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In Short:

•We define a new combinatorial structure that unifies Kingman [1978]’s
random partitions and Broderick, Pitman, and Jordan [2013]’s feature
frequency models.

•This structure underlies non-parametric multi-view clustering models,
where data points are simultaneously clustered into different possible clusterings.

•The de Finetti measure is a product of paintbox constructions, tying together
Kingman [1978]’s paintbox and Broderick et al. [2013]’s feature paintbox.

•Characterising the properties of feature partitions allows us to understand the
relations between the models they underlie and to share algorithmic
insights between the models.

Motivation

Many non-parametric multi-view clustering models and applications exist:

•Multi-view clustering model developed for identity and pose identification in
portrait photos, and machines identification in sound data [Guan et al., 2010],

•Another suggested for text prediction [Niu et al., 2012],

•Network modelling based on multi-view clustering, predicting links in protein
interaction networks of the yeast S. cerevisiae [Palla et al., 2012],

•Cognitive models using multi-view clustering, capturing human reasoning about
high dimensional data [Shafto et al., 2006].

Surprisingly, the models above have a common
underlying structure that unites them all

Preliminaries – Partitions & Kingman’s Paintbox

•A partition of N is a mutually exclusive and exhaustive set of subsets of N.

•An exchangeable random partition is a random element in the set of partitions,
invariant to permutations of the naturals.

•Kingman’s paintbox is the directing measure underlying exchangeable random
partitions. It describes a sampling procedure that allows us, conditioned on some
measure, to generate iid samples from an exchangeable random partition (Fig. 1).

Figure 1: A Kingman paintbox and the corresponding partition generated from it:

R =
{
{1}, {2, 3}, {4}

}
.

Feature Partitions

Definition 1. A feature partition F = {A1, A2, ...} over the data points
[N ] = {1, ..., N} with K possible features [K] = {1, ..., K} is defined as a parti-
tion of [N ]× [K], pairs of natural numbers where the first element denotes the data
point label and the second element denotes the feature label. We require all subsets
Ak to have the property that:

if (i, j) ∈ Ak and (i′, j′) ∈ Ak, then it must be that j = j′.

•A random feature partition F is a random element in the set of feature partitions,

•F is said to be exchangeable if

σ1 × σ2(F )
d
=F

for all σ1 permutations of [N ] and σ2 permutations of [K].

F =
{
{(1,1), (4,1)} , {(2,1)} , {(3,1)} ,
{(1,2), (2,2)} , {(3,2), (4,2)} ,
{(1,3), (2,3), (3,3), (4,3)} , ...

}
Figure 2: A feature partition (left) depicted as a matrix with categorical entries corre-

sponding to the subsets Ai (right). Rows in the matrix correspond to data points n, columns

correspond to features k; colours denote categorical value assignments for features.

Factorial Paintbox Construction

The following construction extends Kingman’s paintbox to feature partitions:

Definition 2. Given a sequence of probability measures (µj) each defined over the
interval [0, 1] with disjoint support sets, for every j generate a sequence of random
variables Xi,j ∼ µj iid for i ∈ N. The sequence (Xi,j) defines a random feature
partition F exchangeable in data points by Fx,y = {ω|Xx(ω) = Xy(ω)}, the event
that x and y belong to the same block for x = (i, j), y = (i′, j′). If for all j we
have in addition that if µj ∼ µ then F is exchangeable in features as well.

The factorial paintbox construction (Fig. 3) ties together:

•Kingman [1978]’s paintbox construction (by restricting it to a single feature), and

•Broderick et al. [2013]’s feature paintbox construction for feature frequency mod-
els (through a restriction to two values per feature).

Figure 3: Factorial paintbox corresponding to the first 2 features of F in Fig. 2.

The nested paintboxes are identical.

de Finetti’s theorem for exchangeable random feature partitions:

Theorem 3. The underlying directing measure for a feature partition is a factorial
paintbox construction with some random measure α over random measures (αj).

Exchangeable Probability Function

The probability function for the feature partition:

Theorem 4. Let ((Pi,j)
∞
i=1)

∞
j=1 be a sequence of independent sequences of random

variables with the constraints that Pi,j ≥ 0 and
∑∞

i=1Pi,j ≤ 1 for all j. Let p(·) be
defined as
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There exists a random feature partition F exchangeable w.r.t. the data points with
asymptotic frequencies in order of appearance given by the distribution ((Pi,j)

∞
i=1)

∞
j=1

iff p(·) is symmetric w.r.t. re-orderings of the counts within each sequence j. p(·)
is the probability function of F then.

This function generalises the exchangeable random partition probability
functions and feature allocation probability function.

Impact

Many models and applications use multi-view clustering...

• ... we identified various multi-view clustering models as equivalent,

• ... we collapsed many multi-view clustering applications into the same class,

• ... we can share algorithmic insights between the various models using the
feature partition as their underlying model:

– Explain away differences between the models,

– Unify inference for the different models (Gibbs sampling used for some and
variational inference for others)

– A clear way of generalisation (using various distributions over the partitions,
introducing new dependencies, etc.).

Future Research

Introduce dependencies to the factorial paintbox construction:

•Could be depicted as each block having its own paintbox sampled from a distri-
bution conditioned on the block itself,

•Could be used to model the underlying structure of correlated multi-clustering
models such as in Doshi-Velez and Ghahramani [2009],

•Corresponds to a special case of the fragmentation chain [Bertoin, 2006].


