we will directly obtain that C[Nη

1 , . . . , N
η
n ]tr(Φ)↓ = trη(MΦ↓).

Since for all i ∈ {1, . . . , n}, ui 6∈ dom(ρσα, ρ
σ
β), we know that one of the following properties

hold:

1. ui ∈ Hγ : The result holds by hypothesis.
2. ui ∈ Hη: Since NiΦ↓ = ui, Definition 18 gives us that there exists (x, u) ∈ ProTerm(Φ,S),
u′ ∈ st(u), two sets Ks,Ka such that xµcol ∈ γ, PνE.Φ≺ (ui, x), u′σ↓ = ui, root(u

′) = root(ui)

and (u′,Ks,Ka) ∈ E-termsxµcol
(S). Thus, ME,Φ≺ (M) ≥ (x, 1).

Moreover, we also know that ui = D[v1, . . . , vm] for some v1, . . . vm and context D built on
{pk, vk, h, 〈 〉} where:
– for all j ∈ {1, . . . ,m}, either vj ∈ dom(µη) or ¬PνE.Φ≺ (vj , x).
– for all p ∈ Pos(D), D|p 6= implies PνE.Φ≺ (ui|p, x)

By Lemma 21, we deduce that for all p ∈ Pos(D), root(D|p) ∈ {pk, vk, h} implies ui|p ∈
Hη. As such, trη(ui) = D[trHη(v1), . . . , trHη(vm)]. Note that for all j ∈ {1, . . . ,m}, vj ∈
dom(µη) or ¬PνE.Φ≺ (vj , x). In the former case, by Property 3 of Definition 18, we know that
img(µα, µβ) ∩ E = ∅. Thus, trHη(vj) ∈ Recipe(E , tr(Φ)) and so the result holds. In the lat-
ter case, ¬PνE.Φ≺ (vj , x) implies that there exists N ∈ Recipe(E , Φ) such that NΦ↓ = vj .

Since ME,Φ≺ (M) ≥ (x, 1), we obtain that ME,Φ≺ (N) < ME,Φ≺ (M). Thus, by Lemmas 22
and 6 and by our inductive hypothesis, we deduce that trη(vj) = trHη(vj) and there ex-
ists Nη

j ∈ Recipe(E , tr(Φ)) such that Nη
j tr(Φ)↓ = trη(vj). As such we conclude that there exist

R1, . . . , Rm ∈ Recipe(E , tr(Φ)) such that for all j ∈ {1, . . . ,m}, Rjtr(Φ)↓ = trHη(vj). Therefore,
D[R1, . . . , Rj ]tr(Φ)↓ = trη(ui). Hence the result holds.

3. ui ∈ dom(µγ): The result holds by hypothesis.
4. ui ∈ dom(µη): By Property 3 of Definition 18, we know that img(µα, µβ) ∩ E = ∅. Thus,

trHη(vj) ∈ Recipe(E , tr(Φ)) and so the result holds.
5. tagrootKa,Ks(ui) ∈ {α, β} and ui 6∈ dom(µγ , µη) ∪ Hγ ∪ Hη: In such a case, by Definition 13,

we directly obtain trα(ui) = trβ(ui). Since we know that P (γ,M) then there exists Mγ ∈
Recipe(E , tr(Φ)) such that Mγtr(Φ)↓ = trγ(C[u1, . . . , un]) = C[trγ(u1), . . . , trγ(un)]. Consid-
ering that C is built on 〈 〉, we obtain that there exists M ′γ ∈ Recipe(E , tr(Φ)) such that
M ′γtr(Φ)↓ = trγ(ui) = trη(ui).

6. tagrootKa,Ks(ui) = 0 and ui 6∈ dom(µγ , µη) ∪ Hγ ∪ Hη: In such a case, we know that there
exist f/m ∈ {senc, rsenc, aenc, raenc, sign} and terms t1, . . . , tm such that ui = f(t1, . . . , tm).
Moreover, ui ∈ DFct(MΦ↓) therefore by Lemma 20 and by Definition 16, we obtain that

there exist N1, . . . , Nm ∈ Recipe(E , Φ) such that for all j ∈ {1, . . . ,m},ME,Φ≺ (Nj) <ME,Φ≺ (M)
and NjΦ↓ = tj . We can thus apply our inductive hypothesis on N1, . . . , Nm which allows us
to deduce that there exist Nη

1 , . . . , N
η
m ∈ Recipe(E , tr(Φ)) such that for all j ∈ {1, . . . , n},

Nη
j tr(Φ)↓ = trη(tj). We can thus conclude with f(Nη

1 , . . . , N
η
m).

7. ui ∈ N ∪N ∪A and ui 6∈ dom(µγ , µη)∪Hγ ∪Hη. In such a case, we have also trα(ui) = trβ(ui)
and so we conclude as in the last but two case.

Property U2: We now show for all t ∈ Hγ

Main proof: Assume first that |M | = 1. In such a case, either (a) M ∈ N ∪ N ∪ A or (b)
M ∈ dom(Φ).

In Case (a), we deduce that MΦ↓ = M tr(Φ)↓ = M . Assume that there exists ω ∈ {α, β} such
that M ∈ dom(ρσα). Let ε ∈ {α, β} such that ε 6= ω. By Property 2 of Definition 12, we deduce that
M 6∈ dom(ρσε , µε). Moreover, by Property 8 of Definition 12, we deduce that M 6∈ Hα∪Hβ . Hence,
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trε(M) = M . But this contradicts our hypothesis H1 as M ∈ Recipe(E ′, Φ) and M ∈ N ∪ N ∪ A
implies M ∈ Recipe(E , tr(Φ)), and so νE .tr(Φ) ` trε(M) with M ∈ dom(ρσω). Therefore, we deduce
that M 6∈ dom(ρσα, ρ

σ
β). Moreover, by Property 6 of Definition 18, we know that for all γ ∈ {α, β},

for all t ∈ dom(µγ), there exists x ∈ dom(Φ) such that PνE.Φ≺ (t, x). But M ∈ Recipe(E , Φ) such
that for all y ∈ fv(M), y ≺ x (since fv(M) = ∅). Hence, MΦ↓ 6= t. Since MΦ↓ = M , we deduce
that M 6∈ dom(µα, µβ). This allows us to conclude that trα(MΦ↓) = trβ(MΦ↓) = M = M tr(Φ)↓
and so P (α,M) and P (β,M) hold.

In Case (b), let us denote M = x. By definition, we know that there exists γ ∈ {α, β} such that
xµcol ∈ γ. Let ω ∈ {α, β} such that ω 6= γ. By Definition 19, we deduce that xtr(Φ) = trγ(xΦ).
But img(Φ) is a set of messages in normal form. Hence, xΦ = MΦ↓. Moreover, by Lemma 4 and
Property 4 of Definition 18, we deduce that trγ(xΦ) is in normal form and so M tr(Φ)↓ = trγ(MΦ↓).
This allows us to deduce that P (γ,M) holds. Let us now show that P (ω,M) holds. Note that
there exist a context C built over {〈 〉} and terms u1, . . . , un such that MΦ↓ = C[u1, . . . , un] and
for all i ∈ {1, . . . , n}, root(ui) 6= 〈 〉. Let i ∈ {1, . . . , n} such that ui ∈ Hγ ∪ µγ . By Definition 18,
we obtain that ui = D[v1, . . . , vm] where D is built on {h, pk, vk, 〈 〉}:
– for all j ∈ {1, . . . ,m}, vj ∈ dom(µγ) or ¬PνE.Φ≺ (vj , y)
– for all q ∈ Pos(D), D|p 6= implies PνE.Φ≺ (ui|q, y)

for some y such that ¬(M ≺ y).

For all j ∈ {1, . . . ,m}, if ¬PνE.Φ≺ (vj , y) then there existsN ∈ Recipe(E , Φ) such thatME,Φ≺ (N) <

ME,Φ≺ (M) and NΦ↓ = vj . Else if vj ∈ dom(µγ) then by denoting q the position of vj in MΦ↓ and p
the position of ui in MΦ↓, we obtain that p ≤ q, (vj , q) ∈∈ FctMΦ↓(γ) and PmFct((vj , q),MΦ↓, ui).
By applying Lemmas 15 and 17, we obtain that there exist N ∈ Recipe(E , Φ) and q′ ∈ Pos(MΦ↓)
such that p ≤ q′ ≤ q, ME,Φ≺ (N) <ME,Φ≺ (M) and NΦ↓ = MΦ↓|q′ . Therefore, we have proved that
for all j ∈ {1, . . . ,m}, there exists qj , pj ∈ Pos(ui) and Nj ∈ Recipe(E , Φ) such that ui|qj = vj ,

ME,Φ≺ (Nj) < ME,Φ≺ (M), pj ≤ qj and NjΦ↓ = uj |pj . Therefore, we conclude that there exists

N ∈ Recipe(E , Φ) such that ME,Φ≺ (N) < ME,Φ≺ (M) and NΦ↓ = ui. Therefore, we can apply
our inductive hypothesis on N and obtain that there exists Nω ∈ Recipe(E , tr(Φ)) such that
Nωtr(Φ)↓ = trω(ui). We conclude by applying Property U1.

Assume now that |M | > 1. In such a case there exist M1, . . . ,Mn and a function symbol f such
that M = f(M1, . . . ,Mn). We do a case analysis on f.

Case (A), f ∈ Σ+
i , γ ∈ {α, β}, i ∈ γ: We know that MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓)↓. Let us

denote u = f(M1Φ↓, . . . ,MnΦ↓). Hence, there exists a context C built on Σ+
i and u1, . . . , um

such that u = C[u1, . . . , um], Fct(u) = {u1, . . . , um} and u1, . . . , um are in normal form. By
Properties 6, 7 and 8 of Definition 12, we deduce that for all position p of C different from a hole,
u|p 6∈ dom(ρσγ , µγ) and u|p 6∈ Hγ . Hence, trγ(u) = C[trγ(u1), . . . , trγ(um)]. Note that by Lemma 1,

we deduce that u↓ = D[uj1 , . . . , ujk ] for some context D built on Σ+
i and {j1, . . . , jk} ⊆ {0, . . . , n}

with u0 = nmin. Moreover, by Lemmas 2 and 3 we deduce that trγ(u)↓ = D[trγ(uj1), . . . , trγ(ujk)].
Once again by Properties 6, 7 and 8 of Definition 12, u↓ = D[uj1 , . . . , ujk ] implies that trγ(u↓) =
D[trγ(uj1), . . . , trγ(ujk)] and so we obtain that trγ(u↓) = trγ(u)↓.

By inductive hypothesis onM1, . . . ,Mn, we know that there existMγ
1 , . . . ,M

γ
n ∈ Recipe(E , tr(Φ))

such that for all j ∈ {1, . . . , n}, Mγ
j tr(Φ)↓ = trγ(MjΦ↓). But u = f(M1Φ↓, . . . ,MnΦ↓) and

trγ(u) = f(trγ(M1Φ↓), . . . , trγ(Mn)). Thus trγ(u) = f(Mγ
1 tr(Φ)↓, . . . ,Mγ

n tr(Φ)↓). Hence, trγ(u)↓ =
f(Mγ

1 , . . . ,M
γ
n )tr(Φ)↓. Since trγ(u↓) = trγ(u)↓, we obtain that f(Mγ

1 , . . . ,M
γ
n )tr(Φ)↓ = trγ(MΦ↓).

This allows us to deduce that P (γ,M) holds with Mγ = f(Mγ
1 , . . . ,M

γ
n ).

Assume now that MΦ↓ = E[t1, . . . , tm] with E built on {〈 〉} and for all j ∈ {1, . . . ,m},
root(tj) 6= 〈 〉. For all j ∈ {1, . . . ,m}, if tj ∈ Hγ ∪ dom(µγ) then we obtain that there exists
k ∈ {1, . . . , n} such that either MkΦ↓ = MΦ↓ or Fct tj (γ) ⊆ AFct(MkΦ↓). Using a similar
reasoning as in Case (b) and relying Lemma 17, we deduce that there exists Nω ∈ Recipe(E , tr(Φ))
such that Nωtr(Φ)↓ = trω(tj). We conclude by applying Property U1.

Case (B), f ∈ {senc, rsenc, aenc, raenc, sign, h, pk, vk, 〈 〉}: In such a case,MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓).
By Property 6 of Definition 12, we deduce that MΦ↓ 6∈ dom(µα, µβ). If MΦ↓ ∈ dom(ρσα) or
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MΦ↓ ∈ Hα then by Property 2, we deduce that MΦ↓ 6∈ dom(ρσβ) and MΦ↓ 6∈ Hβ . Hence, we
deduce that there exists γ ∈ {α, β} such that MΦ↓ 6∈ dom(ρσγ , µγ) ∪ Hγ . By Definition 13, there
exists ω ∈ {α, β} such that trγ(MΦ↓) = f(trω(M1Φ↓), . . . , trω(MnΦ↓)). By our inductive hypoth-
esis on M1, . . . ,Mn, we deduce that there exist Mω

1 , . . . ,M
ω
n ∈ Recipe(E , tr(Φ)) such that for

all j ∈ {1, . . . , n}, Mω
j tr(Φ)↓ = trω(MjΦ↓). Hence, trγ(MΦ↓) = f(Mω

1 tr(Φ)↓, . . . ,Mω
n tr(Φ)↓) =

f(Mω
1 , . . . ,M

ω
n )tr(Φ)↓. This allows us to deduce P (γ,M) holds with Mγ = f(Mω

1 , . . . ,M
ω
n ).

Note that since P (γ,M) then by our hypothesis H1, we obtain that MΦ↓ 6∈ dom(ρσα, ρ
σ
β). To

prove P (ω,M), we do a case analysis on f:

– If f ∈ {senc, rsenc, aenc, raenc, sign} then we conclude directly with Property U1.
– If f = 〈 〉 then thanks to MΦ↓ 6∈ dom(ρσω), we have trω(MΦ↓) = f(trω(M1Φ↓), . . . , trω(MnΦ↓))

and so we conclude by applying our inductive hypothesis on M1, . . . ,Mn.
– If f ∈ {h, pk, vk} and MΦ↓ ∈ Hω then in such a case, n = 1 and trω(MΦ↓) = f(trHω(M1Φ↓)).

By inductive hypothesis on M1, we know that P (ω,M1) holds. Hence by Lemmas 22 and 6,
we deduce that there exists M ′1 ∈ Recipe(E , tr(Φ)) such that M ′1tr(Φ)↓ = trHω(M1Φ↓). Thus
the result holds with f(M ′1).

– If f ∈ {h, pk, vk} and MΦ↓ 6∈ Hω then in such a case, n = 1 and trω(MΦ↓) = f(trω(M1Φ↓)).
Thus we conclude by applying our inductive hypothesis on M1.

Case (C), f ∈ {sdec, rsdec, adec, radec, check}: In such a case, n = 2. Moreover, we know
that MΦ is a message. Hence, there exists g ∈ {senc, rsenc, aenc, raenc, sign} (more specifically,
g = senc when f = sdec, g = rsenc when f = rsenc, etc) and some terms u1, . . . , um such that
M1Φ↓ = g(u1, . . . , um), u1 = MΦ↓ and:

– M2Φ↓ = um when f ∈ {sdec, rsdec}
– pk(M2Φ↓) = um when f ∈ {adec, radec}
– M2Φ↓ = vk(um) when f = check

If tagrootKs,Ka(M1Φ↓) = 0 or if there exist N1 ∈ Recipe(E ∪ Nabs, Φ) such that N1Φ↓ = u1

and ME,Φ≺ (N1) < ME,Φ≺ (M) then the result holds by applying Lemma 20 and the inductive
hypothesis. Hence, assume that there exists γ ∈ {α, β} such that tagrootKs,Ka(M1Φ↓) ∈ γ and for

all N1 ∈ Recipe(E ∪ Nabs, Φ), N1Φ↓ = u1 implies ME,Φ≺ (N1) ≥ME,Φ≺ (M).
By Property 8 of Definition 12, we deduce that M1Φ↓ 6∈ Hα∪dom(ρσγ , µγ). By Definition 13, we

deduce that trγ(M1Φ↓) = g(trγ(u1), . . . , trγ(um)). By applying our inductive hypothesis on M1 and
M2, we obtain that P (M1, γ) and P (M2, γ) hold and so there exist M ′1, M ′2 ∈ Recipe(E , tr(Φ)), for
all j ∈ {1, 2}, M ′jtr(Φ)↓ = trγ(MjΦ↓). Hence, M ′1tr(Φ)↓ = g(trγ(u1), . . . , trγ(um)) and M ′2tr(Φ)↓ =
trγ(M2Φ↓). Let us do a small case analysis on f.

– Case f ∈ {sdec, rsdec}: We know that M2Φ↓ = um thus M ′2tr(Φ)↓ = trγ(um) which allows us
to deduce that f(M ′1tr(Φ)↓,M ′2tr(Φ)↓)↓ = trγ(u1) = trγ(MΦ↓). Therefore, f(M ′1,M

′
2)tr(Φ)↓ =

trγ(MΦ↓) and so P (γ,M) holds with Mγ = f(M ′1,M
′
2).

– Case f ∈ {adec, radec}: We know that pk(M2Φ↓) = um. Let us show that trγ(um) = pk(trγ(M2Φ↓)).
Assume first um ∈ dom(ρσγ ). In such a case, by Property 2 of Definition 12, we deduce that
um 6∈ dom(ρσω, µω)∪Hω. Thus, trω(pk(M2Φ↓)) = pk(trω(M2Φ↓)). By applying our inductive hy-
pothesis on M2, we know that P (ω,M2) holds meaning that there exists N ∈ Recipe(E , tr(Φ))
such that N tr(Φ)↓ = trω(M2Φ↓). Hence, pk(N)tr(Φ)↓ = trω(um) where um ∈ dom(ρσγ )
which contradicts our hypothesis H1. Therefore, we obtain that um 6∈ dom(ρσγ ). By Prop-
erty 6 of Definition 12, we also have that um 6∈ dom(µγ). Hence by Definition 13, we ob-
tain that trγ(um) = pk(δ(γ,M2Φ↓)) where δ ∈ {tr, trH}. However, we already proved that
M ′2tr(Φ)↓ = trγ(M2Φ↓). Thus, by Lemma 22, we deduce that PS〈 〉(M2Φ↓, γ). By Lemma 6, it

implies trγ(M2Φ↓) = trHγ(M2Φ↓) and so trγ(um) = pk(trγ(M2Φ↓)). This allows us to prove
that f(M ′1,M

′
2)tr(Φ)↓ = trγ(u1) = trγ(MΦ↓) and so P (γ,M) holds with Mγ = f(M ′1,M

′
2).

– Case f = check: In such a case, m = 2 and M2Φ↓ = vk(u2). We know that M1Φ↓ = sign(u1, u2).
By Lemma 20, we deduce that either:
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• there existN1, N2 ∈ Recipe(E∪Nabs, Φ) such that sign(N1, N2)Φ↓ = sign(u1, u2),ME,Φ≺ (N1) <

ME,Φ≺ (M1) and ME,Φ≺ (N2) <ME,Φ≺ (M1): This case goes against our assumption.
• there exist (x, u) ∈ ProTerm(Φ,S) and (v,Ks,Ka) ∈ E-termsi(S) such that xµcol = i,

root(v) = sign, v ∈ st(u), vσ is a message, vσ↓ = sign(u1, u2) and ME,Φ≺ ≥ (x, 1). Let
γ′ ∈ {α, β} such that i ∈ γ′. In such a case, by Properties 1 and 8 of Definition 16,
we deduce that tagrootKs,Ka(vσ↓) = i and PSe-keys(vk(u2), i). Since tagrootKs,Ka(vσ↓) ∈ γ,
we obtain that γ = γ′. Moreover, from Properties 8 and 7 of Definition 12 we know
that M1Φ↓ 6∈ dom(ρσγ , µγ) ∪ Hγ . Moreover, by Definition 13, we obtain that trγ(M1Φ↓) =
sign(trγ(u1), trγ(u2)). Furthermore, by Lemma 7, we obtain that trγ(vk(u2)) = vk(trγ(u2)).
By inductive hypothesis on M1, M2, we know that P (γ,M1) and P (γ,M2) holds mean-
ing that there exists N ′1, N

′
2 ∈ Recipe(E , tr(Φ)) such that N ′1tr(Φ)↓ = trγ(M1Φ↓) and

N ′2tr(Φ)↓ = trγ(M2Φ↓) = vk(trγ(u2)). Thus, we conclude that check(N ′1, N
′
2)tr(Φ)↓ =

trγ(u1) = trγ(MΦ↓). This allows us to deduce that P (γ,M) holds.

Assume now that MΦ↓ = E[t1, . . . , tm] with E built on {〈 〉} and for all j ∈ {1, . . . ,m},
root(tj) 6= 〈 〉. For all j ∈ {1, . . . ,m}, if tj ∈ Hγ ∪ dom(µγ) then we obtain that there exists
k ∈ {1, . . . , n} such that either MkΦ↓ = MΦ↓ or Fct tj (γ) ⊆ AFct(MkΦ↓). Using a similar
reasoning as in Case (b) and relying Lemma 17, we deduce that there exists Nω ∈ Recipe(E , tr(Φ))
such that Nωtr(Φ)↓ = trω(tj). We conclude by applying Property U1.

Case (D), f = projj, j ∈ {1, 2}: In such a case, n = 1. Since MΦ is a message, we know
that there exist u1, u2 such that M1Φ↓ = 〈u1, u2〉. By Property 8 of Definition 12, we deduce
that M1Φ↓ 6∈ Hα ∪ Hβ . Moreover, by Property 6 of Definition 12, we also deduce that M1Φ↓ 6∈
dom(µα, µβ). Lastly, by Property 2 of Definition 12, we deduce that there exists γ ∈ {α, β} such
thatM1Φ↓ 6∈ dom(ρσγ ). Thus, trγ(M1Φ↓) = 〈trγ(u1), trγ(u2)〉. By applying our inductive hypothesis
on M1, we obtain that there exists N1 ∈ Recipe(E , tr(Φ)) such that N1tr(Φ)↓ = trγ(M1Φ↓). Hence,
projj(N1)tr(Φ)↓ = trγ(uj) = trγ(MΦ↓). Therefore, we conclude that P (γ,M) holds.

Note thatN1tr(Φ)↓ = trγ(M1Φ↓) and our hypothesis H1 thatM1Φ↓ ∈ dom(ρσω). Thus trω(M1Φ↓) =
〈trω(u1), trω(u2)〉. By applying our inductive hypothesis on M1, we also deduce that there exists
N2 ∈ Recipe(E , tr(Φ)) such that N2tr(Φ)↓ = trω(M1Φ↓). Hence, projj(N2)tr(Φ)↓ = trω(uj) =
trω(MΦ↓). Therefore, we conclude that P (ω,M) holds. ut

Theorem 1. Let P [ A, B ] be a context process and Q = QA | QB be a process such that P and
Q satisfy hypotheses H1 to H4. Let φ be a composable property.

If the following conditions are satisfied

– !i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).
P [OA, OB ] |= φPKI (that is, P is a secure PKI)

– Qperm |= φsec ∧ φ (that is, Q is a secure protocol)

then P [QA, QB ] is secure, that is

!i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}).P [QA, QB ] |= φ

where φsec =̂ ∀τ ∈ secretH .∀x ∈ τ. 6`x.

Proof (Sketch of proof). The beginning of the proof is quite standard w.r.t. existing composition
results. It is well known that reachability properties compose well when processes do no share
any secret. Hence from our hypothesis H2, we obtain that C[P [OA, OB ]] | Qperm |= φsec where
C[ ] =!i agent(A, {H[i], D[i]}).!j agent(B, {H[j], D[j]}). . From there we reason by contradiction.
If C[P [QA, QB ]] 6|= φsec then it is easy to see that C[P [OA[QA], OB [QB ]]] 6|= φsec since OA and
OB are just outputs. Applying the same reasoning with fresh inputs, we can build two processes
Rreal and Rperm such that

– C[P [QA, QB ]] 6|= φsec implies Rreal 6|= φsec
– C[P [OA, OB ]] | Qperm |= φsec implies Rperm |= φsec
– Rreal and Rperm only differs by the messages in the process.
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For example, to any occurrence of a variable xskA of an honest agent A in Rreal corresponds an
occurrence of sk[A] at the same position. The heart and most difficult part of the proof consist
in showing that Rreal 6|= φsec in fact implies Rperm 6|= φsec. For this we consider a transformation
δ on terms whose purpose is to dynamically replace the occurrences of the instantiation of xskA,
xsigB , etc in a configuration of Rreal by their counterpart in Rperm. In particular we show that

1. for all Rreal →∗ (E ;P ;Φ;σ;µ), we have Rperm →∗ (E ;P ; δ(Φ); δ(σ); δ(µ))
2. (E ;P ;Φ;σ;µ) |=c `u implies (E ;P ; δ(Φ); δ(σ); δ(µ)) |=c ` δ(u).

In the first bullet point, we show by induction on the size of the trace that there exists ρα, ρβ , µα, µβ ,
Hα,Hβ , σ,Ks,Ka such that S = (σ, ρα, ρβ , µα, µβ ,Ks,Ka) ∈ Setup and (E , Φ,≺, µcol) ∈ DFrame(S).
To prove that σ ∈ Compatible(ρα, ρβ), we rely on the fact that Rperm |= φPKI and Lemma 3.
When the conditions C1 and C2 are satisfied (i.e. when fully tagged) then Ks and Ka are empty.
The rest of properties in S ∈ Setup are given by construction. To prove that (E , Φ,≺, µcol) ∈
DFrame(S), we need to show that all terms of the protocols are e-terms. Properties 3 and 4
are given by construction. The rest of the properties is done by contradiction with the fact that
all terms in dom(ρσα) ∪ dom(ρσβ) are not deducible. For instance, for Property 6, to show that
u|pσ↓ 6∈ dom(ρσγ ), we first recall that terms in dom(ρσγ ) have been generated by the process of
color ω 6= γ. Since terms in dom(ρσα) ∪ dom(ρσβ) are not deducible, we deduce that u|pσ↓ is of the
form C[v1, . . . , vn] where C is built on {〈〉, pk, vk, h} where all vi non deducible when generated by
the process of color ω are in fact in Fctγ(u|pσ↓). Then thanks to Lemmas 15 and 17, we obtain a
contradiction by proving that all these vi are in fact deducible which would thus lead to a term
in dom(ρσγ ) to be deducible. The second bullet point is given by Lemma 23. ut

F Ideal scenario

For the ideal scenario, we redefine a similar but simpler transformation as in the previous section.

Definition 25 (Ideal setup). An ideal setup is a tuple (ρ, σ) where ρ and σ are two substitutions
of ground messages in normal form such that:

– dom(ρ) ⊆ dom(σ)
– for all x ∈ dom(ρ), xρ ∈ {pk(sk[A]), vk(sig[A]) | A ∈ AD}
– for all x, y ∈ dom(ρ), xσ = yσ if and only if xρ = yρ

Definition 26 (i-terms). Let S = (ρ, σ) be an ideal setup. We define the set of ideal terms w.r.t.
S, denote I-terms(S), as the set of terms u such that for all p ∈ Pos(u),

– root(u|p) = tagk implies there exists x ∈ dom(ρ) such that u|p = tagk(x)
– u|p ∈ dom(ρ) implies there exist p′ ∈ Pos(u) and a function symbol f/n ∈ F such that

root(u|p′) = f and one of the following properties hold:
• f = tagk and p = p′ · 1
• f ∈ {aenc, raenc, check} and p = p′ · n

– ∀f/n ∈ Σ, if f = root(u|p) and f = aenc (resp. raenc, check) then u|p·n ∈ dom(ρ) and
root(u|p·nρ) = pk (resp. pk, vk) or u|p·n ∈ {pk(sk[A]), vk(sk[A]) | A ∈ AH}

– ∀f/n ∈ Σ, if f = root(u|p) and f ∈ {adec, radec, sign} then u|p·n ∈ {sk[A], sig[A] | A ∈ AH}
– names(u) ∩ {sk[A], sig[A] | A ∈ AD} = ∅

Definition 27. Let S = (ρ, σ) be an ideal setup. The transformation function of S is a mapping
tr from terms to terms and defined as follows:

– tr(u) = u when u ∈ X ∪N ∪N ∪A
– tr(f(u1, . . . , un)) = f(tr(u1), . . . , tr(un−1), unρ

σ) when f ∈ {aenc, raenc} and un ∈ dom(ρσ)
– tr(sign(u1, u2)) = sign(tr(u1), a) when vk(u2) ∈ dom(ρσ) and vk(u2)ρσ = vk(a).
– tr(tagk(u)) = tagk(uρσ)
– tr(f(u1, . . . , un)) = f(tr(u1), . . . , tr(un)) otherwise.
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We also define tr(σ) as the substitution such that dom(σ) = dom(tr(σ)) and:

– for all x ∈ dom(ρ), xtr(σ) = xρ
– for all x ∈ dom(σ) \ dom(ρ), xtr(σ) = tr(xσ)

Lemma 24. Let S = (ρ, σ) be an idea setup. Let tr be the transformation function of S. For all
ground terms u1, u2, if names(u1, u2) ∩ {sk[A], sig[A] | A ∈ AD} = ∅ then tr(u1) = tr(u2) implies
u1 = u2.

Proof. By induction on |u1|+ |u2|.

Base case |u1|+ |u2| = 1: In such a case, u1, u2 ∈ N ∪N ∪A. Hence the result directly holds since
tr(u1) = u1 a dn tr(u2) = u2.

Inductive step |u1| + |u2| > 1: W.l.o.g. u1 = f(t1, . . . , tn). By Definition 27, we deduce that
root(tr(u1)) = f and so root(tr(u2)) = f. This implies that there exists v1, . . . , vn such that u2 =
f(v1, . . . , vn). We do a case analysis on f:

– If f ∈ {aenc, raenc} and tn ∈ dom(ρσ) then tr(u1) = f(tr(t1), . . . , tr(tn−1), tnρ
σ) = tr(u2). Note

that by Definition 27, tr(u2) = f(tr(v1), . . . , tr(vn−1), vnρ
σ) or f(tr(v1), . . . , tr(vn−1), tr(vn)).

But names(u1, u2) ∩ {sk[A], sig[A] | A ∈ AD} = ∅ and tnρ
σ ∈ {pk(sk[A]), vk(sig[A]) | A ∈

AD}. Hence, following Definition 27, we deduce that vn ∈ dom(ρσ) and vnρ
σ = tnρ

σ. Since
ρσ is injective, we obtain that vn = tn. Moreover by our inductive hypothesis on vi, ti for all
i ∈ {1, . . . , n− 1}, we conclude that u1 = u2.

– If f = sign and vk(t2) ∈ dom(ρσ): In such a case, we deduce that tr(sign(t1, t2)) = sign(tr(t1), a)
where vk(t2)ρσ = vk(a) and so a ∈ {sk[A], sig[A] | A ∈ AD}. Note that by our hypothesis
names(u1, u2)∩{sk[A], sig[A] | A ∈ AD} = ∅, we deduce that a 6= v2 and so vk(v2) ∈ dom(ρσ)
and vk(v2)ρσ = vk(a). Since ρσ is injective, we obtain that v2 = t2. We conclude by our
inductive hypothesis on v1 and t1.

– If f = sign and vk(v2) ∈ dom(ρσ): Similar
– If f = tagk then tr(u1) = tagk(t1ρ

σ) and tr(u2) = tagk(v1ρ
σ). Since ρσ is injective the result

holds.
– Else tr(u1) = f(tr(t1), . . . , tr(tn)) and tr(u2) = f(tr(v1), . . . , tr(vn)) and so we conclude by

applying inductive hypothesis on ti, vi for all i ∈ {1, . . . , n}. ut

Lemma 25. Let S = (ρ, σ) be an idea setup. Let tr be the transformation function of S. For all
ground message in normal form u, if names(u)∩ {nmin, sk[A], sig[A] | A ∈ AD} = ∅ then tr(u) is
in normal form and root(tr(u)) = root(u).

Proof. Simple induction on |u|. ut

Lemma 26. Let S = (ρ, σ) be an idea setup. Let u ∈ I-terms(S). If uσ is a message then
tr(uσ↓) = utr(σ)↓ and utr(σ) is a message.

Proof. We prove this result by induction on |u|.

Base case |u| = 1: In such a case u ∈ N ∪A∪N or u ∈ X . In the former case, the result directly
holds since tr(u) = u and uσ↓ = u = utr(σ)↓. In the latter case, by Definition 26, we deduce that
u 6∈ dom(ρ) and so tr(uσ) = utr(σ) which allows us to conclude.

Inductive step |u| > 1: Otherwise u = f(u1, . . . , un) for some u1, . . . , un. Let us do a case analysis
on f.

– Case f ∈ {aenc, raenc}: In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓). Moreover, by Definition 26,
we know that un ∈ dom(ρ) ∪ {pk(sk[A], vk(sk[A]) | A ∈ AH}.
In the former case, by Definition 27, we know that tr(uσ↓) = f(tr(u1σ↓), . . . , tr(un−1σ↓), unσ↓ρ).
Note that uσ↓ = uσ which leads to uσ↓ρσ = unρ = untr(σ)↓
In the latter case, by Definition 25, we deduce that un 6∈ dom(ρσ) and so tr(uσ↓) = f(tr(u1σ↓), . . . , tr(unσ↓)).
Note that un ∈ {pk(sk[A], vk(sk[A]) | A ∈ AH} implies that tr(unσ↓) = tr(un) = un =
untr(σ)↓.

52



As such we deduce that tr(uσ↓) = f(tr(u1σ↓), . . . , tr(un−1σ↓), untr(σ)↓). Notice that u1, . . . , un−1 ∈
I-terms(S) meaning that we can apply our inductive hypothesis on them and so tr(uσ↓) =
f(u1tr(σ)↓, . . . , un−1tr(σ)↓, untr(σ)↓) = f(u1, . . . , un)tr(σ)↓ and utr(σ) is a message.

– Case f = check: In such a case, n = 2. Moreover, since uσ is a message, we know that there
exist v1, v2 such that u1σ↓ = sign(v1, v2) where v1 = uσ↓ and vk(v2) = u2σ↓. Note that by
Definition 26, we deduce that u2 ∈ dom(ρ) ∪ {vk(sk[A]) | A ∈ AH}.
If u2 ∈ dom(ρ) then we obtain that u2tr(σ)↓ = u2ρ and u2σ↓ ∈ dom(ρσ). Moreover, Def-
inition 26 also gives us that root(u2ρ) = vk meaning that u2ρ = vk(a) for some a. Thus,
by Definition 27, we deduce that tr(sign(v1, v2)) = sign(tr(v1), a). By inductive hypothesis on
u1, we know that u1tr(σ)↓ = tr(u1σ↓) and u1tr(σ) is a message. Hence check(u1, u2)tr(σ)↓ =
check(tr(u1σ↓), u2tr(σ)↓)↓ = check(sign(tr(v1), a), vk(a))↓ = tr(v1) = tr(uσ↓). Since u1tr(σ),
u2tr(σ) and utr(σ)↓ ∈ st(u1tr(σ)↓) then we also deduce that utr(σ) is message.
If u2 ∈ {vk(sk[A]) | A ∈ AH} then u2σ↓ = u2, u2σ↓ = u2ρ

σ and u2 6∈ dom(ρσ). Moreover,
v2 ∈ N . As such, tr(v2) = v2 and tr(sign(v1, v2)) = sign(tr(v1), v2). By inductive hypothesis on
u1, we know that u1tr(σ)↓ = tr(u1σ↓) and u1tr(σ) is a message. Hence check(u1, u2)tr(σ)↓ =
check(sign(tr(v1), v2), vk(v2))↓ = tr(v1) = tr(uσ↓).

– Case f = tagk. By Definition 26, we deduce that u1 ∈ dom(ρ). Hence, tr(uσ↓) = tr(tagk(u1σ↓)) =
tagk(u1σ↓ρσ) = tagk(u1ρ) = tagk(u1tr(σ)). Hence the result holds.

– Case f = adec (resp. radec): In such a case n = 2 and since uσ is a message, we know that
there exists g = aenc (resp. raenc) and v1, . . . , vm such that u1σ↓ = g(v1, . . . , vm), v1 = uσ↓
and vm = pk(u2σ↓). Note that by Definition 26, we know that u2 ∈ {sk[A] | A ∈ AH}
hence vm 6∈ dom(ρσ). This allow us to deduce that tr(u1σ↓) = g(tr(v1), . . . , tr(vm−1), pk(u2)).
Moreover, since u2 ∈ {sk[A] | A ∈ AH} then u2tr(σ)↓ = u2. Therefore, we conclude that
f(u1tr(σ)↓, u2tr(σ)↓)↓ = f(g(tr(v1), . . . tr(vm−1), pk(u2)), u2)↓ = tr(v1) = tr(uσ↓). Hence the
result holds.

– Case f = sign: In such a case by Definition 26, u2 ∈ {sk[A], sig[A] | A ∈ AH}. Thus
u2tr(σ)↓ = u2 and vk(u2) 6∈ dom(ρσ) meaning that u2tr(σ)↓ = u2 = tr(u2σ↓). Hence tr(uσ↓) =
f(tr(u1σ↓), tr(u2σ↓)) and we conclude by applying our inductive hypothesis on u1.

– Case f ∈ {proj1, proj2}: In such a case, uσ being a message implies that u1σ↓ = 〈v1, v2〉 for
some v1, v2 and uσ↓ = vj for some j ∈ {1, 2}. But tr(u1σ↓) = 〈tr(v1), tr(v2)〉. By our inductive
hypothesis on u1, we deduce that u1tr(σ)↓ = 〈tr(v1), tr(v2)〉 and so f(u1)tr(σ)↓ = tr(vj) =
tr(uσ↓). Thus the result holds.

– Case f ∈ {pk, vk, h, 〈 〉, senc, rsenc}: In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓) and tr(uσ↓) =
f(tr(u1σ↓), . . . , tr(unσ↓)). We conclude by applying our inductive hypothesis on u1, . . . , un.

– Case f ∈ {sdec, rsenc}: In such a case, n = 2 and uσ being a message implies that u1σ =
g(v1, . . . , vm) for some g ∈ {senc, rsenc} and terms v1, . . . , vm where v1 = uσ↓ and vm = u2σ↓.
Note that tr(u1σ↓) = g(tr(v1), . . . , tr(vm)). By Inductive hypothesis on u1 and u2, we obtain
that utr(σ)↓ = f(tr(u1σ↓), tr(u2σ↓))↓ = f(g(tr(v1), . . . , tr(vm)), tr(vm))↓ = tr(v1) = tr(uσ↓).

– Case f 6∈ Σ0: In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓)↓. Thus, if we denote t = f(u1σ↓, . . . , unσ↓),
we have t = C[t1, . . . , tm] where C does not contain function symbols from Σ0 and t1, . . . , tm
are factors of f(u1σ↓, . . . , unσ↓). Hence t↓ = D[ti1 , . . . , tik ] form some context D that does
not contain function symbols from Σ0 and {i1, . . . , ik} ⊆ {0, . . . ,m} with t0 = nmin thanks to
Lemma 1. By Definition 27, we also deduce that tr(t) = C[tr(t1), . . . , tr(tn)] and so thanks to
Lemmas 24 and 2, we obtain that tr(t)↓ = D[tr(ti1), . . . , tr(tik)]. But tr(t) = f(tr(u1σ↓), . . . ,
tr(unσ↓)) = f(u1tr(σ)↓, . . . , untr(σ)↓) thanks to our inductive hypothesis on u1, . . . , un. Thus,
utr(σ)↓ = tr(t)↓ = D[tr(ti1), . . . , tr(tik)] = tr(D[ti1 , . . . , tik ]) = tr(t↓) = tr(uσ↓). Hence the
result holds. ut

Lemma 27. Let S = (ρ, σ) be an idea setup. Let u ∈ I-terms(S). If utr(σ) is a message then uσ
is a message.

Proof. We prove this result by induction on |u|.
Base case |u| = 1: In such a case u ∈ N ∪A∪N or u ∈ X . In the former case, the result directly
holds since tr(u) = u and uσ↓ = u = utr(σ)↓. In the latter case, by Definition 26, we deduce that
u 6∈ dom(ρ) and so tr(uσ) = utr(σ) which allows us to conclude.
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Inductive step |u| > 1: Otherwise u = f(u1, . . . , un) for some u1, . . . , un. Let us do a case analysis
on f.

– Case f ∈ {rsenc, senc, aenc, raenc, sign, pk, vk, h, 〈 〉}: In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓).
Note that u1, . . . , un−1 ∈ I-terms(S) and for all i ∈ {1, . . . , n−1}, utr(σ) being a message im-
plies that uitr(σ) is a message. Hence by induction, we obtain that uiσ is a message. Moreover,
by Definition 26, either un ∈ I-terms(S) or un ∈ dom(ρ). In the former case by inductive
hypothesis, we directly have that unσ is a message. In the latter case, unσ is directly a message
since σ is a substitution of ground messages in normal form. Therefore, we obtain that for
all i ∈ {1, . . . , n}, uiσ is a message. Since uσ↓ = f(u1σ↓, . . . , unσ↓), we conclude that uσ is a
message.

– Case f ∈ {adec, radec}: In such a case, n = 2 and by Definition 26, we know that u1, u2 ∈
I-terms(S). Since u1tr(σ) being a message implies that there exists g ∈ {aenc, raenc} and
V1, . . . , Vm such that u1tr(σ)↓ = g(V1, . . . , Vm), V1 = utr(σ)↓ and pk(u2tr(σ)↓) = Vm. Thus,
by Definition 26, we know that u2 ∈ {sk[A], sig[A] | A ∈ AH}. Hence, u2tr(σ)↓ = u2. Hence
Vm = pk(u2). But u2 ∈ {sk[A], sig[A] | A ∈ AH} implies that pk(u2) 6∈ dom(ρσ). By inductive
hypothesis on u1, we have that u1σ is a message and so by Lemmas 25 and 26, there exists
v1, . . . , vm such that u1σ↓ = g(v1, . . . , vm) and tr(u1σ↓) = g(V1, . . . , Vm) meaning that one of
the following two cases holds:
• vm ∈ dom(ρσ) : In such a case tr(u1σ↓) = g(tr(v1), . . . , tr(vm−1), vmρ

σ). Hence Vm = vmρ
σ.

But Vm = pk(u2) with u2 ∈ {sk[A], sig[A] | A ∈ AH}. This is a contradiction with
Definition 25. Hence such a case cannot happen.

• vm 6∈ dom(ρσ): In such a case, tr(u1σ↓) = g(tr(v1), . . . , tr(vn)). Thus Vm = tr(vn) = pk(u2).
But tr(pk(u2)) = pk(u2) and so tr(vn) = tr(pk(u2)) which implies by Lemma 24 that
vn = pk(u2). Thus we conclude that uσ↓ = f(g(v1, . . . , vm−1, pk(u2)), u2)↓ = v1. Note that
v1 ∈ st(u1σ↓) and so we conclude that uσ is a message.

– Case f = check: In such a case n = 2. Since utr(σ) is a message then there exist V1, V2 such
that u1tr(σ)↓ = sign(V1, V2), u2tr(σ)↓ = vk(V2) and utr(σ)↓ = V1. By inductive hypothesis
on u1, we know that u1σ is a message and so by Lemma 26, u1tr(σ)↓ = tr(u1σ↓). Hence by
Lemma 25, there exists v1, v2 such that u1σ = sign(v1, v2). By Definition 26, either u2 ∈ dom(ρ)
and root(u2ρ) = vk or u2 ∈ {pk(sk[A]), vk(sig[A]) | A ∈ AH}.
If u2 ∈ dom(ρ) then u2tr(σ)↓ = u2ρ = vk(V2) meaning that V2 ∈ {sig[A] | A ∈ AD}. By
our hypothesis in Definition 26 and ??, we know that V2 6∈ names(u, σ) meaning that by
Definition 27 that vk(v2) ∈ dom(ρ) and vk(v2)ρσ = vk(V2) which implies that vk(v2) = u2.
This allows us to conclude that uσ↓ = v1 and so the result holds.
If u2 ∈ {pk(sk[A]), vk(sig[A]) | A ∈ AH} then we know by definition 27 that vk(v2) 6∈ dom(ρσ)
and so tr(u1σ↓) = sign(tr(v1), tr(v2)) and so V2 = tr(v2). But u2 = vk(V2) which implies that
tr(u2) = vk(V2) = tr(vk(v2)) and so u2 = vk(v2) thanks to Lemma 24. This allows us to
conclude that uσ↓ = v1 and so the result holds.

– Case f 6∈ Σ0: In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓)↓. Thus, if we denote t = f(u1σ↓, . . . , unσ↓),
we have t = C[t1, . . . , tm] where C does not contain function symbols from Σ0 and t1, . . . , tm
are factors of f(u1σ↓, . . . , unσ↓). Hence t↓ = D[ti1 , . . . , tik ] form some context D that does
not contain function symbols from Σ0 and {i1, . . . , ik} ⊆ {0, . . . ,m} with t0 = nmin thanks to
Lemma 1. By Definition 27, we also deduce that tr(t) = C[tr(t1), . . . , tr(tn)] and so thanks to
Lemmas 24 and 2, we obtain that tr(t)↓ = D[tr(ti1), . . . , tr(tik)]. But tr(t) = f(tr(u1σ↓), . . . ,
tr(unσ↓)) = f(u1tr(σ)↓, . . . , untr(σ)↓) thanks to our inductive hypothesis on u1, . . . , un and
Lemma 26. Thus, utr(σ)↓ = tr(t)↓ = D[tr(ti1), . . . , tr(tik)] = tr(D[ti1 , . . . , tik ]) = tr(t↓). Note
that since u1σ, . . . , unσ are messages, we deduce that t1, . . . , tm are messages and so this allows
us to conclude that uσ is a message. ut

Definition 28 (Ideal Frame). Let S = (ρ, σ) be a setup. We define the set IFrame(S) as the
smallest set such that for all substitutions Φ of ground terms in normal form, for all sets E of
names, for all relation ≺ on variables, if the following conditions hold:

1. dom(Φ) ∩ dom(σ) = ∅
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2. ≺ is a strict total order on dom(Φ) ∪ dom(σ) ∪ {x0} such that for all x ∈ dom(Φ) ∪ dom(σ),
x0 ≺ x

3. names(Φ) ∩ {nmin, sk[A], sig[A] | A ∈ AH} = ∅
4. for all x ∈ dom(Φ) (resp. dom(σ)), either

(a) there exist u ∈ I-terms(S) such that uσ↓ = xΦ (resp. xσ), uσ is a message and for all
z ∈ fv(u), z ≺ x

(b) there exists M ∈ Recipe(E , Φ) such that fv(M) ⊆ {z | z ≺ x} and MΦ↓ = xΦ (resp. xσ)
5. for all x ∈ dom(ρ), there exists M ∈ Recipe(E , Φ) such that fv(M) ⊆ {z | z ≺ x} and

MΦ↓ = xσ.

then (E , Φ,≺) ∈ IFrame(S). We also denote IProTerm(Φ,S) the sets of elements of the form
(x, u) where x ∈ dom(Φ) ∪ dom(σ) and x satisfies Property 4a with the term u.

Definition 29. Let u a ground message. We define the predicate Pflaw(u) to holds if and only
if there exists g/m ∈ {aenc, raenc}, there exist t1, . . . , tm terms such that t = g(t1, . . . , tm), tm ∈
dom(ρσ), root(tm) = pk and root(tmρ

σ) 6= pk.

Lemma 28. Let S = (ρ, σ) be a setup. Let u ∈ I-terms(S) such that uσ is a message. For all
t ∈ st(uσ↓), if Pflaw(t) then there exists x ∈ fv(u) such that t ∈ st(xσ).

Proof. Since Pflaw(t) then there exists g/m ∈ {aenc, raenc}, there exist t1, . . . , tm terms such that
t = g(t1, . . . , tm), tm ∈ dom(ρσ), root(tm) = pk and root(tmρ

σ) 6= pk. We prove this result by
induction on |u|.
Base case |u| = 1: In such a case, u ∈ N ∪ N ∪ A or u ∈ X . The former case is impossible since
g(t1, . . . , tm) ∈ st(uσ↓) and in the latter case the result directly holds.

Inductive step |u| > 1: Otherwise, u = f(u1, . . . , un). Let us do a case analysis on f:

– Case f ∈ {sign, senc, rsenc, h, 〈 〉, vk, pk} : In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓). Hence, there
exists i ∈ {1, . . . , n}, g(t1, . . . , tm) ∈ st(uiσ↓). By Definition 26, we know that ui ∈ I-terms(S)
meaning we can conclude by applying our inductive hypothesis on ui.

– Case f ∈ {aenc, raenc}: In such a case, uσ↓ = f(u1σ↓, . . . , unσ↓). By Definition 26, we know
that un ∈ dom(ρ) or un ∈ {pk(sk[A]), vk(sig[A]) | A ∈ AH}. Thus, we deduce that either
there exists i ∈ {1, . . . , n−1} such that g(t1, . . . , tm) ∈ st(uiσ↓) or g(t1, . . . , tm) = uσ↓. In the
former case, we can conclude by applying our inductive hypothesis on ui. In the latter case,
by hypothesis, we deduce that unσ↓ ∈ dom(ρσ), root(uσ↓) = pk and root(unσ↓ρσ) 6= pk. By
Definition 25, unσ↓ ∈ dom(ρσ) implies that un 6∈ {pk(sk[A]), vk(sig[A]) | A ∈ AH}. Therefore
un ∈ dom(ρ). Hence unσ↓ = uσ and so unσ↓ρσ = unσρ

σ = unρ. But by Definition 26, we also
know that root(unρ) = pk which comes in contradiction with the fact that root(unσ↓ρσ) 6= pk.
We therefore conclude that this case is impossible.

– Case f ∈ {adec, radec, sdec, rsdec, check, proj1, proj2}: In such a case, since uσ is message then
we know that there exists uσ↓ ∈ st(u1σ↓). Since u1 ∈ I-terms(S) then we can apply our
inductive hypothesis on u1.

– Case f 6∈ Σ0: In such a case, we know that uσ↓ = f(u1σ↓, . . . , unσ↓)↓. By denoting t =
f(u1σ↓, . . . , unσ↓), we have t = C[v1, . . . , vr] where C does not contain function symbols from
Σ0 and v1, . . . , vr are factors of t in normal form. Since g ∈∈ {aenc, raenc} then by Lemma 1,
we deduce that i ∈ {1, . . . , n} such that g(t1, . . . , tm) ∈ st(uiσ↓). As such we conclude by our
inductive hypothesis on ui. ut

Lemma 29. Let S = (ρ, σ) be a setup. Let (E , Φ,≺) ∈ IFrame(S). For all (x, u) ∈ IProTerm(Φ,S),
for all t ∈ st(uσ↓), if Pflaw(t) then there exists M ∈ Recipe(E , Φ) such that t ∈ st(MΦ↓) and

ME,Φ≺ (M) < (x, 1).

Proof. This proof is done by induction on x w.r.t. the order ≺.

Base case x = x0: This case is impossible by definition of Φ.

Inductive step x0 ≺ x By Definition 28, (x, u) ∈ IProTerm(Φ,S) implies that uσ is a message
and u ∈ I-terms(S). By Lemma 28, we deduce that there exists y ∈ fv(u) such that t ∈ st(yσ).
By Definition 28, we know that y ≺ x and also one of the following properties holds:
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– there exists v ∈ I-terms(S) such that (y, v) ∈ IFrame(S) and yσ = vσ↓. Therefore, t ∈
st(vσ↓) and we can apply our inductive hypothesis on (y, v) allows us to conclude.

– there exists M ∈ Recipe(E , Φ) such that fv(M) ⊆ {z | z ≺ y} and MΦ↓ = yσ. Hence

ME,Φ≺ (M) ≺ (y, 1) ≺ (x, 1). We can therefore conclude. ut

Lemma 30. Let S = (ρ, σ) be a setup. Let (E , Φ,≺) ∈ IFrame(S). For all M ∈ Recipe(E , Φ),
for all g(t1, . . . , tn) ∈ st(uσ↓), if Pflaw(g(t1, . . . , tn) then there exist M1, . . . ,Mn such that for all

i ∈ {1, . . . , n}, MiΦ↓ = ti and ME,Φ≺ (Mi) <ME,Φ≺ (M).

Proof. We prove this result by induction on ME,Φ≺ (M).

Base case ME,Φ≺ (M) = (x0, 0): Such a case is impossible since |M | cannot be 0.

Inductive step ME,Φ≺ (M) > (x0, 0): Assume first that |M | = 1. In such a case, M ∈ dom(Φ)
or M ∈ N ∪ N ∪ A. In the latter case, we trivially have that MΦ↓ = M and so this case is
impossible since g(t1, . . . , tn) ∈ st(MΦ↓). In the former case, by Lemma 29 we know that there

exists N ∈ Recipe(E , Φ) such that t ∈ st(NΦ↓) and ME,Φ≺ (N) < ME,Φ≺ (M). We conclude by
applying our inductive hypothesis on N .

Assume now that |M | > 1 meaning that M = f(M1, . . . ,Mm). Let us do a case analysis on f.

– f ∈ {sign, senc, rsenc, h, 〈 〉, vk, pk}: In such a case MΦ↓ = f(M1Φ↓, . . . ,MmΦ↓). Hence there
exists i ∈ {1, . . . ,m} such that g(t1, . . . , tn) ∈ st(MiΦ↓). We conclude by inductive hypothesis
on Mi.

– f ∈ {aenc, raenc}: If g(t1, . . . , tn) = MΦ↓ then n = m, g = f and for all i ∈ {1, . . . , n},
MiΦ↓ = ti. Therefore the result holds.

– f ∈ {adec, radec, sdec, rsdec, check, proj1, proj2}: Since MΦ is a message then we deduce that
MΦ↓ ∈ st(M1Φ↓). Thus, g(t1, . . . , tn) ∈ st(M1Φ↓) and so we conclude by induction on M1.

– Case f 6∈ Σ0: In such a case, we know that MΦ↓ = f(M1Φ↓, . . . ,MmΦ↓)↓. By denoting t =
f(M1Φ↓, . . . ,MmΦ↓), we have t = C[v1, . . . , vr] where C does not contain function symbols
from Σ0 and v1, . . . , vr are factors of t in normal form. Since g ∈∈ {aenc, raenc} then by
Lemma 1, we deduce that i ∈ {1, . . . ,m} such that g(t1, . . . , tn) ∈ st(MiΦ↓). As such we
conclude by our inductive hypothesis on Mi. ut

Definition 30. Let S = (ρ, σ) be a setup. Let tr be the transformation function of S. Let (E , Φ,≺
) ∈ IFrame(S). We define tr(Φ) as the substitution with the same domain of Φ and such that
xtr(Φ) = tr(xΦ).

Lemma 31. Let S = (ρ, σ) be a setup. Let tr be the transformation function of S. Let (E , Φ,≺) ∈
IFrame(S). For all M ∈ Recipe(E , Φ), if names(M) ∩ {sk[A], sig[A] | A ∈ AD} = ∅ then there
exists N ∈ Recipe(E , tr(Φ)) such that N tr(Φ)↓ = tr(MΦ↓).

Proof. We prove this result by induction on ME,Φ≺ .

Base case ME,Φ≺ (M) = (x0, 0): Such a case is impossible since |M | cannot be 0.

Inductive step ME,Φ≺ (M) > (x0, 0): Assume first that |M | = 1. In such a case, M ∈ dom(Φ) or
M ∈ N ∪N ∪A. In the latter case, we trivially have that tr(M) = M and so the result holds. In
the former case, by definition M tr(Φ) = tr(MΦ) and so the result holds.

Assume now that |M | > 1. In such a case, M = f(M1, . . . ,Mn). We do a case analysis on f:

Case f ∈ {aenc, raenc}: In such a case, MΦ↓ = f(M1Φ↓, . . . ,MnΦ↓). By our inductive hy-
pothesis on M1, . . . ,Mn, we deduce that there exists N1, . . . , Nn such that for all i ∈ {1, . . . , n},
Nitr(Φ)↓ = tr(MiΦ↓). Moreover, ifMnΦ↓ ∈ dom(ρσ) then tr(MΦ↓) = f(tr(M1Φ↓), . . . , tr(Mn−1Φ↓),
MnΦ↓ρσ). But by Definition 25, we know that img(ρσ) ∈ Recipe(E , tr(Φ)). Hence we obtain
that tr(MΦ↓) = f(N1tr(Φ)↓, . . . , Nn−1tr(Φ)↓,MnΦ↓ρσ) = f(N1, . . . , Nn−1,MnΦ↓ρσ)tr(Φ)↓ where
f(N1, . . . , Nn−1,MnΦ↓ρσ) ∈ Recipe(E , tr(Φ)). Hence the result holds when MnΦ↓ ∈ dom(ρσ). If
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MnΦ↓ 6∈ dom(ρσ) then tr(MΦ↓) = f(tr(M1Φ↓), . . . , tr(MnΦ↓)) and so tr(MΦ↓) = f(N1tr(Φ)↓, . . . ,
Nntr(Φ)↓) = f(N1, . . . , Nn)tr(Φ)↓ where f(N1, . . . , Nn) ∈ Recipe(E , Φ).

Case f = {adec, radec}: In such a case, n = 2. Moreover, since MΦ↓ is a message then there ex-
ists g ∈ {aenc, raenc} and t1, . . . , tm such that M1Φ↓ = g(t1, . . . , tm), MΦ↓ = t1 and pk(M2Φ↓) =
tm. Let us first consider that tm ∈ dom(ρσ) then tr(g(t1, . . . , tm)) = g(tr(t1), . . . , tr(tm−1), tmρ

σ).
By definition of ρσ, we know that tmρ

σ ∈ {pk(sk[A]), vk(sig[A]) | A ∈ AD}. Note that if
root(tmρ

σ) = vk then Pflaw(M1Φ↓). Hence by Lemma 30 there exists M ′1 ∈ Recipe(E , Φ) such that

M ′1Φ↓ = t1 andME,Φ≺ (M ′1) <ME,Φ≺ (M1) <ME,Φ≺ (M). Hence we conclude by applying our induc-
tive hypothesis on M ′1. Otherwise root(tmρ

σ) = pk(sk[A]) and we know that sk[A] ∈ Recipe(E , Φ)
when A ∈ AD. Therefore, by applying our inductive hypothesis on M1, we deduce that there
exists N1 ∈ Recipe(E , tr(Φ)) such that N1tr(Φ)↓ = g(tr(t1), . . . , tr(tm−1), tmρ

σ) meaning that
f(N1, sk[A])↓ = tr(t1) = tr(MΦ↓). Hence the result holds.

Case f = sign: In such a case, MΦ↓ = sign(M1Φ↓,M2Φ↓). If vk(M2Φ↓) ∈ dom(ρσ) and
vk(M2Φ↓)ρσ = vk(sig[A]) for some A ∈ AD then tr(MΦ↓) = sign(tr(M1Φ↓), sig[A]). In such a case,
we know by inductive hypothesis that there exists N1 ∈ Recipe(E , tr(Φ)) such that N1tr(Φ)↓ =
tr(M1Φ↓) and so sign(N1, sig[A])tr(Φ)↓ = tr(MΦ↓) meaning that there result holds. Otherwise
tr(MΦ↓) = sign(tr(M1Φ↓), tr(M2Φ↓)). By applying our inductive hypothesis on M1,M2, we obtain
N1, N2 ∈ Recipe(E , Φ) such that N1tr(Φ)↓ = tr(M1Φ↓) and N2tr(Φ)↓ = tr(M2Φ↓). Hence the result
holds with sign(N1, N2).

Case f = check: In such a case, since MΦ is a message then there exists v1, v2 such that
M1Φ↓ = sign(v1, v2), MΦ↓ = v1 and M2Φ↓ = vk(v2). By inductive hypothesis on M1,M2, we
obtain N1, N2 ∈ Recipe(E , Φ) such that N1tr(Φ)↓ = tr(M1Φ↓) and N2tr(Φ)↓ = tr(M2Φ↓). By
definition 27, we know that either tr(M1Φ↓) = sign(tr(v1), tr(v2)) or tr(M1Φ↓) = sign(tr(v1), sig[A])
with A ∈ AD. In the latter case, we obtain that check(N1, vk(sig[A]))tr(Φ)↓ = tr(v1) = tr(MΦ↓).
In the former case, we know that tr(vk(v2)) = vk(tr(v2)) meaning that check(N1, N2)tr(Φ)↓ =
tr(v1) = tr(MΦ↓). Hence the result holds.

Case f ∈ {pk, vk}: By definition tr(MΦ↓) = f(tr(M1Φ↓)). Thus we can applying our inductive
hypothesis on M1 which allows us to conclude.

Otherwise: We know that MΦ↓ = f(M1Φ↓, . . . ,MmΦ↓)↓. By denoting t = f(M1Φ↓, . . . ,MnΦ↓),
we have t = C[v1, . . . , vr] where C does not contain function symbols from {vk, pk, aenc, raenc, sign,
adec, radec, check} and v1, . . . , vr are factors of t in normal form. By Lemma 1, we know that
MΦ↓ = D[vi1 , . . . , vik ] for some D that does not contain function symbols from {vk, pk, aenc, raenc,
sign, adec, radec, check} and i1, . . . , ik ∈ {0, . . . , r} and v0 = nmin. By Definition 27, we know that
tr(t) = C[tr(v1), . . . , tr(vr)] and tr(MΦ↓) = D[tr(vi1), . . . , tr(vik)]. Moreover by Lemmas 24 and 2,
we deduce that tr(t)↓ = tr(MΦ↓). By our inductive hypothesis on M1, . . . ,Mn, we know that
there exists N1, . . . , Nn ∈ Recipe(E , tr(Φ)) such that for all j ∈ {1, . . . , n}, Njtr(Φ)↓ = tr(MjΦ↓).
However, f(tr(M1Φ↓), . . . , tr(MnΦ↓)) = tr(t). Hence f(N1, . . . , Nn)tr(Φ)↓ = tr(t)↓ = tr(MΦ↓).
Hence the result holds. ut
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