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Uncertainty in Deep Learning

Relevant resources: yr.gl/udl23
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Bayesian Probabilistic Modelling

Bayesian Probabilistic
Modelling (an Introduction)

Simple idea: “If you’re doing something which doesn’t follow from the
laws of probability, then you’re doing it wrong”
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Structure

▶ From beliefs to ML

▶ On ML and ‘assumptions’

▶ Generative story and probabilistic model

▶ Intuition: what does the likelihood really mean? (likelihood as a
function of parameters)

▶ Intuition: The Posterior
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From beliefs to ML

▶ I measured the temp this morning with my phone, phone said 8c

▶ My phone’s temp sensor is noisy though.. (spec says it has 5c
standard deviation)

▶ What do you think the actual temp was? (I don’t want a single
number!)
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From beliefs to ML

▶ We can write this down in maths
▶ “I measured temp x = 8; sensor is noisy σ = 5; True temp µ?”

We call this the likelihood [how I believe data/obs was generated
given params]

X | µ, σ = 5 ∼ N (µ, σ2).

▶ Since rational beliefs must follow the laws of prob theory, given our
observation x = 8 we can encode our belief about what the true
temp µ might have been using Bayes law [whiteboard]

Posterior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5) =

Likelihood︷ ︸︸ ︷
p(D = {8}|µ, σ = 5)

Prior︷ ︸︸ ︷
p(µ|σ = 5)

p(D = {8}|σ = 5)︸ ︷︷ ︸
Model evidence

▶ The prior above is what I thought the temp might be before
making my obs, eg µ ∼ N (5,10). This will make more sense next
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From beliefs to ML

▶ I made a second measurement with my phone, and this time it said
13c

▶ Remember: phone’s temp sensor is noisy.. (5c standard deviation)

▶ What do you think the actual temp µ was now?
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From beliefs to ML

▶ Our posterior belief from before is our new prior belief

Prior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5)

▶ Which, given the new obs x = 13, we must update using the laws
of probability:

Posterior︷ ︸︸ ︷
p(µ|D = {8,13}, σ = 5) =

Likelihood︷ ︸︸ ︷
p(D = {8,13}|µ, σ = 5)

Prior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5)

p(D = {8,13}|σ = 5)︸ ︷︷ ︸
Model evidence

▶ And so on... (we’ll see soon how to eval these things)
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Probabilistic Modelling and Assumptions

Above is an example of encoding our assumptions into a model.
▶ can’t do ML without assumptions

▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)
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▶ can’t do ML without assumptions

▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

▶ eg – astrophysics: gravitational lensing
▶ there exists a physics process magnifying far

away galaxies

▶ Nature chose lensing coeff → gravitational
lensing mechanism → transform galaxy

▶ We observe transformed galaxies, want to
infer lensing ceoff
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Probabilistic Modelling and Assumptions

Above is an example of encoding our assumptions into a model.
▶ can’t do ML without assumptions

▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

▶ eg – cats vs dogs classification
▶ there exist some underlying rules we don’t

know

▶ eg “if has pointy ears then cat”

▶ We observe pairs (image, “cat”/“no cat”),
and want to infer underlying mapping from
images to labels
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Probabilistic Modelling and Assumptions

▶ can’t do ML without assumptions
▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

▶ eg – Gaussian density estimation
▶ I tell you the process I used to generate data and give 5 data points

xn ∼ N (xn;µ, σ
2), σ = 1

▶ you observe the points {x1, ..., x5}, and want to infer my µ
▶ Reminder: Gaussian density with mean µ and variance σ2

p(x |µ, σ2) =
1√

2πσ2
e− (x−µ)2

2σ2
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Probabilistic Modelling and Assumptions

▶ My data:

▶ These are the hypotheses we’ll play with: (in parameter space)

▶ I chose a Gaussian (one of those) from which I generated my data
▶ Which Gaussian do you think I chose?
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Generative story / probabilistic model

In Bayesian probabilistic modelling

▶ want to represent our beliefs / assumptions about how data was
generated explicitly

▶ eg via generative story [‘My assumptions are...’]:
▶ Someone (me / Nature / etc) selected parameters µ, σ
▶ Generated N data points xn ∼ N (µ, σ2)
▶ Gave us D = {x1, ..., xN} (and also σ = 1)
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Generative story

▶ Can represent generative story pictorially as a plate diagram (also
known as a Bayesian network / graphical model)

▶ Circle = random variable; plate = repetition;
▶ Black = observed; white = unobserved;

▶ This represents how we believe our data was generated – what
depends on what:

▶ we’re given σ, there exists some µ, and our observed xi ’s are
dependent on both
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Joint distribution

Mathematically, this corresponds to this joint distribution:

p(D = {x1, .., xN}|µ, σ) · p(µ) · p(σ)

with (product rule)

p(D = {x1, .., xN}|µ, σ) =
N∏

i=1

p(xn|µ, σ)

But we haven’t specified what these distributions are yet... (e.g., what’s
p(µ)?)
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Generative story → probabilistic model
We can build a Bayesian probabilistic model following this generative
story:

▶ prior [what I believe params might look like]

µ ∼ N (0,10), σ = 1

▶ likelihood [how I believe data was generated given params]

xn | µ, σ ∼ N (µ, σ2), n = 1..N

And plug these into the above joint distribution:

p(xn|µ, σ) = N (xn;µ, σ
2)

p(µ) = N (µ;0,10)

and
p(σ) = δ(σ = 1)

(σ equals 1 with prob 1)
15 of 1



Generative story / probabilistic model (Exercise)

Exercise: Draw a plate diagram, write the joint probability, and build a
prob model for this generative story

My assumptions are...
▶ Someone (me / Nature / etc) selected parameters

µn ∈ R10, σn ∈ R+ for n = 1..N, and decoder function
f : R10 → X

▶ Generated N latent points zn ∼ N (µn, σ
2
n)

▶ Decoded these z’s and generated N data points xn ∼ N (f (zn),1)
▶ Gave us f ,D = {x1, ..., xN}
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Can you find my Gaussian?
How can we update prior belief on µ conditioned on data you give me?
(infer posterior distribution over µ | {x1, ..., xN} )

Everything follows the laws of prob..

▶ Sum rule

p(X = x) =
∑

y

p(X = x ,Y = y) =
∫

p(X = x ,Y )dY

▶ Product rule

p(X = x ,Y = y) = p(X = x |Y = y)p(Y = y)

▶ Bayes rule

p(X = x |Y = y ,H) =
p(Y = y |X = x ,H)p(X = x |H)

p(Y = y |H)

Note: H is often omitted in conditional for brevity
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Can you find my Gaussian?

Remember: products, ratios, marginals, and conditionals of Gaussians
are Gaussian!

Summary (and playgroud) here: yr.gl/udl101
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Updating our beliefs (Inference)

Bayes rule:

p(X = x |Y = y ,H) =
p(Y = y |X = x ,H)p(X = x |H)

p(Y = y |H)
,

and in probabilistic modelling:

Posterior︷ ︸︸ ︷
p(µ|D, σ,H) =

Likelihood︷ ︸︸ ︷
p(D|µ, σ,H)

Prior︷ ︸︸ ︷
p(µ|σ,H)

p(D|σ,H)︸ ︷︷ ︸
Model evidence

with model evidence p(D|σ,H) =
∫

p(D|µ, σ,H)p(µ|σ,H)dµ (sum
rule).

Let’s look into each one of these quantities in more detail.

20 of 1



The Likelihood in more detail: Intuition
Likelihood p(D|µ, σ,H)

▶ we explicitly assumed data comes iid from a Gaussian
▶ compute p(D|µ, σ) = multiply all p(xn|µ, σ) (product rule)
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Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space
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Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space
This is what the likelihood look like as a function of the params
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Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space
and with smaller σ..

▶ MLE (max lik) will get “absolutely certain that σ = 0 & µ = 0”
▶ Does this make sense? (I told you xn ∼ N !)
▶ MLE failure
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Likelihood as a function of parameters

And now scanning with all data, computing product of likelihoods:
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Likelihood as a function of parameters

And now scanning with all data, computing product of likelihoods:

Likelihood function tells us how well every value of µ, σ predicted what
would happen.
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The Posterior in more detail

Posterior︷ ︸︸ ︷
p(µ|D, σ,H) =

Likelihood︷ ︸︸ ︷
p(D|µ, σ,H)

Prior︷ ︸︸ ︷
p(µ|σ,H)

p(D|σ,H)︸ ︷︷ ︸
Model evidence

In contrast to the likelihood, posterior would say

‘with the data you gave me and prior assumptions, this is what I think µ
could be, and I might become more confident if you give me more data’

▶ normaliser = marginal likelihood = evidence = sum of likelihood *
prior

▶ p(D|σ,H) =
∫

p(D|µ, σ,H)p(µ|σ,H)dµ (sum rule)
▶ (but often difficult to calculate... more in the next lecture)
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The Posterior in more detail

▶ Eg, inference w prior = ‘we believe data is equally likely to have
come from one of the 5 Gaussians w σ = 1’

p(µ = µi |σ,H) =
1
5

and p(µ ̸= µi for all i |σ,H) = 0

then marginal likelihood is

p(D|σ,H) =
∑

i

p(D|µ = µi , σ,H)p(µ = µi |σ,H)

=
∑

i

p(D|µ = µi , σ,H)
1
5

and posterior is

p(µ = µi |σ,D,H) =
1/5p(D|µ = µi , σ,H)∑
i 1/5p(D|µ = µi , σ,H)
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The Posterior in more detail

Using likelihood from above, our posterior distribution over µ (prob of
different values for µ given the observed data) is given by:

Some useful terminology we will use in the future:
▶ marginal likelihood of sigma=1 = p(D|σ = 1,H) = ‘prob that

data came from single Gaussian with param σ = 1’
▶ similarly, marginal likelihood of hypothesis = p(D|H) = ‘prob that

data came from single Gaussian (with some µ, σ)’
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Bayesian Deep Learning

Bayesian Probabilistic
Modelling of Functions
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Structure

▶ Why uncertainty over functions

▶ Linear regression

▶ Linear basis function regression

▶ Parametrised basis functions

▶ Hierarchy of parametrised basis functions (aka neural networks)

▶ NNs through a probabilistic lens (generative story, prob model,
inference, predictions)
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Why uncertainty over functions

▶ Going beyond beliefs over discrete set of bets (‘heads happened’) /
scalars (µ)

▶ Want to know uncertainty (belief/distribution) of system in its
prediction

▶ Distribution over outputs for each input x = dist over functions

▶ First, some preliminaries, some historical context, and notation.
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Linear regression [Gauss, 1809]
▶ Given a set of N input-output pairs

{(x1,y1), ..., (xN ,yN)}
▶ eg average number of accidents for

different driving speeds

▶ assumes exists linear func mapping vectors
xi ∈ RQ to yi ∈ RD (with yi potentially
corrupted with observation noise)

▶ model is linear trans. of inputs:
f (x) = Wx + b, w W some D by Q matrix
over reals, b real vector with D elements

▶ Different params W ,b define different linear
trans

▶ aim: find params that (eg) minimise
1/N

∑
i ||yi − (Wxi + b)||2

▶ but relation between x and y need not be
linear...
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Linear basis function regression [Gergonne, 1815]

▶ input x fed through K fixed scalar-valued non-linear trans. ϕk (x)

▶ trans. ϕk are the basis functions; with scalar input x, trans. can be
▶ polynomials of degrees k : xk

▶ sinusoidals with various frequencies: sin(kx)
▶ wavelets parametrised by k : cos(kπx)e−x2/2

▶ collect into a feature vector ϕ(x) = [ϕ1(x), ..., ϕK (x)], e.g.

ϕ(x) = [sin(x), sin(2x)..., sin(Kx)] ∈ RK

▶ do linear regression with ϕ(x) vector instead of x itself
31 of 1
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Linear basis function regression [Gergonne, 1815]

▶ When ϕk (x) := xk and K = Q, basis function regression = linear
regression

▶ basis functions often assumed fixed and orthogonal to each other
(optimal combination is sought), e.g. Legendre polynomials

▶ but need not be fixed and mutually orth. → param. basis functions
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Parametrised basis functions [Bishop, 2006]

▶ eg basis functions ϕwk ,bk
k where scalar-valued function ϕk is applied

to inner-product wT
k x + bk

▶ ϕk often def’d to be identical for all k (only params change)
▶ eg ϕk (·) = tanh(·) , giving ϕwk ,bk

k (x) = tanh(wT
k x + bk )

▶ feature vector = basis functions’ outputs = input to linear trans.
▶ in vector form:

▶ W1 a matrix of dimensions Q by K
▶ b1 a vector with K elements
▶ ϕW1,b1(x) = ϕ(W1x + b1)
▶ W2 a matrix of dimensions K by D
▶ b2 a vector with D elements
▶ model output:

f W1,b1,W2,b2(x) = ϕW1,b1(x)W2 + b2
▶ want to find W1,b1,W2,b2 that minimise

1/N
∑

i ||yi − f W1,b1,W2,b2(xi)||2
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Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
▶ called “NNs” for historical reasons

▶ layers
▶ =‘feature vectors’ in hierarchy
▶ linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
▶ ‘input layer’, ‘output layer’, ‘hidden layers’
▶ trans. matrix = weight matrix = W ;

intercept = bias = b

▶ units
▶ elements in a layer

▶ feature vector (overloaded term)
▶ often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

▶ denote feature vector
ϕ(x) = [ϕ1(x), .., ϕK (x)] with K units (a K
by 1 vector)

▶ denote feature matrix
Φ(X) = [ϕ(x1)

T , ..., ϕ(xN)
T ], N by K

matrix
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Hierarchy of parametrised basis functions

▶ regression
▶ compose multiple basis function layers

into a regression model

▶ result of last trans. also called “model
output”; often no non-linearity here

▶ classification
▶ further compose a softmax function at the end; also called

“logistic” for 2 classes
▶ “squashes” its input → probability vector; prob vector also called

model output / softmax vector / softmax layer

▶ “building blocks”
▶ layers are simple
▶ modularity in layer composition → versatility of deep models
▶ many engineers work in field → lots of tools that scale well
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Assumptions for the moment

▶ we’ll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

▶ (for the moment) look only at last layer W , everything else fixed –
ie weights other than W do not change

▶ later we’ll worry about other layers

▶ assume that y is scalar
▶ so W is K by 1 (all vectors are forever column vectors)
▶ write wk for the k ’th elem

▶ assume that output layer’s b is zero (or, obs y ’s are normalised)
▶ both will simplify derivations here (but pose no difficulty otherwise)

▶ then f W (x) =
∑

wkϕk (x) = W Tϕ(x) with ϕ(x) a ‘frozen’ feature
vec for some NN

▶ some notation you’ll need to remember...
X, x ,N,xn,Q,D,K ,D = {(x1, y1), .., (xN , yN)} = X,Y
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Generative story

Want to put dist over functions..

▶ difficult to put belief over funcs., but
easy to put over NN params

▶ assumptions for the moment: our data
was generated from the fixed ϕ (NN)
using some W (which we want to
infer)
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▶ difficult to put belief over funcs., but
easy to put over NN params

▶ assumptions for the moment: our data
was generated from the fixed ϕ (NN)
using some W (which we want to
infer)

Generative story [what we assume about the data]
▶ Nature chose W which def’s a func: f W (x) := W Tϕ(x)
▶ generated func. values with inputs x1, .., xN : fn := f W (xn)

▶ corrupted func. values with noise [also called "obs noise"]
yn := fn + ϵn, ϵn ∼ N (0, σ2) [additive Gaussian noise w param σ]

▶ we’re given observations {(x1, y1), ..., (xN , yN)} and σ = 1
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Model
▶ qs

▶ how can we find function value f ∗ for a new x∗?
▶ how can we find our confidence in this prediction?
▶ → ‘everything follows from the laws of probability theory’

▶ we build a model:
▶ put prior dist over params W

p(W ) = N (W ;0K , s2IK )

▶ likelihood [conditioned on W generate obs by adding gaussian noise]

p(y |W , x) = N (y ;W Tϕ(x), σ2)

▶ prior belief “wk ∼ N (0,1)” means that funcs are likely to be
smooth, vs “wk ∈ N (0,100)” means funcs likely to be erratic; eg,
visualising func draws from prior:

▶ we want to infer W (find dist over W given D)
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Analytic inference w functions [new technique!]

We know that the prior and likelihood are Gaussians, therefore the
posterior prob over W must be Gaussian too (conjugacy). We’ll

complete the squares in the exponents to find it:

[whiteboard]
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Analytic inference w functions [new technique!]

We know that the prior and likelihood are Gaussians, therefore the
posterior prob over W must be Gaussian too (conjugacy). We’ll

complete the squares in the exponents to find it:

[whiteboard]
▶ posterior variance

Σ′ = (σ−2
∑

n

(ϕ(xn)ϕ(xn)
T ) + s−2IK )−1

and in vector form: (σ−2Φ(X)TΦ(X) + s−2IK )−1

▶ posterior mean
µ′ = Σ′σ−2

∑
n

(ynϕ(xn))

and in vector form: Σ′σ−2Φ(X)T Y
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Analytic predictions with functions

How do we predict function values y∗ for new x∗?

▶ There’s only one correct way – use prob theory to perform preds!

p(y∗|x∗,X ,Y ) this is the predictive dist (we’ll use it a lot)

=

∫
p(y∗,W |x∗,X ,Y )dW sum rule

=

∫
p(y∗|x∗,W ,X ,Y )p(W |X ,Y )dW product rule

=

∫
p(y∗|x∗,W )p(W |X ,Y )dW model assumptions

▶ how to eval? [a new technique!]
▶ likelihood p(y∗|x∗,W ) is Gaussian
▶ posterior p(W |X ,Y ) is Gaussian (from above)
▶ so predictive p(y∗|x∗,X ,Y ) is Gaussian..
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Analytic predictions with functions

We know that the likelihood and posterior are Gaussians, therefore the
predictive prob over y∗ must be Gaussian too (conjugacy). We’ll use

moment matching to find it:

[whiteboard]
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Analytic predictions with functions

We know that the likelihood and posterior are Gaussians, therefore the
predictive prob over y∗ must be Gaussian too (conjugacy). We’ll use

moment matching to find it:

▶ Exercise (10min): Derive the variance of the predictive distribution
(predictive variance) (hint: use the identity
Var(z) = E [zT z]− E [z]T E [z] with simple manipulations)

Useful resources: yr.gl/udl101
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Analytic predictions with functions (Exercise)

▶ Predictive variance (hint: use the identity
Var(z) = E [zT z]− E [z]T E [z] with simple manipulations)
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Uncertainty in Deep Learning

Questions & discussion
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