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Bayesian Deep Learning: Introduction

Introduction
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With great power...

» Many engineering advances in ML

» Systems applied to toy data
— deployed in real-life settings

» Control handed-over to automated
systems; w many scenarios which can
become life-threatening to humans
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With great power...

>

» Many engineering advances in ML

» Systems applied to toy data
— deployed in real-life settings

» Control handed-over to automated
systems; w many scenarios which can
become life-threatening to humans

Medical: automated decision making or
recommendation systems

Automotive: autonomous control of drones
and self driving cars

High frequency trading: ability to affect
economic markets on global scale

But all of these can be quite dangerous...
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Example: Medical Diagnostics

» dAlbetes: an exciting new startup (not really)
» claims to automatically diagnose diabetic retinopathy
» accuracy 99% on their 4 train/test patients
» engineer trained two deep learning systems to predict probability y
given input fondus image X.

The engineer runs their system on your fondus image x* (RHS):
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Example: Medical Diagnostics

» dAlbetes: an exciting new startup (not really)
» claims to automatically diagnose diabetic retinopathy
» accuracy 99% on their 4 train/test patients
> engineer trained two deep learning systems to predict probability y
given input fondus image X.

The engineer runs their system on your fondus image x* (RHS):

» Which model f;, fo would you want the engineer to use for your
diagnosis? None of these! (‘| don't know’)
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Example: Autonomous Driving

Autonomous systems

» Range from simple robotic vacuums to
self-driving cars

» Largely divided into systems which

» control behaviour w rule-based systems

» learn and adapt to environment
Both can use of ML tools
» ML for low-level feature extraction

(perception)

> reinforcement learning
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Example: Autonomous Driving

Real-world example: assisted driving
» first fatality of assisted driving (June 2016)
low-level system failed to distinguish white side of trailer from

bright sky

TESLA MODELS MODEL3 MODELX MODELY ROADSTER

Blog Videos

A Tragic Loss

The TeslaTeam + 30 June 2016

We leamed yesterday evening that NHTSA is opening a preliminary evaluation into the
performance of Autopilot during a recent fatal crash that occurred in a Model . This is
the first known fatality in just over 130 million miles where Autopilot was activated
Among all vehicles in the US, there is a fatality every 94 million miles. Worldwide, there is
a fatality approximately every 60 millon miles. It s important to emphasize that the
NHTSA action is simply a prefiminary evaluation to determine whether the system
‘worked according to expectations.

Following our standard practice, Tesla informed NHTSA about the incident immediately
after it occurred. What we know is that the vehicle was on a divided highway with
Autopilot engaged when a tractor trailer drove across the highway perpendicular to the
Model S Nemner Autopilot nor the driver noticed the white side of the tractor trailer|
The high ride height of the trailer
extremely rare circumstances of

combmed wnh s positoning across te road

# [WhdR D]
TESLA'S AUTOPILOT WAS
INVOLVED IN ANOTHER
DEADLY CAR CRASH

# [wh{RH3D] susscrise
TESLAS LATEST
AUTOPILOT DEATH
LOOKS JUST LIKE A
PRIOR CRASH
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Example: Autonomous Driving (cnt)

Real-world example: assisted driving
» first fatality of assisted driving (June 2016)
low-level system failed to distinguish white side of trailer from

bright sky

TESLA MODELS MODEL3 MODELX MODELY ROADSTER

Blog Videos

A Tragic Loss

The TeslaTeam + 30 June 2016

We leamed yesterday evening that NHTSA is opening a preliminary evaluation into the
performance of Autopilot during a recent fatal crash that occurred in a Model . This is
the first known fatality in just over 130 million miles where Autopilot was activated
Among all vehicles in the US, there is a fatality every 94 million miles. Worldwide, there is
a fatality approximately every 60 millon miles. It s important to emphasize that the
NHTSA action is simply a prefiminary evaluation to determine whether the system
‘worked according to expectations.

Following our standard practice, Tesla informed NHTSA about the incident immediately
after it occurred. What we know is that the vehicle was on a divided highway with
Autopilot engaged when a tractor trailer drove across the highway perpendicular to the

[WhdR D]
TEBIA’ AUTOPILOT WAS
INVOLVED INANOTHER
DEADLY CAR CRASH

If system had identified its own uncertainty:
> alert user to take control over steering
> propagate uncertainty to decision making

WIRERE susscRise

TE@LAS LATEST
AUTOPILOT DEATH
LOOKS JUST LIRE A
PRIOR CRASH
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Point estimates

In medical / robotics / science...

X can’t use ML models giving a
single point estimate (single
value) in prediction
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Point estimates

In medical / robotics / science...

X can’t use ML models giving a
single point estimate (single
value) in prediction

V must use ML models giving an
answer that says ‘10 but I'm
uncertain’; or ‘10 5’

» Give me a distribution over
possible outcomes!
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Example: Autonomous Driving (cnt)

ML pipeline in self-driving cars
> process raw sensory input w perception models
> eg image segmentation to find where other cars and pedestrians are

Inpyt ————» Perception ——————» Prediction ———» Decision

Probabilistic Perception Other Car \
Slow Down
Detect Intersection: EEESNSEEV] - and Give
Detect Red Light: N[O B our car Way

Detect Other Car: [SRJSSNEEEY

5 e Other Car Goes Straight: LIKELY o
Detect Othell' Car's Ipd\cator: UNSURE, p—_‘l 3;//u Other Car Turns Away: IRUNITAAR? Result:
Detect Car in Turning Lane: JUNSBIH=RGECH Turns Across Our Path: I TeRS IS | SAFE.
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Example: Autonomous Driving (cnt)

ML pipeline in self-driving cars
> process raw sensory input w perception models
> eg image segmentation to find where other cars and pedestrians are
» output fed into prediction model
» eg where other car will go
» output fed into ‘higher-level’ decision making procedures
> eg rule based system (“cyclist to your left — do not steer left”)
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Example: Autonomous Driving (cnt)

ML pipeline in self-driving cars
> process raw sensory input w perception models
> eg image segmentation to find where other cars and pedestrians are
» output fed into prediction model
» eg where other car will go
» output fed into ‘higher-level’ decision making procedures
> eg rule based system (“cyclist to your left — do not steer left”)
» industry's starting to use uncertainty for lots of components in the
pipeline
» eg pedestrian prediction models predict a distribution of
pedestrian locations in X timesteps
» or uncertainty in perception components

Inpyt ————» Perception ——————» Prediction ———» Decision

Probabilistic Perception Other Car
: Slow Down
Detect Intersection: L /0 and Give
( Detect Red Light: , % B ourcar way
Detect Other Car: p=95% oht:
Ny X o Other Car Goes Straight: LIKELY -
Detect Other Car's Indicator: [SINSURIERSEIEVA Other Car Turns Away: [UNRL(IRG Result:

Detect Car in Turning Lane: JUNSUHSR0ECE) Turns Across Our Path: I TeRS IS SAFE.
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Example: Autonomous Driving (cnt)

Efficient Computation of Collision Probabilities
for Safe Motion Planning*

Andrew Blake, Alejandro Bordallo, Majd Hawasly,
Svetlin Penkov, Subramanian Ramamoorlhy’, Alexandre Silva

Abstract— We address the problem of safe motion planning.  events (such as a collision of the robot with another agent),
‘s mobile robots and autonomous vehicles become increasingly  providing a least approximate assurance regarding the (non-
more prevalent in h the need of these events.
to ensure safety in the sense or guaranteed collision free
behaviour has taken renewed urgency. Achieving this when
perceptual modules provide only noisy estimates of objects
in the environment requires new approaches. Working within
a probabilistic framework for describing the environment,
we present methods for efficiently calculating a probabilistic
risk of collision for a candidate path. This may be used to
stratify a set of candidate trajectories by levels of a safety
threshold. Given such a stratification, based on user-defined
thresholds, motion synthesis techniques could optimise for
secondary criteria with the assurance that a primary safety
criterion is already being satisfied. A key contribution of this
paper is the use of a ‘convolution trick’ to factor the calculation
of integrals providing bounds on collision risk, enabling an O(1)
computation even in cluttered and complex environments.

L. INTRODUCTION

ROJ 15 Apr 2018

a
h
>

methods. For instance, the Rapidly-exploring Random Tree
(RRT) algorithm can utilise this probability within the search
process. Likewise, a variational formulation of optimal con-
trol [5] could include this within the cost terms.

[3]. Therefore, we can only treat such perception modules
as being able to provide us with a probability distribution
[4] over poses of the various objects in the scene. Achieving
safe motion planning in such a setting will require the motion
planning methods to turn these into probabilities of unsafe
B. Related Work
All authors are affiliated with FiveAl Ltd., Edinburgh, UK; Authors are N . . .
listed in alphabetical order. The issue of safety in control and motion planning has
TCorresponding author: s . ramamcorthy@five.ai been investigated from a number of different methodological
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Uncertainty-Aware Driver Trajectory Prediction at Urban Intersections

Xin Huang'?, Stephen G. McGill', Brian C. Williams?, Luke Fletcher', Guy Rosman'

Abstract—Predicting the motion of a driver’s vehicle is
crucial for advanced driving systems, enabling detection of
potential risks towards shared control between the driver and
automation systems. In this paper, we propose a variational
neural network approach that predicts future driver trajectory
distributions for the vehicle based on multiple sensors.

Our predictor generates both a conditional variational
tribution of future trajectories, as well as a confidence estimate
for different time horizons. Our approach allows us to handle
inherently uncertain situations, and reason about information
gain from each input, as well as combine our model with
additional predictors, creating a mixture of experts.

We show how to augment the variational predictor with a
physics-based predictor, and based on their confidence esti-
m,.m...,, improve overall system performance. The resulting

ombined model is aware of the uncertainty associated with
its predictions, which can help the vehicle autonomy to make
decisions with more confidence. The model is validated on
real-world urban driving data collected in multiple locations.
This validation demonstrates that our approach improves the
prediction error of a physics-based model by 25% while
successfully identifying the uncertain cases with 82% accuracy.

P e
fail to capture the uncertain nature of human actions. Prob-
abilistic predictions are very useful in many safety-critical
tasks such as collision checking and risk-aware motion
planning. They can express both the intrinsically uncertain

ISUL TLOUIL LHILILHLLY. TIUWLYLL, IUSU UL

‘This work was part of X. Huang’s internship at Toyota Research Institute
(TRI). However, this article solely refiects the opinions and conclusions of
its authors and not TRI or any other Toyota entity.

!Toyota Rescarch Institute, ‘ambridge, MA 02139, USA

teher, guy
Artificial  Intellis Lab, Mas-
Cambridge, MA 01239, USA

(s

2Computer ~ Science  and
sachusetts Institute  of T;.clmnlngv
{xhuang, williams}@csail.mit.
Viden demons dlable a1 hitnefvoutn hefcIRORKRAIN

Fig. 1: Illustration of a motivating example where a vehicle is
in front of an intersection. The sampled predicted trajectories
using our approach are plotted in blue, where the groundiruth
future trajectory is plotted in red. In parallel autonomy,
the autonomous system can leverage the predicted driver
trajectory to avert risk and improve the driving. This requires
the svstem fo he confident of its nredicted fraiectories.

urban driving prediction. Intersections, for instance, were
responsible for 40% of crashes happened in the United States
in 2008 [9]. We therefore focus on predicting trajectories
for vehicles driving in urban environments. This is more
challenging than highway trajectory prediction due to more
complicated environments with different road shapes and
dynamic objects, as well as the variety of available driving
actions for the driver. Additionally, in many cases it is crucial
to be aware of the confidence of the prediction. In cases
where those predictions cannot be accurately made, a later
planning or parallel autonomy layer can take this into ac-
comnt avaidine cs

astronhic antcomes due to misnredictions




Sources of uncertainty

» Above are some examples of uncertainty

» Many other sources of uncertainty
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15}¢ 1 [
10} 1 1
5 1 I
(SJVWVVVV\/VV\NV\NV\M/VVV“E e
[} ]
2o ' 0
-20 I I I 1 I I i

11 of 54



Sources of uncertainty

» Above are some examples of uncertainty

» Many other sources of uncertainty

» Test data is very dissimilar to training data
» model trained on diabetes fondus photos of subpopulation A
> never saw subpopulation B
> ‘“images are outside data distribution model was trained on”

i
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Sources of uncertainty

» Above are some examples of uncertainty

» Many other sources of uncertainty

» Test data is very dissimilar to training data
» model trained on diabetes fondus photos of subpopulation A
> never saw subpopulation B
> ‘“images are outside data distribution model was trained on”
» desired behaviour
> return a prediction (attempting to extrapolate)
» —+information that image lies outside data distribution
» (model retrained w subpop. B labels — low uncertainty on these)
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Sources of uncertainty (cnt)

» Uncertainty in model parameters that best explain data

» large number of possible models can explain a dataset
» uncertain which model parameters to choose to predict with

» affects how we predict with new test points

%

std=0 \
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Sources of uncertainty (cnt)

» Training labels are noisy

> measurement imprecision
> expert mistakes

» crowd sourced labels

even infinity data — ambiguity inherent in data itself

std=1
-+ training data

13 of 54



Deep learning models are deterministic

Deep learning does not capture uncertainty:

» regression models output a single scalar/vector

Percentage of Firsts
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N
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Deep learning models are deterministic

Deep learning does not capture uncertainty:

» regression models output a single scalar/vector

» classification models output a probability vector (erroneously
interpreted as model uncertainty)
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Deep learning does not capture uncertainty:

» regression models output a single scalar/vector

» classification models output a probability vector (erroneously
interpreted as model uncertainty)

But when combined with probability theory can capture uncertainty in
a principled way
— known as Bayesnan Deep Learnmg
W ‘ e
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Teaser

Define model and train on data x_train, y_train:

1 | from tensorflow.keras.layers import Input, Dense, Dropou
2

3 |inputs = Input (shape=(1,))

4 |x = Dense (512, activation="relu") (inputs)
5 |x = Dropout (0.5) (x, training=True)

6 |x = Dense (512, activation="relu") (x)

7 |x = Dropout (0.5) (x, training=True)

8 |outputs = Dense(l) (x)

9

10 |[model = tf.keras.Model (inputs, outputs)
11 |model.compile(loss="mean_squared_error",
12 optimizer="adamn")

13 |model.fit (x_train, y_train)
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Teaser

© 00 N O O b W N =

# do stochastic forward passes on x_test:

samples = [model.predict (x_test) for _ in range(100) ]
m = np.mean (samples, axis=0) # predictive mean
v = np.var (samples, axis=0) # predictive variance

# plot mean and uncertainty
plt.plot (x_test, m)
plt.fill between(x_test, m — 2xvx%x0.5, m + 2xvxx0.5,
alpha=0.1) # plot two std (95% confiden
Playgroud (working code): bdl101.ml/play

150 4§

125 4

10.0 4

751

5.0 1

254

0.0

—2.5

-50 4 L .
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Bayesian deep learning OXFORD

All resources (including these slides): bdl101.ml

e 4

SLIDES DEMO RECAP

Slide decks from the talks Demoes mentioned in the slides A quick recap of useful stuff.

SLIDE DECK 1

SLIDE DE: UNCERTAINTY VISUALISATICN

UNCERTAINTY PLAYGROUND GAUSSIANS RECAP

A4 &

NOTATION MORE STUFF

Notation used in the slides:. OATML
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Today and tomorrow we'll understand why this
code makes sense, and get a taste of

» the formal language of uncertainty
(Bayesian probability theory)

» tools to use this language in ML (Bayesian
prob. modelling)

» techniques to scale to real-world deep
learning systems (modern variational
inference)

> developing big deep learning systems
which convey uncertainty
» w real-world examples

Basic concepts marked green (if you want to use as tools); Advanced
topics marked (if you want to develop new stuff in BDL)



Bayesian Probability Theory

Bayesian Probability Theory:
the Language of Uncertainty

Deriving the laws of probability theory from rational degrees of belief

20 of 54



Betting game 1 (some philosophy for the soul)

import numpy as np
def toss():
if np.random.rand() < 0.5:
print (/' Heads’)
else:
print (' Tails’)

SO W N

> unit wager: a ‘promise note' where seller commits to pay note
owner £1 if outcome of toss='heads’; a tradeable note; e
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owner £1 if outcome of toss=‘heads’; a tradeable note; eg..

» would you pay p=£0.01 for a unit wager on ‘heads’?
» pay a penny to buy a note where | commit to paying £1 if ‘heads’

> p=£0.997

» pay 99 pence for a note where | commit to paying £1 if ‘heads’

21 of 54



Betting game 1 (some philosophy for the soul)

import numpy as np
def toss|():
if np.random.rand() < 0.5:
print (/' Heads’)
else:
print (' Tails’)

SOk W N

> unit wager: a ‘promise note' where seller commits to pay note
owner £1 if outcome of toss=‘heads’; a tradeable note; eg..

» would you pay p=£0.01 for a unit wager on ‘heads’?
» pay a penny to buy a note where | commit to paying £1 if ‘heads’

> p=£0.997

» pay 99 pence for a note where | commit to paying £1 if ‘heads’

» up to £0.057, £0.95 or above?, ...
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Betting game 1b (some philosophy for the soul)

import numpy as np
def toss():
if np.random.rand() < 0.5:
print (' Heads’)
else:
print (' Tails’)

(o) N O R S

» Unit wager: note seller commits to paying £1 if outcome="heads’

» would you sell a unit wager at £p for ‘heads’'?
» you get £p for the note, and have to pay £1 if heads

» up to £0.057, £0.95 or above?, ...
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Betting game 1c (some philosophy for the soul)

import numpy as np
def toss():
if np.random.rand() < 0.5:
print (' Heads’)
else:
print (' Tails’)

(o) N O R S

» Unit wager: note seller commits to paying £1 if outcome="heads’

» what if you have to set price £p, and commit to either sell unit
wager at £p for ‘heads’, or buy one?
> | decide whether to sell to you, or buy from you
> | sell: you pay £p to buy note where | commit to paying £1 if heads
» | buy: you get £p for note, and have to pay me £1 if heads
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Betting game 1c (some philosophy for the soul)

import numpy as np
def toss():
if np.random.rand() < 0.5:
print (' Heads’)
else:
print (' Tails’)

(o) N O R S

» Unit wager: note seller commits to paying £1 if outcome="heads’

» what if you have to set price £p, and commit to either sell unit
wager at £p for ‘heads’, or buy one?

» | decide whether to sell to you, or buy from you
> | sell: you pay £p to buy note where | commit to paying £1 if heads
» | buy: you get £p for note, and have to pay me £1 if heads

» up to £0.057, £0.95 or above?, ...
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Beliefs as willingness to wager

» A person with degree of belief p in event A is assumed to be
willing to pay < £p for a unit wager on A
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Beliefs as willingness to wager

» A person with degree of belief p in event A is assumed to be
willing to pay < £p for a unit wager on A

» and is willing to sell such a wager for any price > £p

» This p captures our degree of belief about the event A taking
place (aka uncertainty, confidence)
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Rational beliefs

» Two notes (unit wagers):

» Note 1: ‘outcome=heads’
» Note 2: ‘outcome=tails’

you decide p for note 1 and q for note 2; | decide whether to buy
from you or sell you each note at the price you determined
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» if p+ g < 1 then | will buy from you note 1 for £p and also note
2 for £q

» whatever outcome you give me £1; but because | gave you
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Rational beliefs

» Two notes (unit wagers):

» Note 1: ‘outcome=heads’
» Note 2: ‘outcome=tails’

you decide p for note 1 and q for note 2; | decide whether to buy
from you or sell you each note at the price you determined

» if p+ g < 1 then | will buy from you note 1 for £p and also note
2 for £q

» whatever outcome you give me £1; but because | gave you
p+qg<1,youlost £1 —p—q

» Dutch book: a set of unit wager notes where you decide the
odds (wager price) and | decide whether to buy or sell each
note ... and you are guaranteed to always lose money.

Set of beliefs is called rational if no Dutch book exists.
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Formalism (rational beliefs = prob theory)

Setup
» Def sample space X of simple events (possible outcomes)
> e.g. experiment flipping two coins X={HH, HT, TH, TT}
» Let A be an event (a subset of X). A holding true = at least one
of the outcomes in A happened
> e.g. “at least one heads” <+ A={HH, HT, TH}

» Write py for belief of event A (your wager on A happening,
assuming all wagers are unit wagers)
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» Let A be an event (a subset of X). A holding true = at least one
of the outcomes in A happened
> e.g. “at least one heads” <+ A={HH, HT, TH}

» Write pa for belief of event A (your wager on A happening,
assuming all wagers are unit wagers)

Can show that {pa}acx are rational beliefs iff {pa}acx satisfies laws
of probability theory

» Already showed that pag + pac = 1
» Try to devise other betting games at home (bdl101.ml/betting)
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Formalism (rational beliefs = prob theory)

Setup
» Def sample space X of simple events (possible outcomes)
> e.g. experiment flipping two coins X={HH, HT, TH, TT}
» Let A be an event (a subset of X). A holding true = at least one
of the outcomes in A happened
> e.g. “at least one heads” <+ A={HH, HT, TH}
» Write pa for belief of event A (your wager on A happening,
assuming all wagers are unit wagers)

Can show that {pa}acx are rational beliefs iff {pa}acx satisfies laws
of probability theory

> Already showed that pg + pac = 1

» Try to devise other betting games at home (bdl101.ml/betting)

Can derive the laws of prob theory from rational beliefs!

» — if you want to be rational, must follow laws of probability
(otherwise someone can take advatnge of your model)
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Probability as belief vs frequency

Above known as Bayesian prob theory

» forms an interpretation of the laws of
probability, and formalises our notion of
uncertainty in events

» vs ‘Frequency as probability’
» only applicable to repeatable events (eg,
try to answer ‘will Trump win 2020")
» also other issues; eg p-hacking
» Psychology journal banning p values
(although there are problems w Bayesian
arguments as well)
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Bayesian Probabilistic Modelling

Bayesian Probabilistic
Modelling (an Introduction)

Simple idea: “If you're doing something which doesn’t follow from the
laws of probability, then you're doing it wrong”
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Bayesian Probabilistic Modelling

» can't do ML without assumptions

» must make some assumptions about how data was generated

» there always exists some underlying process that generated obs

» in Bayesian probabilistic modelling we make our assumptions about
underlying process explicit

» want to infer underlying process (find dist that generated data)
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» can't do ML without assumptions

» must make some assumptions about how data was generated

> there always exists some underlying process that generated obs

» in Bayesian probabilistic modelling we make our assumptions about
underlying process explicit

» want to infer underlying process (find dist that generated data)

> eg — astrophysics: gravitational lensing
» there exists a physics process magnifying far
away galaxies

» Nature chose lensing coeff — gravitational
lensing mechanism — transform galaxy

» We observe transformed galaxies, want to
infer lensing ceoff




Bayesian Probabilistic Modelling

» can’t do ML without assumptions

» must make some assumptions about how data was generated

» there always exists some underlying process that generated obs

» in Bayesian probabilistic modelling we make our assumptions about
underlying process explicit

» want to infer underlying process (find dist that generated data)

» eg — cats vs dogs classification

> there exist some underlying rules we don't
know

» eg "“if has pointy ears then cat”

» We observe pairs (image, “cat”/"“no cat"),
and want to infer underlying mapping from
images to labels
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Bayesian Probabilistic Modelling

» can’t do ML without assumptions

» must make some assumptions about how data was generated

» there always exists some underlying process that generated obs

» in Bayesian probabilistic modelling we make our assumptions about
underlying process explicit

» want to infer underlying process (find dist that generated data)

» eg — Gaussian density estimation
> | tell you the process | used to generate data and give 5 data points

X,,N./\/'(Xn;,u,az), oc=1

» you observe the points {x1, ..., X5}, and want to infer my 1
» Reminder: Gaussian density with mean p and variance o2

=)

e 202

1
PX|i,0) = o=
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Bayesian Probabilistic Modelling

» can't do ML without assumptions
» must make some assumptions about how data was generated
> there always exists some underlying process that generated obs
> in Bayesian probabilistic modelling we make our assumptions about
underlying process explicit
» want to infer underlying process (find dist that generated data)

» eg — Gaussian density estimation

10

X Which p generated my data?
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Bayesian Probabilistic Modelling

» can't do ML without assumptions
» must make some assumptions about how data was generated
> there always exists some underlying process that generated obs
> in Bayesian probabilistic modelling we make our assumptions about
underlying process explicit
» want to infer underlying process (find dist that generated data)

» eg — Gaussian density estimation

10

X Which p generated my data?
V What's the probability that ;¢ = 10 generated my data? (want to

infer distribution over p!)
29 of 54



Bayesian Probabilistic Modelling

» can't do ML without assumptions

>

>

| 4

Peg—

must make some assumptions about how data was generated
there always exists some underlying process that generated obs

in Bayesian probabilistic modelling we make our assumptions about
underlying process explicit

want to infer underlying process (find dist that generated data)

Gaussian density estimation

» These are the hypotheses we'll play with

14

08

10 L B =

06
a

04 06

02

00 y u T T T 00 T T T T T
—4 -2 0 2 4 —4 -2 o 2 4
® mu

» | chose a Gaussian (one of those) from which | generated data
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Generative story / model

In Bayesian probabilistic modelling

» want to represent our beliefs / assumptions about how data was
generated explicitly
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In Bayesian probabilistic modelling

» want to represent our beliefs / assumptions about how data was
generated explicitly

> eg via generative story ['My assumptions are...']:
» Someone (me / Nature / etc) selected parameters px, o
» Generated N data points X, ~ N (u*, %)
» Gave us D = {x1,..., Xy}
» — how would you formalise this process?
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In Bayesian probabilistic modelling

» want to represent our beliefs / assumptions about how data was
generated explicitly

> eg via generative story ['My assumptions are...']:
» Someone (me / Nature / etc) selected parameters px, o
» Generated N data points X, ~ N (u*, %)
» Gave us D = {x1,..., Xy}
» — how would you formalise this process?

» Bayesian probabilistic model:
» prior [what | believe params might look like]

w~ N(0,10), o=1
» likelihood [how | believe data was generated given params]

X | 1,0 ~ N1, 0%)
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Generative story / model

In Bayesian probabilistic modelling

» want to represent our beliefs / assumptions about how data was
generated explicitly

> eg via generative story ['My assumptions are...']:
» Someone (me / Nature / etc) selected parameters px, o
» Generated N data points X, ~ N (u*, %)
» Gave us D = {x1,..., Xy}
» — how would you formalise this process?

» Bayesian probabilistic model:
» prior [what | believe params might look like]
uw~N(0,10), o=1
» likelihood [how | believe data was generated given params]
X |ty ~ N (i, 02)
> will update prior belief on i conditioned on data you give me
(infer distribution over p): p | {X1,..., Xn}
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Can you find my Gaussian?

How can you infer 7 (find distribution)

Everything follows the laws of prob..

» Sum rule
pX =2 = Y pX =x. Y =y) = [ p(X=x.V)aY
y

» Product rule

p(X=x,Y =y)=pX=x[Y=y)p(Y=y)
» Bayes rule

p(Y = y|X = x, H)p(X = x|H)
p(Y =y|H)

Note: H is often omitted in conditional for brevity

p(X=x|Y =y, H)=
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Can you find my Gaussian?

Remember: products, ratios, marginals, and conditionals of Gaussians
are Gaussian!

Properties of Gaussian distributions:

If 1, T3 follow a joint Gaussian distribution:
[21‘] NN( [ﬂh] {En Em] )
I3 Ha ’ E'fz pr13 '

z1 ~ N, Zn),s

then each marginal is Gaussian:

each conditional is Gaussian:
T[T ~ N (g + EIZEQQI (22 — p2), T — Ti2 B B,

any linear combination is Gaussian:

Az, + Bxy + C ~ N(Apy + By, + C, A% AT + BY,, BY)

and the product of the marginal densities is an (unnormalised) Gaussian:
N(z; 1, T )N (25 2, T) = C '-’V(‘B; (Bi +Zo)) T+ B ), (B + Ey) l)
with C = N (15 12, Byy + T

Mare here

Visualising Gaussian likelihoods:

Summary (and playgroud) here: bdl101.ml/gauss
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Inference

Bayes rule:

p(X = x|Y =y, 1) = PY =Y )P(X = x|H)

p(Y =y[H)
and in probabilistic modelling:
Likelihood Prior
Posterior e e e
—— D\p, o, H o, H

p(Dlo, H)

—_——

Model evidence
with model evidence p(D|o, H) = [ p(D|. 0, H)p(plo, H)du (sum
rule).
Likelihood

» we explicitly assumed data comes iid from a Gaussian
» compute p(D|s, o) = multiply all p(x,1t, o) (product rule)
» prob of observing data points for given params
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The Likelihood in more detail

Likelihood
» we explicitly assumed data comes iid from a Gaussian
» compute p(D|s, o) = multiply all p(x,1t, o) (product rule)
» prob of observing data points for given params

10

— m=-2,5=1

03

06 q

044

02 1

0 T T
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The Likelihood in more detail

Likelihood
» we explicitly assumed data comes iid from a Gaussian
» compute p(D|s, o) = multiply all p(x,1t, o) (product rule)
» prob of observing data points for given params

10

— m=-1,5=1
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0
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Likelihood
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The Likelihood in more detail

Likelihood
» we explicitly assumed data comes iid from a Gaussian
» compute p(D|s, o) = multiply all p(x,1t, o) (product rule)
» prob of observing data points for given params

10

— m=1,s5=1
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The Likelihood in more detail

Likelihood
» we explicitly assumed data comes iid from a Gaussian
» compute p(D|s, o) = multiply all p(x,1t, o) (product rule)
» prob of observing data points for given params

10

— m=2,5=1

0E A

06

04 A

02 A

oo T T
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:

» What does the likelihood look like?
10

—_— m=-2, 5=1
mmmm pdf=0.0539909665132
0.5 1

0.6 1

0.4 1

0.2

00 T T
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:
» What does the likelihood look like?

10
= m=-1, 5=1
s pdf=0.241970724519
08 A
06
[=8
04
02 A

D. U T T T T
-4 -2 0 2 4
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:

» What does the likelihood look like?
10

— m=0, 5=1

0B A

06

04 1
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:
» What does the likelihood look like?

10
— m=1, 5=1
m pdf=0.241970724519
08
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[=8
04
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:

» What does the likelihood look like?
10

— m=2,5=1
mmm pdf=0.0539909665132
081
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04 1
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:
» What does the likelihood look like?

AT
t 1 ‘ 1 p
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:
» What does the likelihood look like?

and with smaller o..

» Trying to max lik will get “absolutely certain that c =0 & p = 0"
» Does this make sense? (I told you x, ~ A1)
» MLE failure
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:
» What does the likelihood look like?

And with all data:
10

— m=0, 5=1
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:
» What does the likelihood look like?

And with all data:
10

— m=1, s=1
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:
» What does the likelihood look like?

And with all data:
10

— m=2,5=1
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:
» What does the likelihood look like?

And with all data:

Likelihood function shows how well every value of i, o predicted what

would happen.
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The Posterior in more detail

b ) Likelihood Prior

osterior e . !
—— Dlp, o, H o, H
D) = PP H)plule, H)

p(D|o, H)
———
Model evidence

with model evidence p(D|o, H) = [ p(D|1. 0, H)p(plo, H)du (sum
rule). In contrast to the likelihood, posterior would say

‘with the data you gave me, this is what | currently think p could be,
and | might become more certain if you give me more data’'

» normaliser = marginal likelihood = evidence = sum of likelihood *
prior
> (but often difficult to calculate... more in the next lecture)
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The Posterior in more detail

» Eg, inference w prior = ‘we believe data is equally likely to have
come from one of the 5 Gaussmns wo=1

e 000

00
- 2 [} -4

: I
Pl = pilo, H) = ¢ and P(u # i for all I\U H) =

then marginal likelihood is

p(Dlo, 1) = p(Dlp = 11, 0. H)p(p = pilo, H)
i

—

=> p(Dlu= pj,o, g
i

and posterior is

1/5p(D|p = . o, H
p(p = pilo, D, H) = /50(Dp = pj, 0, H)

211/5P(D|M i, 0, H)
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The Posterior in more detail

where p(D|p = pj.o = 1,H) is given by

» marginal likelihood of sigma=1 = p(D|oc = 1,7H) = ‘prob that
data came from single Gaussian with param o = 1’

» similarly, marginal likelihood of hypothesis = p(D|H) = ‘prob that
data came from single Gaussian (with some p, o)’
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Bayesian Deep Learning

Bayesian Probabilistic
Modelling of Functions
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Why uncertainty over functions

» Example going beyond beliefs over statements (‘heads happened')

/ scalars () s
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» Want to know distribution over outputs for each input x = dist
over functions
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Why uncertainty over functions

» Example going beyond beliefs over statements (‘heads happened')

/ scalars () s

» Would want to know uncertainty (ie belief) of system in prediction

» Want to know distribution over outputs for each input x = dist
over functions

» First, some preliminaries.. (history, and notation)
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Linear regression

Linear regression [Gauss, 1809]

» Given a set of N input-output pairs {(X1,¥1), ..., (Xn,YN)}
> eg average number of accidents for different driving speeds
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Linear regression

Linear regression [Gauss, 1809]
» Given a set of N input-output pairs {(X1,¥1), ..., (Xn, YN)}

> eg average number of accidents for different driving speeds

» assumes exists linear func mapping vectors X; € R? to yi € RD
(with y; potentially corrupted with observation noise)

v

model is linear trans. of inputs: f(x) = Wx+ b, w W some D by
Q matrix over reals, b real vector with D elements

v

Different params W, b define different linear trans
» aim: find params that (eg) minimise 1/N 3", [ly; — (Wx; + b)||?

v

but relation between X and Y need not be linear
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Linear basis function regression

Linear basis function regression [Gergonne, 1815; Smith, 1918]

» input X fed through K fixed scalar-valued non-linear trans. ¢y (X)
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Linear basis function regression

Linear basis function regression [Gergonne, 1815; Smith, 1918]

» input X fed through K fixed scalar-valued non-linear trans. ¢x(X)

v

collect into a feature vector ¢(X) = [¢1(X), ..., Dk (X)]

v

do linear regression with ¢(X) vector instead of X itself

v

with scalar input x, trans. can be

. 2
» wavelets parametrised by k: cos(kmx)e * /2
» polynomials of degrees k: x¥
» sinusoidals with various frequencies: sin(kx)

v

When ¢x(X) := X, and K = Q, basis function regr. = linear regr.
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Linear basis function regression

Linear basis function regression [Gergonne, 1815; Smith, 1918]

» input X fed through K fixed scalar-valued non-linear trans. ¢x(X)
» collect into a feature vector ¢(X) = [¢1(X), ..., ok (X)]

» do linear regression with ¢(X) vector instead of X itself

» with scalar input x, trans. can be

. 2
» wavelets parametrised by k: cos(kmx)e * /2
» polynomials of degrees k: x¥
» sinusoidals with various frequencies: sin(kx)

» When ¢x(X) := X, and K = Q, basis function regr. = linear regr.

» basis functions often assumed fixed and orthogonal to each other
(optimal combination is sought)

» but need not be fixed and mutually orth. — param. basis functions
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Parametrised basis functions

Parametrised basis functions [Bishop, 2006; many others]

» eg basis functions qﬁ,'ﬂ”"bk where scalar-valued function ¢ is applied

to inner-product W,Z-X + by
> ¢k often def'd to be identical for all k (only params change)
> eg ¢k(-) = tanh(:) , giving ¢p*"% (x) = tanh(w]x + by)
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Parametrised basis functions

Parametrised basis functions [Bishop, 2006; many others]

» eg basis functions qﬁ,'ﬂ”"bk where scalar-valued function ¢ is applied

to inner-product WkTX + by
> ¢k often def'd to be identical for all k (only params change)
> eg ¢k(-) = tanh(:) , giving ¢p*"% (x) = tanh(w]x + by)

» feature vector = basis functions’ outputs = input to linear trans.

> in vector form:

» W, a matrix of dimensions Q by K
by a vector with K elements
dMb1(x) = p(Wyx + by)

W5 a matrix of dimensions K by D
b> a vector with D elements

model output:
fW1,b1,W2,b2(x) — ¢W1,b1 (X) Ws + b,

vV vy VY VYy
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Parametrised basis functions

Parametrised basis functions [Bishop, 2006; many others]

» eg basis functions ¢,'2”"bk where scalar-valued function ¢ is applied

to inner-product WkTX + by
> ¢k often def'd to be identical for all k (only params change)
> eg ¢k(-) = tanh(:) , giving ¢p*"% (x) = tanh(w]x + by)

» feature vector = basis functions’ outputs = input to linear trans.

> in vector form:

» W, a matrix of dimensions Q by K

by a vector with K elements

dMb1(x) = p(Wyx + by)

W5 a matrix of dimensions K by D

b> a vector with D elements

model output:

fW1,b1,W2,b2(x) _ ¢W1,b1 (X) Ws + by

» want to find Wi, by, Wh, bo that minimise
1/NYZ; [lyi — b ebe (x;) 2

vV vy VY VYy

43 of 54



Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
» called “NNs" for historical reasons
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Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
> called “NNs" for historical reasons

> layers
» ='feature vectors' in hierarchy
> linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
> ‘input layer’, ‘output layer’, ‘hidden layers’
> trans. matrix = weight matrix = W,
intercept = bias = b |
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Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
> called “NNs" for historical reasons

> layers
» ='feature vectors' in hierarchy
> linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
> ‘input layer’, ‘output layer’, ‘hidden layers’
> trans. matrix = weight matrix = W,

intercept = bias = b 0 | E— sux
: m &2zudk L"‘
> units ) L
» elements in a layer DI %(Q//D sk
O 28 SM
37 3
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Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
> called “NNs" for historical reasons

» layers
> units — our
» feature vector (overloaded term) m ezud LY

s
> often refers to the penultimate layer (at top [ * 5 Q S sk
of model just before softmax / last linear \l N\ 7/

trans.) 5‘) a — M

» denote feature vector

o(X) = [p1(X), .., dx(X)] with K units (a K
by 1 vector)
» denote feature matrix

®(X) = [¢(x1)", ..., 6(xn) ], N by K

matrix
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> regression
» compose multiple basis function layers BaYawy,
into a regression model
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Hierarchy of parametrised basis functions

> regression

0O E— D
» compose multiple basis function layers oo L

into a regression model

» classification
» further compose a softmax function at the end; also called
“logistic” for 2 classes
» “squashes” its input — probability vector; prob vector also called
model output / softmax vector / softmax layer
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Hierarchy of parametrised basis functions

> regression

0 E— D
» compose multiple basis function layers oo L
into a regression model s L
On > sk W

o
» result of last trans. also called “model \([J\( g <
output”; often no non-linearity here 1 5‘) i

» classification
» further compose a softmax function at the end; also called
“logistic” for 2 classes
» “squashes” its input — probability vector; prob vector also called
model output / softmax vector / softmax layer

» “building blocks”

> layers are simple
» modularity in layer composition — versatility of deep models
» many engineers work in field — lots of tools that scale well
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Assumptions for the moment

» we'll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer
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» we'll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

» (for the moment) look only at last layer W, everything else fixed —
ie weights other than W do not change
> later we'll worry about other layers
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» assume that y is scalar
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» write Wy for the k'th elem
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» we'll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

» (for the moment) look only at last layer W, everything else fixed —
ie weights other than W do not change
> later we'll worry about other layers

> assume that y is scalar
» so Wis Kby 1
» write Wy for the k'th elem

» assume that output layer's b is zero (or, obs y's are normalised)
» both will simplify derivations here (but pose no difficulty otherwise)
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» we'll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

» (for the moment) look only at last layer W, everything else fixed —
ie weights other than W do not change
> later we'll worry about other layers

> assume that y is scalar
» so Wis Kby 1
» write Wy for the k'th elem

» assume that output layer's b is zero (or, obs y's are normalised)
» both will simplify derivations here (but pose no difficulty otherwise)

> then Y (X) = 3" wiok(X) = WT(x) with ¢(x) a ‘frozen’ feature
vec for some NN
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Assumptions for the moment

>

we'll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

(for the moment) look only at last layer W, everything else fixed —
ie weights other than W do not change
> later we'll worry about other layers

assume that y is scalar
» so Wis Kby 1
» write Wy for the k'th elem

assume that output layer's b is zero (or, obs y's are normalised)
» both will simplify derivations here (but pose no difficulty otherwise)

then Y (X) = 3" wiok(X) = WTo(x) with ¢(x) a ‘frozen’ feature
vec for some NN

some notation you'll need to remember...
X7X7Naxn7 Q7 D7K7D = {(X1a}’1)a--7(xN,}’N)} = X’Y
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Generative story

Want to put dist over functions..

» difficult to put belief over funcs., but
easy to put over NN params

» assumptions for the moment: our
data was generated from the fixed ¢
(NN) using some W (which we want
to infer)
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Generative story

Want to put dist over functions..

» difficult to put belief over funcs., but
easy to put over NN params

» assumptions for the moment: our
data was generated from the fixed ¢
(NN) using some W (which we want
to infer)

Generative story [what we assume about the data]
» Nature chose W which def’s a func: fY(x) := WT¢(x)
» generated func. values with inputs xq,.., Xy: fr := fV(xp)

» corrupted func. values with noise [also called " obs noise”|
Yn = o4 €n, €n~ N(0,0?) [additive Gaussian noise w param o]

» we're given observations {(xq,Y1),...,(Xn, ¥n)} and o0 = 1
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> qs
» how can we find function value * for a new x*?
» how can we find our confidence in this prediction?
» — ‘everything follows from the laws of probability theory'

48 of 54



> qs
» how can we find function value * for a new x*?
» how can we find our confidence in this prediction?
» — ‘everything follows from the laws of probability theory'

» we build a model:
» put prior dist over params W

p(W) = N(W; 0, §l)
» likelihood [conditioned on W generate obs by adding gaussian noise]

p(Y|W7 X) - N(y, WT¢(X)702)
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| 4 qS
» how can we find function value * for a new x*?
» how can we find our confidence in this prediction?
» — ‘everything follows from the laws of probability theory’

» we build a model:
» put prior dist over params W

p(W) = N(W; 0k, $%Ix)
» likelihood [conditioned on W generate obs by adding gaussian noise]
P(YIW, x) = N(y; WT(x), 0%)
» prior belief “wy is more likely to be in interval [—1,1] than in

[100,200]" means that the func. values are likely to be more
smooth than erratic (we'll see later why)
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> gs
» how can we find function value * for a new x*?
» how can we find our confidence in this prediction?
» — ‘everything follows from the laws of probability theory'

» we build a model:
» put prior dist over params W

p(W) = N(W; 0, §l)
» likelihood [conditioned on W generate obs by adding gaussian noise]
PYIW, x) = N(y; WT(x), %)

» prior belief “w is more likely to be in interval [-1,1] than in
[100,200]" means that the func. values are likely to be more
smooth than erratic (we'll see later why)

» we want to infer W (find dist over W given D)

48 of 54



Analytic inference w functions |
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= plyln ) plwks) /gty
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Analytic inference w functions |

plolx,y) .
= plybeowlplwle) Jply ]

Ml) Yy
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Analytic inference w functions |
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Analytic inference w functions |
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Analytic inference w functions |

=w! 5\—6“@ g r)p x4 ﬂi”

2WTETIY gy )

Ko [P = 9 2)

P T (a2 W e e T

> posterior variance

T = (072 (¢(xn)o(xn) ") + 57 2hk) !

and in vector form: (o72®(X)Td(X) 4+ s72/k) !

» posterior mean

W =502 (Ynd(xn))

and in vector form: ¥'o2d(X)TY
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Analytic predictions with functions

How do we predict function values y* for new x*?7

> use prob theory to perform preds!

p(y*|x*, X, Y)
= /p(y*, Wix*, X, Y)dW  sum rule
= /p(y*|x*, W, X,Y)p(W|X,Y)dW product rule
= /p(y*|x*, W)p(W|X,Y)dW model assumptions
» how to eval? [a new technique!]
> likelihood p(y*|x*, W) is Gaussian

» posterior p(W|X, Y) is Gaussian (from above)
» so predictive p(y*|x*, X, Y) is Gaussian..
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Analytic predictions with functions
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Analytic predictions with functions
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Analytic predictions with functions
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Analytic predictions with functions
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» Homework: Predictive variance
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What you should be able to do now

» perform density estimation with scalars

» know when MLE fails (and why)

» use Bayes law to make more informed decisions in your life
> win against your friends in a series of bets

» argue with frequentists about how to interpret the laws of
probability

» argue with philosophers about the nature of subjective beliefs
» use Bayesian probability in ML correctly

» perform predictions in Bayesian probabilistic modelling correctly
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UNIVERSITY OF

OXFORD
In the next lecture we'll

» decompose uncertainty into epistemic and aleatoric components

> use uncertainty in regression correctly

v

develop tools to scale the ideas above to large deep models

v

develop big deep learning systems which convey uncertainty
» w real-world examples




Bayesian deep learning OXFORD

All resources (including these slides): bdl101.ml

e 4

SLIDES DEMO RECAP

Slide decks from the talks Demoes mentioned in the slides A quick recap of useful stuff.

SLIDE DECK 1

SLIDE DE: UNCERTAINTY VISUALISATICN

UNCERTAINTY PLAYGROUND GAUSSIANS RECAP

A4 &

NOTATION MORE STUFF

Notation used in the slides:. OATML
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