
....
A Variational Inference Toolbox
Is it time for a community-driven VI toolbox?
Yarin Gal (yg279@cam.ac.uk), University of Cambridge

.

...Variational inference is Fragmented

• Most advances in Deep Learning from the last few years are due to central
code repositories exploiting model compositionality.
– Vast number of published papers can be built from simpler building blocks,

becoming themselves higher level building blocks,
– Example: Simple deep networks → Recurrent Neural Networks → Neural

Turing Machine → The Neural Queue.
• In contrast, VI has no central repository, or even an agreed-upon frame-

work.
• Instead we often re-implement existing work in VI, wasting weeks at a time.
• Is it time for a community driven VI toolbox?

...The time is Right

• Relying on recent advances in stochastic inference and sampling based vari-
ational inference (replacing integration with stochastic optimisation),

• Taking advantage of frameworks developed within the deep learning com-
munity: Theano, Torch, TensorFlow, etc.

• Allows us to design simple VI building blocks to compose together.
• Allows us to combine deep learning and VI seamlessly.

Image sources: Wikimedia, tensorflow.org, deeplearning.net

Example: symbolic differentiation (Theano).
• Builds a graph of symbolic variables and operations on these,
• automatically optimises structure to make computations efficient,
• propagates chain rule throughout the graph.

...Vanilla variational inference

• Given data X design initial probabilistic model,

p(x∗|X) =

∫
p(x∗|ω)p(ω|X)dω

with some latent random variable ω. The posterior p(ω|X) is intractable.
• Choose an approximating variational distribution qθ(ω) matching posterior

properties.
• Evaluate divergence between approximating posterior and true posterior

obtaining a lower bound,

L(θ) :=
∫

qθ(ω) log p(X|ω)dω − KL(qθ(ω)||p(ω)).

And then...

• Spend weeks calculating and implementing derivatives, testing
with finite differences, and optimising computations for perfor-
mance and numerical stability.

We could do better.

...If we had modular VI Building Blocks...

• Replace the last two steps in vanilla VI.
• Collect common VI building blocks into a central repository.
• Write down generative model in a symbolic language with existing VI blocks

(creating new ones as necessary),

var ω;

f (ω) = Block1(Block2(Block3(ω)))
X = f (ω);

• Simulate T samples from the approximate posterior and propagate them
down the generative model (forward pass),

ωt ∼ qθ(ω);

Xt = f (ωt);

• Evaluate the objective with the output of the generative model,

L(θ) ≈ 1

T

T∑
t=1

log p(Xt)− KL(qθ(ω)||p(ω)).

• Symbolically differentiate the objective:
– evaluate derivatives with the same samples
– obtaining a noisy but unbiased gradient estimate
– this is a backward pass.

• Optimise with a stochastic optimiser.

...Example

1 import theano.tensor as T
2 m = T.dmatrix('m') # ... and other variational parameters
3 X = m + s * randn(N, Q) # these are the generative model's variables
4 U = mu + L.dot(randn(M, K))
5 Kmm = RBF(sf2, l, Z)
6 Kmn = RBF(sf2, l, Z, X)
7 Knn = RBFnn(sf2, l, X)
8 KmmInv = T.matrix_inverse(Kmm)
9 A = KmmInv.dot(Kmn)

10 B = Knn - T.sum(Kmn * KmmInv.dot(Kmn), 0)
11 F = A.T.dot(U)+B[:,None]**0.5 * randn(N,K)
12 S = T.nnet.softmax(F) # model's output - Softmax probabilities
13 KL_U , KL_X = get_KL_U(), get_KL_X() # these are the KL terms
14 LS = T.sum(T.log(T.sum(Y * S, 1)))
15 - KL_U - KL_X # and this is the lower bound we optimise
16 LS_func = theano.function(['''inputs'''], # compile the model
17 LS)
18 dLS_dm = theano.function(['''inputs'''], # and the derivatives
19 T.grad(LS, m))
20 # ... and optimise LS with RMS-PROP

Example Python code using the new pipeline. Here, m, s, mu, and L are the varia-
tional parameters, and the generative model S (the probabilities of the discrete
variables) is a function of latents X, U, and F. Our objective is LS.

...Emerging Challenges

• Existing tools lack...
– good support for many operations used in VI (matrix inverses, matrix deter-

minants, etc.).
– “tricks-of-the-trade” used in VI to avoid problems of numerical instability and

large matrix multiplications.
– Would these lead to more efficient models, smaller, readable, and ex-

tendible code-bases?

• Black-box variance reduction

– Variance reduction forces model re-parametrisation →
complicated inference and code.

– Apply variance reduction automatically to the symbolic
graph?

• Model compositionality?
– Speed-up the innovation cycle allowing

fast-evolving model complexity,
– What are the basic VI building blocks?
– Recent work casting deep learning tools

as VI in Bayesian neural networks (see
other poster) – already have many
building blocks to start with!

A unified framework will make VI accessible to
larger audiences.

Full paper: “Rapid Prototyping of Probabilistic Models: Emerging Challenges in Variational Inference”. Photos
taken from Wikimedia unless specified otherwise.

