
Chapter 1

Introduction:

The Importance of Knowing What

We Don’t Know

In the Bayesian machine learning community we work with probabilistic models and

uncertainty. Models such as Gaussian processes, which define probability distributions

over functions, are used to learn the more likely and less likely ways to generalise from

observed data. This probabilistic view of machine learning offers confidence bounds for

data analysis and decision making, information that a biologist for example would rely

on to analyse her data, or an autonomous car would use to decide whether to brake

or not. In analysing data or making decisions, it is often necessary to be able to tell

whether a model is certain about its output, being able to ask “maybe I need to use more

diverse data? or change the model? or perhaps be careful when making a decision?”.

Such questions are of fundamental concern in Bayesian machine learning, and have been

studied extensively in the field [Ghahramani, 2015]. When using deep learning models

on the other hand [Goodfellow et al., 2016], we generally only have point estimates of

parameters and predictions at hand. The use of such models forces us to sacrifice our

tools for answering the questions above, potentially leading to situations where we can’t

tell whether a model is making sensible predictions or just guessing at random.

Most deep learning models are often viewed as deterministic functions, and as a result

viewed as operating in a very different setting to the probabilistic models which possess

uncertainty information. Perhaps for this reason it is quite surprising to see how close

modern deep learning is to probabilistic modelling. In fact, we shall see that we can get

uncertainty information from existing deep learning models for free—without changing

2 Introduction: The Importance of Knowing What We Don’t Know

a thing. The main goal of this thesis is to develop such practical tools to reason about

uncertainty in deep learning.

1.1 Deep learning

To introduce deep learning, I shall start from the simplest of the statistical tools: linear

regression [Gauss, 1809; Legendre, 1805; Seal, 1967]. In linear regression we are given

a set of N input-output pairs ¶(x1, y1), ..., (xN , yN)♢, for example CO2-temperature

observations, or the average number of accidents for different driving speeds. We assume

that there exists a linear function mapping each xi ∈ R
Q to yi ∈ R

D (with yi potentially

corrupted with observation noise). Our model in this case is a linear transformation of the

inputs: f(x) = xW + b, with W some Q by D matrix over the reals and b a real vector

with D elements. Different parameters W, b define different linear transformations, and

our aim is to find parameters that, for example, would minimise the average squared

error over our observed data: 1

N

∑
i ♣♣yi − (xiW + b)♣♣2.

In more general cases where the relation between x and y need not be linear, we may

wish to define a non-linear function f(x) mapping the inputs to the outputs. For this we

can resort to linear basis function regression [Bishop, 2006; Gergonne, 1815; Smith, 1918],

where the input x is fed through K fixed scalar-valued non-linear transformations ϕk(x)

to compose a feature vector Φ(x) = [ϕ1(x), ..., ϕK(x)]. We then perform linear regression

with this vector instead of x itself. The transformations ϕk are our basis functions, and

with scalar input x, these can be wavelets parametrised by k, polynomials of different

degrees xk, or sinusoidals with various frequencies. When ϕk(x) := xk and K = Q, basis

function regression reduces to linear regression. The basis functions are often assumed to

be fixed and orthogonal to each other, and an optimal combination of these functions is

sought.

Relaxing the constraint for the basis functions to be fixed and mutually orthogonal, we

can use parametrised basis functions instead [Bishop, 2006]. For example, we may define

the basis functions to be ϕwk,bk

k where the scalar-valued function ϕk is applied to the

inner-product ⟨wk, x⟩ + bk. In this case ϕk are often defined to be identical for all k, for

example ϕk(·) = sin(·) giving ϕwk,bk

k (x) = sin(⟨wk, x⟩ + bk). The feature vector composed

of the basis functions’ output is again fed as the input to a linear transformation. The

model output can then be written more compactly as f(x) = ΦW1,b1(x)W2 + b2 with

ΦW1,b1(x) = ϕ(W1x + b1), W1 a matrix of dimensions Q by K, b1 a vector with K

elements, W2 a matrix of dimensions K by D, and b2 a vector with D elements. To

1.1 Deep learning 3

perform regression now we can find W1, b1 as well as W2, b2 that minimise the average

squared error over our observed data, ♣♣y − f(x)♣♣2.

The most basic model in deep learning can be described as a hierarchy of these

parametrised basis functions (such a hierarchy is referred to as a neural network for

historical reasons, with each feature vector in the hierarchy referred to as a layer). In the

simplest setting of regression we would simply compose multiple basis function regression

models, and for classification we would further compose a logistic function at the end

(which “squashes” the linear model’s output to obtain a probability vector). Each layer

in the hierarchy can be seen as a “building block”, and the modularity in the composition

of such blocks embodies the versatility of deep learning models. The simplicity of each

block, together with the many possibilities of model combinations, might be what led

many engineers to work in the field. This in turn has led to the development of tools

that work well and scale well.

We will continue with a review of simple neural network models, relating the notation

in the field of deep learning to the mathematical formalism of the above linear basis

function regression models. We then extend these to specialised models designed to

process image data and sequence data. In the process we will introduce some of the

terminology and mathematical notation used throughout the work. We will describe

the models formally but succinctly, which will allow us to continue our discussion in the

introduction using a more precise language.

Feed-forward neural networks (NNs). We will first review a neural network model

[Rumelhart et al., 1985] for a single hidden layer. This is done for ease of notation, and

the generalisation to multiple layers is straightforward. We denote by x the model input

(referred to as input layer, a row vector with Q elements), and transform it with an

affine transformation to a row vector with K elements. We denote by W1 the linear

map (referred to as a weight matrix) and by b the translation (referred to as a bias)

used to transform the input x to obtain xW1 + b. An element-wise non-linearity σ(·)

(such as the rectified linear1 (ReLU) or TanH) is then applied to the transformation

output, resulting in a hidden layer with each element referred to as a network unit. This

is followed by a second linear transformation with weight matrix W2 mapping the hidden

layer to the model output (referred to as output layer, a row vector with D elements).

These two layers are also referred to as inner-product layers. We thus have W1 is a

Q × K matrix, W2 is a K × D matrix, and b is a K dimensional vector. A standard

1relu(x) = max(x, 0).

4 Introduction: The Importance of Knowing What We Don’t Know

network would output

ŷ = σ(xW1 + b)W2

given some input2 x.

To use the network for regression we might use the Euclidean loss,

EW1,W2,b(X, Y) =
1

2N

N∑

i=1

♣♣yi − ŷi♣♣
2 (1.1)

where ¶y1, ..., yN♢ are N observed outputs, and ¶ŷ1, ..., ŷN♢ are the outputs of the model

with corresponding observed inputs ¶x1, ..., xN♢. Minimising this loss w.r.t. W1, W2, b

would hopefully result in a model that can generalise well to unseen test data Xtest, Ytest.

To use the model for classification, predicting the probability of x being classified with

a label in the set ¶1, ..., D♢, we pass the output of the model ŷ through an element-wise

softmax function to obtain normalised scores: p̂d = exp(ŷd)/ (
∑

d′ exp(ŷd′)). Taking the

log of p̂d (with d being the observed label) results in a softmax loss,

EW1,W2,b(X, Y) = −
1

N

N∑

i=1

log(p̂i,di
) (1.2)

where di ∈ ¶1, 2, ..., D♢ is the observed class for input i.

A big difficulty with the models above is their tendency to overfit—decrease their

loss on the training set X, Y while increasing their loss on the test set Xtest, Ytest. For

this reason a regularisation term is often added during optimisation. We often use L2

regularisation for each parameter weighted by some weight decays λi, resulting in a

minimisation objective (often referred to as a cost),

L(W1, W2, b) := EW1,W2,b(X, Y) + λ1♣♣W1♣♣
2 + λ2♣♣W2♣♣

2 + λ3♣♣b♣♣2. (1.3)

The above single hidden layer NN with the Euclidean loss is identical to a basis function

regression model. Extending this simple NN model to multiple layers results in a more

expressive model.

Remark (Model expressiveness). An intuitive definition for model expressiveness

might be the complexity of functions a model can capture (defining what complex

functions are is not trivial by itself, although when dealing with polynomials one

might define polynomials of high degree to be more complex than polynomials of

2Note that the output bias was omitted here; this is equivalent to centring the observed outputs.

1.1 Deep learning 5

low degree). In this sense hierarchical basis function models are more expressive

than their “flat” counter-parts. It is interesting to note that even though “flat”

basis function regression can model any function up to any given precision with

a large enough number of basis functions [Cybenko, 1989; Hornik, 1991], with a

hierarchy we can use much smaller models. Consider the example of basis function

regression with polynomial basis functions ϕk ∈ ¶1, x, x2, ..., xK−1♢: the set of

functions expressible with these K basis functions is {all polynomials up to degree

K − 1}. Composing the basis function regression model L times results in a

model that can capture (a subset of) functions from the set {all polynomials up to

degree (K − 1)L}. A “flat” model capturing polynomials up to degree (K − 1)L

would require KL basis functions, whereas a hierarchical model with similar (but

not identical) expressiveness would only require K × L basis functions. Model

expressiveness is further discussed in [Bengio and LeCun, 2007] for example, where

binary circuits are used as an illustrative example.

The simple model structure presented above can be extended to specialised models,

aimed at treating image inputs or sequence inputs. We will next review these models

quickly.

Convolutional neural networks (CNNs). CNNs [LeCun et al., 1989; Rumelhart

et al., 1985] are popular deep learning tools for image processing, which can solve tasks

that until recently were considered to lie beyond our reach [Krizhevsky et al., 2012;

Szegedy et al., 2014]. The model is made of a recursive application of convolution and

pooling layers, followed by inner product layers at the end of the network (simple NNs

as described above). A convolution layer is a linear transformation that preserves spatial

information in the input image (depicted in figure 1.1). Pooling layers simply take the

output of a convolution layer and reduce its dimensionality (by taking the maximum of

each (2, 2) block of pixels for example). The convolution layer will be explained in more

detail in section §3.4.1.

Similarly to CNNs, recurrent neural networks are specialised models designed to

handle sequence data.

Recurrent neural networks (RNNs). RNNs [Rumelhart et al., 1985; Werbos, 1988]

are sequence-based models of key importance for natural language understanding, lan-

guage generation, video processing, and many other tasks [Kalchbrenner and Blunsom,

2013; Mikolov et al., 2010; Sundermeyer et al., 2012; Sutskever et al., 2014]. The model’s

http://xkcd.com/1425/
https://www.youtube.com/watch?v=LY7x2Ihqjmc
https://www.youtube.com/watch?v=LY7x2Ihqjmc

6 Introduction: The Importance of Knowing What We Don’t Know

Kernel

height

cv
cv

cv

Width

H
e

ig
h

t

Channels

cv
cv

Kernel

width

cv
cv

cv
cv

cv

Kernel 1
of

kernels

Layer input Layer outputKernels

cvKernel 2

Fig. 1.1 A convolution layer in a CNN. The input image (Layer input) has a given height,
width, and channels (RGB for example). Each kernel is convolved with each image patch
(a single image patch is depicted under the left-most circle highlight). For example, kernel
2 preserves the blue channel only, resulting in a blue pixel in Layer output. Kernel 1, on
the other hand, ignores the blue channel resulting in a yellow pixel in the output layer.
This is a simplified view of convolutions: kernels are often not composed of the same
value in each spatial location, but rather act as edge detectors or feature detectors.

input is a sequence of symbols, where at each time step a simple neural network (RNN

unit) is applied to a single symbol, as well as to the network’s output from the previous

time step. RNNs are powerful models, showing superb performance on many tasks.

We will concentrate on simple RNN models for brevity of notation. Given input

sequence x = [x1, ..., xT] of length3 T , a simple RNN is formed by a repeated application

of a function fh. This generates a hidden state ht for time step t:

ht = fh(xt, ht−1) = σ(xtWh + ht−1Uh + bh).

for some non-linearity σ. The model output can be defined, for example, as

ŷ = fy(hT) = hT Wy + by.

The definition of LSTM and GRU—more complicated RNN models—is given later in

section §3.4.2.

3Note the overloading of notation used here: xi is a vector in R
Q, and x is a sequence of vectors of

length T .

1.2 Model uncertainty 7

1.2 Model uncertainty

The models above can be used for applications as diverse as skin cancer diagnosis from

lesion images, steering in autonomous vehicles, and dog breed classification in a website

where users upload pictures of their pets. For example, given several pictures of dog

breeds as training data—when a user uploads a photo of his dog—the hypothetical

website should return a prediction with rather high confidence. But what should happen

if a user uploads a photo of a cat and asks the website to decide on a dog breed?

The above is an example of out of distribution test data. The model has been trained

on photos of dogs of different breeds, and has (hopefully) learnt to distinguish between

them well. But the model has never seen a cat before, and a photo of a cat would lie

outside of the data distribution the model was trained on. This illustrative example can

be extended to more serious settings, such as MRI scans with structures a diagnostics

system has never observed before, or scenes an autonomous car steering system has never

been trained on. A possible desired behaviour of a model in such cases would be to

return a prediction (attempting to extrapolate far away from our observed data), but

return an answer with the added information that the point lies outside of the data

distribution (see a simple depiction for the case of regression in figure 1.2). I.e. we want

our model to possess some quantity conveying a high level of uncertainty with such

inputs (alternatively, conveying low confidence).

Other situations that can lead to uncertainty include

• noisy data (our observed labels might be noisy, for example as a result of measure-

ment imprecision, leading to aleatoric uncertainty),

• uncertainty in model parameters that best explain the observed data (a large

number of possible models might be able to explain a given dataset, in which case

we might be uncertain which model parameters to choose to predict with),

• and structure uncertainty (what model structure should we use? how do we specify

our model to extrapolate / interpolate well?).

The latter two uncertainties can be grouped under model uncertainty (also referred to

as epistemic uncertainty). Aleatoric uncertainty and epistemic uncertainty can then be

used to induce predictive uncertainty, the confidence we have in a prediction.

8 Introduction: The Importance of Knowing What We Don’t Know

(a) Standard deep learning model

1 0 1 2 3
20
15
10
5
0
5
10
15
20

(b) Probabilistic model

Fig. 1.2 Predictive mean and uncertainties on the Mauna Loa CO2 concen-
trations dataset, for various models, with out of distribution test point x∗.
In red is the observed function (left of the dashed blue line); in blue is the predictive
mean plus/minus two standard deviations. Different shades of blue represent half a
standard deviation. Marked with a dashed red line is a point far away from the data:
standard deep learning models confidently predict an unreasonable value for the point;
the probabilistic model predicts an unreasonable value as well but with the additional
information that the model is uncertain about its prediction.

Remark (A note on terminology). The word epistemic comes from “episteme”,

Greek for “knowledge”, i.e. epistemic uncertainty is “knowledge uncertainty”.

Aleatoric comes from the Latin “aleator”, or “dice player”, i.e. aleatoric uncer-

tainty is the “dice player’s” uncertainty. Epistemic and aleatoric uncertainties are

sometimes referred to as reducible and irreducible uncertainties respectively, since

epistemic uncertainty can be reduced with more data (knowledge), while aleatoric

uncertainty cannot (the stochasticity of a dice roll cannot be reduced by observing

more rolls). We will avoid this terminology though, since aleatoric uncertainty can

also be seen as “reducible” through an increase in measurement precision, i.e. by

changing the underlying system with which we perform the experiment.

Uncertainty information is often used in the life sciences, as discussed in the Nature

papers by Herzog and Ostwald [2013]; Krzywinski and Altman [2013]; Nuzzo [2014],

as well as the entertaining case in [Trafimow and Marks, 2015]. In such fields it is

quite important to quantify our confidence about the models’ predictions. Uncertainty

information is also important for the practitioner. Understanding if a model is under-

confident or falsely over-confident (i.e. its uncertainty estimates are too small) can help

get better performance out of it. Recognising that test data is far from the training data

we could augment the training data for example.

But perhaps much more important, model uncertainty information can be used in

systems that make decisions that affect human life—either directly or indirectly—as

discussed next.

http://www.nature.com/news/psychology-journal-bans-p-values-1.17001

1.3 Model uncertainty and AI safety 9

1.3 Model uncertainty and AI safety

With recent engineering advances in the field of machine learning, systems that until

recently were only applied to toy data are now being deployed in real-life settings.

Among these settings are scenarios in which control is handed-over to automated systems

in situations which have the possibility to become life-threatening to humans. These

include automated decision making or recommendation systems in the medical domain,

autonomous control of drones and self driving cars, the ability to affect our economy

on a global scale through high frequency trading, as well as control of critical systems.

These can all be considered under the umbrella field of AI safety.

This interpretation of AI safety is rather different to other interpretations given in the

field, which mostly concentrate on reinforcement learning (RL) settings. For example,

some look at the design of environments for self-learning agents that do not allow the

agent to exploit deficiencies in the learning process itself (such as “reward hacking”;

see for example [Amodei et al., 2016]). In contrast, I will discuss scenarios in which

certain decisions made by a machine learning model trained in a supervised setting might

endanger human life (i.e. settings in which a model incorrectly mapping inputs to outputs

can lead to undesirable consequences). In some of these scenarios, relying on model

uncertainty to adapt the decision making process might be key to preventing unintended

behaviour.

1.3.1 Physician diagnosing a patient

When a physician advises a patient to use certain drugs based on a medical record

analysis, the physician would often rely on the confidence of the expert analysing the

medical record. The introduction of systems such as automated cancer detection based

on MRI scans though could make this process much more complicated. Even at the

hands of an expert, such systems could introduce biases affecting the judgement of the

expert. A system encountering test examples which lie outside of its data distribution

could easily make unreasonable suggestions, and as a result unjustifiably bias the expert.

However, given model confidence an expert could be informed at times when the system

is essentially guessing at random.

1.3.2 Autonomous vehicles

Autonomous systems can range from a simple robotic vacuum scuttering around the

floor, to self-driving cars transporting people and goods from one place to another. These

10 Introduction: The Importance of Knowing What We Don’t Know

systems can largely be divided into two groups: those relying on rule-based systems to

control their behaviour, and those which can learn to adapt their behaviour to their

environment. Both can make use of machine learning tools. The former group through

low-level use of machine learning algorithms for feature extraction, and the latter one

through reinforcement learning.

With self-driving cars, low level feature extraction such as image segmentation and

image localisation are used to process raw sensory input [Bojarski et al., 2016]. The

output of such models is then fed into higher-level decision making procedures. The

higher-level decision making can be done through expert systems for example relying on a

fixed set of rules (“if there is a cyclist to your left, do not steer left”). However, mistakes

done by lower-level machine learning components can propagate up the decision making

process and lead to devastating results. One concrete example demonstrating the risk of

such approaches, in an assisted driving system, is the failure of a low-level component to

distinguish the white side of a turning trailer from a bright sky, which led to the first

fatality of an assisted driving system [NHTSA, 2017]. In such modular systems, one could

use the model’s confidence in low-level components and make high-level decisions given

this uncertainty information. For example, a segmentation system which can identify its

uncertainty in distinguishing between the sky and another vehicle could alert the user to

take control over the steering.

1.3.3 Critical systems and high frequency trading

As a final example, it is interesting to notice that control over critical systems is slowly

being handed over to machine learning systems. This can happen in a post office, sorting

letters according to their zip code [LeCun and Cortes, 1998; LeCun et al., 1998], or

in a nuclear power plant with a system responsible for critical infrastructure [Linda

et al., 2009]. Even in high frequency trading—where computers are given control over

systems that could potentially destabilise entire economic markets—issuing an unusual

trading command could cause a calamity. A possible solution, when using rule-based

decision making, is to rely on formal program verification systems. Such systems allow

the developer to verify the program is working as intended before deployment. But

machine learning-based decision making systems do not allow this. What should a system

do in the case of outputs with high uncertainty?

With model confidence at hand one possible solution would be to treat uncertain

outputs as special cases explicitly. In the case of a critical system we might decide to

pass the input to a human to make a decision. Alternatively, one could use a simple and

1.4 Applications of model uncertainty 11

fast model to perform predictions, and use a more elaborate but slower model only for

inputs on which the weak model is uncertain.

In this work we will develop the tools required to reason about model confidence in

deep learning, which could be applied in the scenarios discussed above. This will be by

developing a general framework that can be applied to existing tools. This in turn allows

the continued use of existing systems which have proven themselves useful, and for which

large amounts of research have already been dedicated. Concrete examples of the use of

these developments in the settings mentioned above will be given in section §5.1.

1.4 Applications of model uncertainty

Beside AI safety, there exist many applications which rely on model uncertainty. These

applications include choosing what data to learn from, or exploring an agent’s environment

efficiently. Common to both these tasks is the use of model uncertainty to learn from

small amounts of data. This is often a necessity in settings in which data collection

is expensive (such as the annotation of individual examples by an expert), or time

consuming (such as the repetition of an experiment multiple times).

1.4.1 Active learning

How could we use machine learning to aid an expert working in a laborious field? One

approach is to automate small parts of the expert’s work, such as mundane cell counting,

or cancer diagnosis based on MRI scans. This can be a difficult problem in machine

learning though. Many machine learning algorithms, including deep learning, often

require large amounts of labelled data to generalise well. The amount of labelled data

required increases with the complexity of the problem or the complexity of the input

data: image inputs for example often require large models to be processed, and in turn

these require large amounts of data (Krizhevsky et al. [2012] for example use hundreds

of gigabytes of labelled images). To automate MRI scan analysis for example, this would

require an expert to annotate a large number of MRI scans, labelling them to indicate

a patient having cancer or not. But expert time is expensive, and often obtaining the

amount of required labelled data is not feasible. How can we learn in settings where

labelled data is scarce and expert knowledge is expensive?

One possible approach to this task could rely on active learning [Settles, 2010]. In this

learning framework the model itself would choose what unlabelled data would be most

12 Introduction: The Importance of Knowing What We Don’t Know

informative for it, and ask an external “oracle” (for example a human annotator) for a label

only for these new data points. The choice of data points to be labelled is done through

an acquisition function, which ranks points based on their potential informativeness.

Different acquisition functions exist, and many make use of model uncertainty about

the unlabelled data points in order to decide on their potential informativeness [Houlsby

et al., 2011]. Following this learning framework we can decrease the amount of required

data by orders of magnitude, while still maintaining good model performance (as we will

see below in §5.2).

Returning to the example above of cancer diagnosis from MRI scans, we would seek

a model that can produce good uncertainty estimates for image data, and rely on these

to design an appropriate acquisition function. Deep learning provides superb tools for

image processing that generalise well, but these rely on huge amounts of labelled data

and do not provide model uncertainty. In this work we will develop extensions of such

tools that can be deployed in small data regimes, and provide good model confidence.

With these tools we will demonstrate the feasibility of the ideas above in active learning

(section §5.2, joint work with Riashat Islam as part of his Master’s project).

1.4.2 Efficient exploration in deep reinforcement learning

Reinforcement learning (RL) algorithms learn control tasks via trial and error, much like

a child learning to ride a bicycle [Sutton and Barto, 1998]. But trials of real world control

tasks often involve time and resources we wish not to waste. Alternatively, the number

of trials might be limited due to wear and tear of the system, making data-efficiency

critical.

As a simple introduction to reinforcement learning, consider an agent (a Roomba

vacuum for example) that needs to learn about its environment (a living room) based

on its actions (rolling around in different directions). It can decide to go forward and

might bump into a wall. Encouraging the Roomba not to crash into walls with positive

rewards, over time it will learn to avoid them in order to maximise its rewards. The

Roomba has to explore its environment looking for these rewards, and trade-off between

this exploration, and exploitation of what it already knows.

Recent advances in deep learning approaches to RL (referred to as deep RL) have

demonstrated impressive results in game playing [Mnih et al., 2013]. Such approaches

make use of NNs for Q-value function approximation. These are functions that estimate

the quality of different actions an agent can take. Epsilon greedy search is often used

where the agent selects its best action with some probability and explores otherwise. But

with uncertainty information an agent can decide when to exploit and when to explore

1.5 Model uncertainty in deep learning 13

its environment. And with uncertainty estimates over the agent’s Q-value function,

techniques such as Thompson sampling [Thompson, 1933] can be used to learn much

faster. This will be demonstrated below (section §5.3).

Even though exploration techniques such as Thompson sampling can help learn better

policies faster, a much more drastic improvement in data efficiency can be achieved by

modelling the system dynamics [Atkeson and Santamaria, 1997]. A dynamics model

allows the agent to generalise its knowledge about the system dynamics to other, un-

observed, states. Probabilistic dynamics models allow an agent to consider transition

uncertainty throughout planning and prediction, improving data efficiency even further.

PILCO [Deisenroth and Rasmussen, 2011], for example, is a data-efficient probabilistic

model-based policy search algorithm. PILCO analytically propagates uncertain state

distributions through a Gaussian process dynamics model. This is done by recursively

feeding the output state distribution (output uncertainty) of one time step as the input

state distribution (input uncertainty) of the next time step, until a fixed time horizon T .

This allows the agent to consider the long-term consequences (expected cumulative cost)

of a particular controller parametrisation w.r.t. all plausible dynamics models. PILCO

relies on Gaussian processes (GPs), which work extremely well with small amounts of

low dimensional data, but scale cubically with the number of trials. Further, PILCO’s

distribution propagation adds a squared term in the observation space dimensionality,

making it hard to scale the framework to high dimensional observation spaces. This

makes it difficult to use PILCO with tasks that require a larger number of trials. Even

more so, PILCO does not consider temporal correlation in model uncertainty between

successive state transitions. This means that PILCO underestimates state uncertainty at

future time steps [Deisenroth et al., 2015], which can lead to diminished performance.

In section §5.4 we attempt to answer these shortcomings by replacing PILCO’s Gaus-

sian process with a Bayesian deep dynamics model, while maintaining the framework’s

probabilistic nature and its data-efficiency benefits (joint work with Rowan McAllister

and Carl Rasmussen [Gal et al., 2016]).

1.5 Model uncertainty in deep learning

Having established that model confidence is a good quantity to possess, it is important

to note that most deep learning models do not offer such information. Regression models

output a single vector regressing to the mean of the data (as can be seen in figure 1.2).

In classification models, the probability vector obtained at the end of the pipeline (the

softmax output) is often erroneously interpreted as model confidence. A model can be

14 Introduction: The Importance of Knowing What We Don’t Know

(a) Arbitrary function f(x) as a function of
data x (softmax input)

(b) σ(f(x)) as a function of data x (softmax
output)

Fig. 1.3 A sketch of softmax input and output for an idealised binary classifi-
cation problem. Training data is given between the dashed grey lines. Function point
estimate is shown with a solid line. Function uncertainty is shown with a shaded area.
Marked with a dashed red line is a point x∗ far from the training data. Ignoring function
uncertainty, point x∗ is classified as class 1 with probability 1.

uncertain in its predictions even with a high softmax output (figure 1.3). Passing a

point estimate of a function (solid line 1.3a) through a softmax (solid line 1.3b) results

in extrapolations with unjustified high confidence for points far from the training data.

x∗ for example would be classified as class 1 with probability 1. However, passing the

distribution (shaded area 1.3a) through a softmax (shaded area 1.3b) better reflects

classification uncertainty far from the training data.

Even though modern deep learning models used in practice do not capture model

confidence, they are closely related to a family of probabilistic models which induce

probability distributions over functions: the Gaussian process. Given a neural network,

by placing a probability distribution over each weight (a standard normal distribution for

example), a Gaussian process can be recovered in the limit of infinitely many weights (see

Neal [1995] or Williams [1997]). For a finite number of weights, model uncertainty can still

be obtained by placing distributions over the weights—these models are called Bayesian

neural networks. These were extensively studied by [MacKay, 1992b], work which was

further extended by [Neal, 1995]. More recently these ideas have been resurrected under

different names with variational techniques by [Blundell et al., 2015; Graves, 2011; Kingma

and Welling, 2013] (although such techniques used with Bayesian neural networks can

be traced back as far as Hinton and Van Camp [1993] and Barber and Bishop [1998]).

But some of these models are quite difficult to work with—often requiring many more

parameters to be optimised—and haven’t really caught-on within the deep learning

community, perhaps because of their limited practicality.

What would make a tool for obtaining model uncertainty practical then? One

requirement of such a tool would be to scale well to large data, and scale well to

complex models (such as CNNs and RNNs). Much more important perhaps, it would be

http://www.inference.eng.cam.ac.uk/mackay/itila/Potter.html

1.5 Model uncertainty in deep learning 15

impractical to change existing model architectures that have been well studied, and it is

often impractical to work with complex and cumbersome techniques which are difficult

to explain to non-experts. Existing approaches to obtain model confidence often do not

scale to complex models or large amounts of data, and require us to develop new models

for existing tasks for which we already have well performing tools.

We will thus concentrate on the development of practical techniques to obtain model

confidence in deep learning, techniques which are also well rooted within the theoretical

foundations of probability theory and Bayesian modelling. Specifically, we will make use

of stochastic regularisation techniques (SRTs). SRTs are recently developed techniques

for model regularisation that have been tremendously successful within deep learning,

and are used in almost all modern deep learning models. These techniques adapt the

model output stochastically as a way of model regularisation (hence the name stochastic

regularisation). This results in the loss becoming a random quantity, which is optimised

using tools from the stochastic non-convex optimisation literature. Popular SRTs include

dropout [Hinton et al., 2012], multiplicative Gaussian noise [Srivastava et al., 2014],

dropConnect [Wan et al., 2013], and countless other recent techniques4,5.

As we will see below, we can take almost any network trained with an SRT, and given

some input x∗ obtain a predictive mean E[y∗] (the expected model output given our

input), and predictive variance Var[y∗] (how much the model is confident in its prediction).

To obtain these, we simulate a network output with input x∗, treating the SRT as if we

were using the model during training (i.e. obtain a random output through a stochastic

forward pass). We repeat this process several times (for T repetitions), sampling i.i.d.

outputs ¶ŷ∗

1
(x∗), ..., ŷ∗

T (x∗)♢. As will be explained below, these are empirical samples

from an approximate predictive distribution. We can get an empirical estimator for the

predictive mean of our approximate predictive distribution as well as the predictive

variance (our uncertainty) from these samples:

E[y∗] ≈
1

T

T∑

t=1

ŷ∗

t (x∗)

Var[y∗] ≈ τ−1ID +
1

T

T∑

t=1

ŷ∗

t (x∗)T ŷ∗

t (x∗) − E[y∗]TE[y∗]. (1.4)

Theoretical justification for these two simple equations will be given in chapter 3.

4 The idea of adding noise to a model to avoid overfitting is quite old, and for input noise has been
studied for example in [Bishop, 1995].

5 In the dropout case, initial research studying the technique from a Bayesian perspective includes
[Ba and Frey, 2013; Maeda, 2014; Wang and Manning, 2013].

16 Introduction: The Importance of Knowing What We Don’t Know

Equation (1.4) results in uncertainty estimates which are practical with large models

and big data, and that can be applied in image based models, sequence based models,

and many different settings such as reinforcement learning and active learning. Further,

the combination of these techniques allows us to perform tasks that were not possible

until recently. For example, we demonstrate below how to perform active learning with

image data, a task which is extremely challenging due to the lack of tools offering good

uncertainty estimates from image data.

1.6 Thesis structure

The first part of this thesis (chapters 3–5) will be concerned with providing tools to

obtain practical uncertainty estimates, and demonstrating how these tools could be used

in many example applications. This part should be easily accessible for experts as well

as non-experts in the field. The second part of this thesis (chapter 6) goes in depth into

the theoretical implications of the work above.

Some of the work in this thesis was previously presented in [Gal, 2015; Gal and

Ghahramani, 2015a,b,c,d, 2016a,b,c; Gal et al., 2016], but this thesis contains many new

pieces of work as well. The most notable of these are a theoretical analysis of Monte Carlo

estimator variance used in variational inference (§3.1.1–§3.1.2), a survey of measures of

uncertainty in classification tasks (§3.3.1), an empirical analysis of different Bayesian

neural network priors (§4.1) and posteriors with various approximating distributions

(§4.2), new quantitative results comparing dropout to existing techniques (§4.3), tools for

heteroscedastic predictive uncertainty in Bayesian neural networks (§4.6), applications

in active learning (§5.2), a discussion of what determines what our model uncertainty

looks like (§6.1–§6.2), an analytical analysis of the dropout approximating distribution

in Bayesian linear regression (§6.3), an analysis of ELBO-test log likelihood correlation

(§6.4), discrete prior models (§6.5), an interpretation of dropout as a proxy posterior

in spike and slab prior models (§6.6), as well as a procedure to optimise the dropout

probabilities based on the variational interpretation to separate the different sources of

uncertainty (§6.7).

The code for the experiments presented in this work is available at https://github.

com/yaringal.

https://github.com/yaringal
https://github.com/yaringal

