Avarationa

NTerence

O0IDOX

S it time for a community-driven VI toolbox
Yarin Gal (yg279@cam.ac.uk), University of Cambridoe

Variational inference is Fragmented

T L 1l

¢ Most advances in Deep Learning from the last few years are due to centra
Ccode repositories exploiting model compaositionalty.

—Vast number of published papers can be built from simpler bulding tlocks,
becoming themselves nigner level bulding blocks,

—Example: Simple deep networks — Recurrent Neural Networks — Neural
Turing Machine — The Neural Queue.

¢ |n contrast, VI has no central repository, or even an agreed-upon frame-
work.

¢ |nstead we often re-implement existing work in VI, wasting weeks at a time.

e |s it time for a community driven VI toollbox”

The time is Right

¢ Relying on recent advances in stochastic inference and samplng based vari-
ational inference (replacing integration with stochastic optimisation),

¢ Taking advantage of frameworks developed within the deep learning com-
munity: heano, lorch, lensort-low, etc.

¢ Allows us to design simple VI bullding plocks to compose together.

¢ Allows us to combine deep leamning and VI seamlessly.

SGD Trainer

N T

Image sources: Wikimedia, tensorflow.org, deeplearning.net

Example: symbolic differentiation (Theano).

e Sulds a graph of symbolic variables and operations on these,
e automatically optimises structure to make computations efficient,

* propagates chain rule throughout the graph.

Vanilla variational inference

e Given data X design initial probabilistic model,

p(a*|X) = / P |w)p(]X)dw

with some latent random variable w. The posterior p(w|X) is intractable.

e Choose an approximating variational distribution gg(w) matching posterior
properties.

e Evaluate divergence between approximating posterior and true posterior
obtaining a lower bound,

L) = / g6(09) 1og p(X|w)dew — KL(gs()||p(w)).

And then...

e Spend weeks calculating and implementing derivatives, testing
with finite differences, and optimising computations for perior-
mance and numerical stability.

Ve could do better,

If we had modular VI Building Blocks...

¢ Replace the last two steps in vanilla V.
e Collect common VI building blocks into a central repository.

¢ \\rite down generative model in a symbolic language with existing VI blocks
(creating new ones as necessary),

var w;:

f(CU) — B|OCK1(B'OCKQ(B'OCkg(w)))
X = flw);

e Simulate T" samples from the approximate posterior and propagate them
down the generative model (forward pass),

wr ~ qp(w);
X = flwy);

¢ Evaluate the objective with the output of the generative model,
1 T
£(0) ~ 7 3 lop(Xe) ~ KLig(e))

e Symbolically differentiate the objective:

—evaluate derivatives with the same samples
—obtaining a noisy but unblased gradient estimate
—this Is a backward pass.

e Optimise with a stochastic optimiser.

O 1 O Ot = W N

Ne)

10
11
12
13
14
15
16
17
18
19
20

—Xample

import theano.tensor as T
= T.dmatrix('m') # ... and other variational parameters
X =m + s * randn(N, Q) # these are the generative model's variables
= mu + L.dot(randn(M, K))
RBF(sf2, 1, Z)
RBF(sf2, 1, Z, X)
RBFnn (sf2, 1, X)
KmmInv = T.matrix inverse (Kmm)
A KmmInv.dot (Kmn)
B Knn - T.sum(Kmn * KmmInv.dot(Kmn), O)
F A.T.dot(U)+B[:,Nonel]**0.5 * randn(N,K)
S T.nnet.softmax(F) # model's output - Softmax probabilities
KL U, KL X = get KL U(), get KL X() # these are the KL terms
LS = T.sum(T.log(T.sum(Y * S, 1)))
- KL U - KL X # and this is the lower bound we optimise
LS func = theano.function(['''inputs'''], # compile the model
LS)
dLS dm = theano.function(['''inputs'''],
T.grad (LS, m))
... and optimise LS with RMS-PROP

>~

=

=]
nn

and the derivatives

—Xample Python code using the new pipeline. Here, m, s, mu, and L are the varia-
tional parameters, and the generative model S (the probabilities of the discrete
variables) is a function of latents X, U, and F. Our objective is LS.

—merging Challenges

e Existing tools lack...
—good support for many operations used in VI (matrix inverses, matrix deter-
minants, etc.).

— “tricks-of-the-trade” used in VI to avoid problems of numerical instablity and
arge matrix multiplications.

—Would these lead to more efficient models, smaller, readable, and ex-
tendible code-bases?

e Black-box variance reduction

—Variance reduction forces model re-parametrisation — ’

complicated inference and code.

—Apply variance reduction automatically to the symbolic

grapn’?
E- e
> »

e Model compositionality”?

— Speed-up the innovation cycle allowing
fast-evolving model complexity,

—What are the basic VI bulding blocks?

—Recent work casting deep leaming tools
as VI in Bayesian neural networks (see
other poster) — already have many
building blocks to start with!

A unified framework will make VI accessiple to
arger audiences.

Full paper: “Rapid Prototyping of Probabilistic Models: Emerging Challenges in Variational Inference”. Photos
taken from Wikimedia unless specified otherwise.

