In Short:

e We define a new combinatorial structure that unifies Kingman [1978]’s
random partitions and Broderick, Pitman, and Jordan [2013]’s feature
frequency models.

e This structure underlies non-parametric multi-view clustering models,
where data points are simultaneously clustered into different possible clusterings.

e [ he de Finetti measure is a product of paintbox constructions, tying together
Kingman [1978]'s paintbox and Broderick et al. [2013]'s feature paintbox.

e Characterising the properties of feature partitions allows us to understand the
relations between the models they underlie and to share algorithmic
insights between the models.

Motivation

Many non-parametric multi-view clustering models and applications exist:

e Multi-view clustering model developed for identity and pose identification in
portrait photos, and machines identification in sound data [Guan et al., 2010],

e Another suggested for text prediction [Niu et al., 2012],

e Network modelling based on multi-view clustering, predicting links in protein
interaction networks of the yeast S. cerevisiae [Palla et al., 2012],

e Cognitive models using multi-view clustering, capturing human reasoning about
high dimensional data [Shafto et al., 2006].

Surprisingly, the models above have a common
underlying structure that unites them all

Preliminaries — Partitions & Kingman'’s Paintbox

e A partition of N is a mutually exclusive and exhaustive set of subsets of N.

e An exchangeable random partition is a random element in the set of partitions,
invariant to permutations of the naturals.

e Kingman's paintbox is the directing measure underlying exchangeable random
partitions. It describes a sampling procedure that allows us, conditioned on some
measure, to generate iid samples from an exchangeable random partition (Fig. 1).
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FIGURE 1: A Kingman paintbox and the corresponding partition generated from it:

R = {{1}.{2,3}. {4} }.
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Feature Partitions

Definition 1. A feature partition F = {A;, Ay, ...} over the data points
N| ={1,..., N} with K possible features |K| = {1,..., K'} is defined as a parti-
tion of [N| x | K|, pairs of natural numbers where the first element denotes the data
point label and the second element denotes the feature label. We require all subsets
A} to have the property that:

if (i,7) € Ay, and (i, j") € Ay, then it must be that j = j'.

e A random feature partition F' is a random element in the set of feature partitions,
e [ is said to be exchangeable if

o1 X UQ(F)iF

for all oy permutations of |[N] and o, permutations of [K].
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FIGURE 2: A feature partition (left) depicted as a matrix with categorical entries corre-
sponding to the subsets A; (right). Rows in the matrix correspond to data points n, columns

correspond to features k; colours denote categorical value assignments for features.

Factorial Paintbox Construction

The following construction extends Kingman's paintbox to feature partitions:

Definition 2. Given a sequence of probability measures (11;) each defined over the
interval |0, 1| with disjoint support sets, for every j generate a sequence of random
variables X; ; ~ p; iid for i € N. The sequence (X; ;) defines a random feature
partition F' exchangeable in data points by F, , = {w|X,(w) = X,(w)}, the event
that x and y belong to the same block for x = (i,7),y = (¢, 5"). If for all j we
have in addition that if j1; ~ p then I is exchangeable in features as well.

The factorial paintbox construction (Fig. 3) ties together:
e Kingman [1978]'s paintbox construction (by restricting it to a single feature), and

e Broderick et al. [2013]’s feature paintbox construction for feature frequency mod-
els (through a restriction to two values per feature).
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FIGURE 3: Factorial paintbox corresponding to the first 2 features of F in Fig. 2.

Feature 2

The nested paintboxes are identical.

Feature Partitions and Multi-View Clustering

de Finetti’s theorem for exchangeable random feature partitions:

Theorem 3. The underlying directing measure for a feature partition is a factorial
paintbox construction with some random measure o over random measures (o).

Exchangeable Probability Function

The probability function for the feature partition:

Theorem 4. Let ((P;;)72,)52, be a sequence of independent sequences of random
variables with the constraints that P, ; > 0 and > ", P,; <1 for all j. Let p(-) be
defined as
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for ((ni,j)z-i]l> )11 a sequence of sequences of natural numbers.

There exists a random feature partition I' exchangeable w.r.t. the data points with
asymptotic frequencies in order of appearance given by the distribution ((F; ;):2)52

iff p(+) is symmetric w.r.t. re-orderings of the counts within each sequence j. p(-)
is the probability function of F' then.

This function generalises the exchangeable random partition probability
functions and feature allocation probability function.

Impact

Many models and applications use multi-view clustering...
o ... we identified various multi-view clustering models as equivalent,
e ... we collapsed many multi-view clustering applications into the same class,

e ... we can share algorithmic insights between the various models using the
feature partition as their underlying model:

— Explain away differences between the models,

— Unify inference for the different models (Gibbs sampling used for some and
variational inference for others)

— A clear way of generalisation (using various distributions over the partitions,
introducing new dependencies, etc.).

Future Research

Introduce dependencies to the factorial paintbox construction:

e Could be depicted as each block having its own paintbox sampled from a distri-
bution conditioned on the block itself,

e Could be used to model the underlying structure of correlated multi-clustering
models such as in Doshi-Velez and Ghahramani [2009],

e Corresponds to a special case of the fragmentation chain [Bertoin, 2006].



