# **Dropout as a Bayesian Approximation: Insights and Applications** Yarin Gal, Zoubin Ghahramani



## In short:

# Dropout neural networks are identical to variational inference in Gaussian processes.

This gives us...

- Insights into some of dropout's key properties.
- Uncertainty in deep learning.
- Introduce the **Bayesian machinery** into existing deep learning frameworks.
- Straightforward **generalisations** of dropout.

# Background

### What is dropout?

- A technique to avoid over-fitting in multilayer perceptrons (MLPs).
- Given weight matrices  $\mathbf{W}_i$  and a bias vector  $\mathbf{b}$ , sample vectors of Bernoulli random variables  $b_i$  with probabilities  $p_i$ , to get MLP output:  $\widehat{\mathbf{y}} = \sigma (\mathbf{x}(\mathbf{b}_1 \mathbf{W}_1) + \mathbf{b}) (\mathbf{b}_2 \mathbf{W}_2).$
- Optimisation objective:

$$\mathcal{C}_{\mathsf{dropout}} = rac{r_1}{2N} \sum_{n=1}^N ||\mathbf{y}_n - \widehat{\mathbf{y}}_n||_2^2 + r_2 (||\mathbf{W}_1||_2^2 + ||\mathbf{W}_2||)$$

Can easily be generalised to multiple layers and classification.

### Wait, what is a Gaussian process (GP)?

- A powerful tool in statistics, robust to over-fitting.
- Models distributions over functions.
- Supervised/unsupervised, regression/classification.
- Offers uncertainty estimates over the function values (in blue).
- Given training inputs  $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N \in \mathbb{R}^{N \times Q}$  and outputs  $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^N \in \mathbb{R}^{N \times D}$ , estimate a function y = f(x) that is **likely to have generated** Y.
- We place a joint Gaussian distribution over all function values:  $p(\mathbf{Y} \mid \mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \tau^{-1}\mathbf{I}_N)$

with precision hyper-parameter  $\tau$  and covariance function  $\mathbf{K}(\mathbf{X}, \mathbf{X})$ .

### Ok, what is variational inference?

- Condition the model on a finite set of random variables  $\omega$ .
- The predictive distribution for a new input point  $\mathbf{x}^*$

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \boldsymbol{\omega}) p(\boldsymbol{\omega}|\mathbf{X}, \mathbf{Y}) \, \mathrm{d}\boldsymbol{\omega}$$

- The distribution  $p(\boldsymbol{\omega}|\mathbf{X},\mathbf{Y})$  cannot be evaluated analytically define an "easier" approximating variational distribution  $q(\boldsymbol{\omega})$ .
- Minimise the Kullback–Leibler (KL) divergence:  $KL(q(\boldsymbol{\omega}) \mid p(\boldsymbol{\omega} | \mathbf{X}, \mathbf{Y}))$ .
- Minimising the KL divergence = maximising *log evidence lower bound*,

 $\mathcal{L}_{\mathsf{VI}} := \int q(\boldsymbol{\omega}) \log p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\omega}) \mathsf{d}\boldsymbol{\omega} - \mathsf{KL}(q(\boldsymbol{\omega})||p(\boldsymbol{\omega}))$ 

with respect to the variational parameters defining  $q(\boldsymbol{\omega})$ .

University of Cambridge {yg279, zg201}@cam.ac.uk

### **Proof Sketch**

1. Given a GP covariance function

K(x, y) = ∫ N(w; 0, I<sub>Q</sub>)p(b)σ(w<sup>T</sup>x - b)σ(w<sup>T</sup>y + b)dwdb
with some distribution p(b), σ element-wise non-linear function (e.g. ReLU/Tai

2. Approximate with Monte Carlo integration with K terms:

Â(x, y) = 1/K ∑ σ(w<sup>T</sup>x + b<sub>k</sub>)σ(w<sup>T</sup>y + b<sub>k</sub>)
with w<sub>k</sub> ~ N(0, I<sub>Q</sub>) and b<sub>k</sub> ~ p(b). This is a random covariance function.

3. The GP predictive distribution is re-parametrised as

w<sub>k</sub> ~ N(0, I<sub>Q</sub>), w<sub>d</sub> ~ N(0, I<sub>K</sub>), b<sub>k</sub> ~ p(b).
W<sub>1</sub> = [w<sub>k</sub>), w<sub>k</sub> = W<sub>2</sub> = [w<sub>0</sub>]\_{A-1}^{A-1}, b = [b<sub>k</sub>]\_{K-1}^{K-1}, w<sub>d</sub> = {W<sub>1</sub>, W<sub>2</sub>, b}
p(y<sup>\*</sup>|x<sup>\*</sup>, ω) = N(y<sup>\*</sup>; √(1/K<sup>T</sup>α<sup>\*</sup> + b)W<sub>2</sub>, τ<sup>-1</sup>I<sub>X</sub>)
p(y<sup>\*</sup>|x<sup>\*</sup>, X, Y) = ∫ p(y<sup>\*</sup>|x<sup>\*</sup>, ω)p(ω|X, Y)dω.

4. Use variational distribution q(ω) = q(W<sub>1</sub>)q(W<sub>2</sub>)q(b) to approximate post p(ω|X, Y):

q(W<sub>1</sub>) = \prod\_{q=1}^{Q} q(w<sub>q</sub>). q(w<sub>q</sub>) = p<sub>k</sub>N(m<sub>q</sub>, σ<sup>2</sup>I<sub>K</sub>) + (1 - p<sub>s</sub>)N(0, σ<sup>2</sup>I<sub>K</sub>)
with some probability p<sub>1</sub> ∈ [0, 1], scalar σ > 0 and M<sub>1</sub> = [m<sub>q</sub>]\_{q=1}^{Q} ∈ ℝ variational parameters. Repeat for W<sub>2</sub>.

5. Approximate the log evidence lower bound with Monte Carlo integration wis single sample 
$$\hat{\omega} ~ q(\omega)$$
:

\$\mathcal{C}\_{GP:MC} = \log p(Y|X, \bar{\omega}) - \frac{P\_1}{2} |M\_1||\_2^2 - \frac{P\_2}{2} |M\_2||\_2^2 - \frac{1}{2} ||m||\_2^2. This is an unbiased estimator of \$\mathcal{L}\_{V\_1}\$.

6. For regression we maximise

\$\mathcal{C}\_{GP:MC} \approx - \frac{2}{2} \bar{N} ||y<sub>n</sub> - \bar{\bar{\sigma}}\_{n}|\_2^2 - \frac{2P\_2}{2} ||M\_1||\_2^2 - \frac{2}{2} ||M\_2||\_2^2 - \frac{7}{2} ||m||\_2^2. To recovering dropout objective with appropriate \$\gar{\sigma}\$ and model precision \$\pi\$ for \$\sigma\$ and bistribution.

Alternative explanation to dropout robustness to over-fitting.
Weight-decay for the dropped-out weights should be scaled by the probabilit the weights not to be dropped.
Dropout extensions such as m<sub>1</sub> · N(

 $||_{2}^{2} + ||\mathbf{b}||_{2}^{2}$ .

 $\boldsymbol{\omega},$ 

with  $\widehat{\omega}_i \sim q(\omega)$ , named *MC dropout*. Mentioned in [S2014] as model averaging.

- anH).

- terior
- $\mathbf{D}K \times D$
- vith a

small

ity of

native

 $p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) \approx \frac{1}{T} \sum_{i=1}^{T} p(\mathbf{y}^*|\mathbf{x}^*, \widehat{\boldsymbol{\omega}}_i)$ 

# **Example Applications**

### Model uncertainty

• We can obtain model uncertainty from existing models

Predictive mean and uncertainties on the Mauna Loa  $CO_2$  concentrations dataset:





in [GG2015A].

# Bayesian convolutional neural networks (convnets)

• We can implement Bayesian convnets with existing tools in the field.

Test set error *on log scale* for LeNet:



In blue is our Bayesian convnet implementation (lenet-all), in green is dropout applied after the fully connected layer alone (lenet-ip), in red no dropout (lenet-none). Standard dropout shown with a dashed line, MC dropout shown with a solid line.

Complete treatment with new state-of-the-art results on CIFAR-10 given in [GG2015B].

# **Principled extensions of dropout**

- Use of new approximating distributions.

**References:** [GG2015A] Gal, Y, and Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, 2015. [GG2015B] Gal, Y, and Ghahramani, Z. Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference, 2015. [S2014] Srivastava, N, Hinton, G, Krizhevsky, A, Sutskever, I, and Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.



CIFAR-10

• Also mathematically identical to variational inference in Bayesian neural networks.