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Nash Equilibrium

“Nash equilibria are game-states s.t. no player would fare better by
unilateral1 change of their own action.”

1
Performed by or affecting only one person involved in a situation, without the agreement of another.
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Prisoner’s Dilemma

Sideshow Bob

Cooperate Defect

S
n

a
ke Cooperate 1,1 3,0

Defect 0,3 2,2

(prison sentence in years)
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Pareto Efficiency

“Pareto optima are game-states s.t. no alternative state exists
whereby each player would fare equal or better.”
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Iterated Prisoner Dilemma Strategies

At = {Cooperate (C ), Defect (D)}

St = {CC , CD, DC , DD} (previous game outcome)

π : ×t
i=2Si → At

Possible strategies π for Snake:

I Tit-for-Tat:

π(st) =

{
C , if t = 1;
aBob,t−1 , if t > 1

I Reinforce actions conditioned on game outcomes:

π(st) = arg mina ET[accumulated prison years|st , a]
update transition model T
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Multi-Agent Reinforcement Learning

How can we learn mutually-beneficial collaboration strategies?

I Modelling:
multi-agent-MDPs, dec-MDPs

I Issues solving joint tasks:
I decentralised knowledge with no centralised control,
I credit assignment,
I communication constraints

I Issues affecting individual agents:
I state space explodes: O(|S|#agents),
I coadapatation → dynamic non-Markov environment
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Markov Decision Process (MDP)

Stochastic environment characterised by tuple {S,A,R,T,γ}, where:

I R : S×A× S ′ → R ∈ (−∞,∞)

I T : S×A× S ′ → R ∈ [0, 1]

I γ ∈ [0, 1]
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Multi-agent MDP (MMDP)

N-agent stochastic game characterised by tuple {S,A,R,T,γ}, where:

I S = ×N
i=1Si

I A = ×N
i=1Ai

I R = ×N
i=1Ri , Ri : S×A× S ′ → R

I T : S×A× S ′ → R
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Multi-agent Q-learning

I Oblivious agents [Sen et al., 1994]

Qi (s, ai ) ← (1 − α)Qi (s, ai ) + α[Ri (s, ai ) + γVi (s
′)]

V ∗i (s) = max
ai∈Ai

Q∗i (s, ai )

I Common-payoff games [Claus and Boutilier, 1998]

Qi (s, a) ← (1 − α)Qi (s, a) + α[Ri (s, a, s ′) + γVi (s
′)]

Vi (s) ← max
ai∈A

∑
a−i∈A/{Ai }

Pi (s, a−i )Qi (s, {ai , a−i })
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Independent vs Cooperative Learning

[Tan, 1993]: “Can N communicating agents outperform N
non-communicating agents?”

Ways of communication:
I Agents share Q-learning updates (thus syncing Q-values):

I Pro: each agent learns N-fold faster (per timestep),
I Note: same asymptotic performance as independent agents.

I Agents share sensory information:
I Pro: more information → better policies,
I Con: more information → larger state space → slower learning.
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Hunter-Prey Problem

prey hunter

10× 10 grid world.

x

y

perceptual state, visual depth 2
(prey’s relative position).
|S| = 52 + 1 = 26

R =

{
1.0 : a hunter catches a prey, i.e. {xi , yi } = {0, 0}

−0.1 : otherwise
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Hunter-Prey Experiments

Experiment 1 – any hunter catches a prey:

I Baseline: 2 independent hunters, |Si | = 52 + 1 = 26

I 2 hunters, communicating Q-value updates. |Si | = 26

Experiment 2 – both hunters catch same prey simultaneously:

I Baseline: 2 independent hunters, |Si | = 26

I 2 hunters, communicating own locations, |Si | ≈ 26 · 192 = 9386

I 2 hunters, communicating own+prey locations. |Si | ≈ (192 + 1) · 192 = 130682
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Hunter-Prey Results
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Decentralised Sparse-Interaction MDP

[Melo and Veloso, 2011] Philosophy:

I N-agent coordination is hard since the size of the state space
grows exponentially in N.

I ∴ Limit scope of coordination to where it’s probably more useful;
plans and learn w.r.t. ‘local’ agent-agent interactions only.

The Dec-SIMDP framework determines when and how agents i and j
coordinate vs act independently.

‘Decentralised’ = have full joint S-observability, but not full individual
S-observability (agent i only observes Si + nearby agents).
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Dec-SIMDP: Reducing Joint State Space

S1

S2

S1 × S2

Global coupling

S1

S2

S1 × S2

Local coupling only
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Dec-SIMDP: A Navigation Task

Navigation task: coordination necessarily only when crossing the narrow
doorway.

Si = {1, ..., 20, D},

Ai = {N, S , E , W },

Zi = Si ∪ {{6, 15, D}× {6, 15, D}}

R(s, a) =


2 if s = (20, 9)
1 if s1 = 20, or s2 = 9

−20 if s = (D, D)
0 otherwise
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Sparse Interaction [video]

Four interconnected modular robots cooperate to change configuration:
line → ring
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Teammate Modelling

[Mundhe and Sen, 2000]
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Credit Assignment

How should individuals be individually credited w.r.t. total team
performance (or utility)?

↔
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Communication

“Shall we both choose to cooperate next round?”

“OK.”

Sideshow Bob

Cooperate Defect

S
n

a
ke Cooperate 1,1 3,0

Defect 0,3 2,2

(prison sentence in years)
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Unknown Languages

“ ?”

“What?”

Alien

Cooperate Defect

S
n

a
ke Cooperate 1,1 3,0

Defect 0,3 2,2

(prison sentence in years)
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Learning communication

I How learning communication can help in RL collaboration

I Approaches to learning communication (ranging from linguistically
motivated to a pragmatic view)

I What problems exist with learning communication?
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Learning communication for collaboration

How can learning communication help in RL collaboration?

I Forgoes expensive expert time for protocol planning

I Allows for a decentralised system without an external authority to
decide on a communication protocol

I Life-long learning (adaptive tasks, e.g. future proofed robots)
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Approaches to learning communication

From linguistic motivation to a pragmatic view – emergent languages
I Emergent languages

I Pidgin – a simplified language developed for communication
between groups that do not have a common language

I Creole – a pidgin language nativised by children as their primary
language, e.g. Singlish
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Approaches to learning communication

From linguistic motivation to a pragmatic view – computational models

I A computational model for emergent languages should account for
I polysemy (a word might have different meanings),
I synonymy (a meaning might have different words),
I ambiguity (two agents might associate different meanings to the

same word),
I and be open (agents may enter or leave the population, new words

might emerge to describe meanings).
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Approaches to learning communication

From linguistic motivation to a pragmatic view – computational models

I [Steels, 1996] constructs a model in which words map to features
of an object
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Approaches to learning communication

From linguistic motivation to a pragmatic view – computational models

I Agents learn each-other’s word-feature mappings by selecting an
object and describing one of its distinctive features
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Approaches to learning communication

From linguistic motivation to a pragmatic view – computational models

I An agent’s word-feature mapping is reinforced when both agents
use the same word to identify a distinctive feature of the object
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Approaches to learning communication

From linguistic motivation to a pragmatic view – formal framework

I Using RL we can formalise the ideas above
I For example [Goldman et al., 2007] establish a formal framework

where agents using different languages learn to coordinate
I In this framework a state space S describes the world,
I Ai describes the actions the i ’th agent can perform,
I Fi (s) is the probability that agent i is in state s,
I Σi is the alphabet of messages agent i can communicate,
I and oi is an observation of the state for agent i .
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Approaches to learning communication

From linguistic motivation to a pragmatic view – formal framework

I We define agent i ’s policy to be a mapping from sequences (the
history) of state-message pairs to actions

δi : Ω
∗ × Σ∗ → Ai ,

I and define a secondary mapping from sequences of state-message
pairs to messages

δΣi : Ω∗ × Σ∗ → Σi .

I A translation τ between languages Σ and Σ ′ is a distribution over
message pairs; each agent holds a distribution Pτ,i over
translations between its own language and other agents’ languages,

I And meaning is interpreted as “what belief state would cause me
to send the message I just received”.
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Learning communication: a model

Overview of the framework
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Approaches to learning communication

From linguistic motivation to a pragmatic view – formal framework

I Several experiments where used to assess the framework.
I For example, two agents work to meet at a point in a gridworld

according to a belief over the location of the other.

I Messages describing an agent’s location are exchanged and their
translations are updated depending on whether the agents meet or
not.

I The optimal policies are assumed to be known before the agents
try to learn how to communicate.
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Approaches to learning communication

From linguistic motivation to a pragmatic view – a pragmatic view

I Use in robotics
I A leader robot controlling a follower robot [Yanco and Stein, 1993]
I Small robots pushing a box towards a source of light [Mataric, 1998]

Figure: Leader-follower robots Figure: Box pushing
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Approaches to learning communication

From linguistic motivation to a pragmatic view – a pragmatic view

I Use in robotics
I A leader robot controlling a follower robot

Communication diagram
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Approaches to learning communication

From linguistic motivation to a pragmatic view – a pragmatic view

I Use in robotics
I A leader robot controlling a follower robot

Reinforcement regime
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Why is learning communication difficult?

What problems exist with learning communication?
I Difficult to specify a framework

I Many partial frameworks proposed with different approaches
I State space explosion
I Difficult to use for RL collaboration

I No framework has been shown to improve on independent RL
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Why is learning communication difficult?

What problems exist with learning communication?

I Difficult to specify a framework
I Many partial frameworks proposed with different approaches

I State space explosion
I Difficult to use for RL collaboration

I No framework has been shown to improve on independent RL

These problems are not fully answered in current
research.
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Up, Up and Away

Where this might go

I Learning communication based on sparse interactions
I Reduce state space complexity

I Selecting what to listen to in incoming communication
I State space selection

I Cyber-warfare – better computer worms?
I Developing unique communication protocols between cliques of

agents

I Online learning of communication
I Introducing a new agent into a system with existing agents
I Finding optimal policy with agents ignorant of one another, and

then allowing agents to start communicating to improve
collaboration
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Up, Up and Away

Where this might go

I Learning communication based on sparse interactions
I Reduce state space complexity

I Selecting what to listen to in incoming communication
I State space selection

I Cyber-warfare – better computer worms?
I Developing unique communication protocols between cliques of

agents
I Online learning of communication

I Introducing a new agent into a system with existing agents
I Finding optimal policy with agents ignorant of one another, and

then allowing agents to start communicating to improve
collaboration

Lots to do for future research!
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