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In short:

Dropout neural networks are identical to
variational inference in Gaussian processes.

This gives us...

• Insights into some of dropout’s key properties.

•Uncertainty in deep learning.

• Introduce the Bayesian machinery into existing deep learning frameworks.

• Straightforward generalisations of dropout.

Background

What is dropout?

•A technique to avoid over-fitting in multilayer perceptrons (MLPs).

•Given weight matrices Wi and a bias vector b, sample vectors of Bernoulli random
variables bi with probabilities pi, to get MLP output:

ŷ = σ
(
x(b1W1) + b

)
(b2W2).

•Optimisation objective:

Ldropout = r1

2N

N∑
n=1
||yn − ŷn||22 + r2

(
||W1||22 + ||W2||22 + ||b||22

)
.

Can easily be generalised to multiple layers and classification.

Wait, what is a Gaussian process (GP)?
•A powerful tool in statistics, robust to over-fitting.

•Models distributions over functions.

• Supervised/unsupervised, regression/classification.

•Offers uncertainty estimates over the function values (in blue).

•Given training inputs X = {xi}Ni=1 ∈ RN×Q and outputs Y = {yi}Ni=1 ∈ RN×D,
estimate a function y = f(x) that is likely to have generated Y.

•We place a joint Gaussian distribution over all function values:

p(Y | X) = N (0,K(X,X) + τ−1IN)
with precision hyper-parameter τ and covariance function K(X,X).

Ok, what is variational inference?

•Condition the model on a finite set of random variables ω.

•The predictive distribution for a new input point x∗

p(y∗|x∗,X,Y) =
∫
p(y∗|x∗,ω)p(ω|X,Y) dω,

•The distribution p(ω|X,Y) cannot be evaluated analytically — define an “easier”
approximating variational distribution q(ω).

•Minimise the Kullback–Leibler (KL) divergence: KL(q(ω) | p(ω|X,Y)).

•Minimising the KL divergence = maximising log evidence lower bound,

LVI :=
∫
q(ω) log p(Y|X,ω)dω − KL(q(ω)||p(ω))

with respect to the variational parameters defining q(ω).

Proof Sketch

1. Given a GP covariance function

K(x,y) =
∫
N (w; 0, IQ)p(b)σ(wTx + b)σ(wTy + b)dwdb

with some distribution p(b), σ element-wise non-linear function (e.g. ReLU/TanH).

2. Approximate with Monte Carlo integration with K terms:

K̂(x,y) = 1
K

K∑
k=1

σ(wT
kx + bk)σ(wT

ky + bk)

with wk ∼ N (0, IQ) and bk ∼ p(b). This is a random covariance function.

3. The GP predictive distribution is re-parametrised as

wk ∼ N (0, IQ), wd ∼ N (0, IK), bk ∼ p(b),
W1 = [wk]Kk=1, W2 = [wd]Dd=1, b = [bk]Kk=1,

ω = {W1,W2,b}

p(y∗|x∗,ω) = N
(

y∗;
√

1
K
σ(WT

1 x∗ + b)W2, τ
−1IN

)
p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y)dω.

4. Use variational distribution q(ω) = q(W1)q(W2)q(b) to approximate posterior
p(ω|X,Y):

q(W1) =
Q∏
q=1

q(wq), q(wq) = p1N (mq,σ
2IK) + (1− p1)N (0,σ2IK)

with some probability p1 ∈ [0, 1], scalar σ > 0 and M1 = [mq]Qq=1 ∈ RK×D

variational parameters. Repeat for W2.

5. Approximate the log evidence lower bound with Monte Carlo integration with a
single sample ω̂ ∼ q(ω):

LGP-MC = log p(Y|X, ω̂)− p1

2
||M1||22 −

p2

2
||M2||22 −

1
2
||m||22.

This is an unbiased estimator of LVI.

6. For regression we maximise

LGP-MC ∝ −
γτ

2

N∑
n=1
||yn − ŷn||22 −

γp1

2
||M1||22 −

γp2

2
||M2||22 −

γ

2
||m||22

recovering dropout objective with appropriate γ and model precision τ for small
enough σ. Can easily be generalised to multiple layers and classification.

Insights

•Alternative explanation to dropout robustness to over-fitting.

•Weight-decay for the dropped-out weights should be scaled by the probability of
the weights not to be dropped.

•Dropout extensions such as mi · N (1, 1) suggested in [S2014] are alternative
approximating distributions.

•At test time should use Monte Carlo integration with T terms

p(y∗|x∗,X,Y) ≈ 1
T

T∑
i=1

p(y∗|x∗, ω̂i)

with ω̂i ∼ q(ω), named MC dropout. Mentioned in [S2014] as model averaging.

Example Applications

Model uncertainty
•We can obtain model uncertainty from existing models

Predictive mean and uncertainties on the Mauna Loa CO2 concentrations dataset:
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Complete treatment with applications to Deep Reinforcement Learning given
in [GG2015A].

Bayesian convolutional neural networks (convnets)

•We can implement Bayesian convnets with existing tools in the field.

Test set error on log scale for LeNet:
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CIFAR-10
In blue is our Bayesian convnet implementation (lenet-all), in green is dropout ap-
plied after the fully connected layer alone (lenet-ip), in red no dropout (lenet-none).
Standard dropout shown with a dashed line, MC dropout shown with a solid line.

Complete treatment with new state-of-the-art results on CIFAR-10 given in
[GG2015B].

Principled extensions of dropout
•Use of new approximating distributions.

•Also mathematically identical to variational inference in Bayesian neural networks.
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