
Uncertainty in Deep Learning

Yarin Gal

University of Oxford
yarin@cs.ox.ac.uk

Unless specified otherwise, photos are either original work or taken from Wikimedia, under Creative
Commons license

mailto:yarin@cs.ox.ac.uk
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Uncertainty in Deep Learning

Relevant resources: yr.gl/udl23

2 of 1

http://yr.gl/udl23

Bayesian Probabilistic Modelling

Bayesian Probabilistic
Modelling (an Introduction)

Simple idea: “If you’re doing something which doesn’t follow from the
laws of probability, then you’re doing it wrong”

3 of 1

Structure

▶ From beliefs to ML

▶ On ML and ‘assumptions’

▶ Generative story and probabilistic model

▶ Intuition: what does the likelihood really mean? (likelihood as a
function of parameters)

▶ Intuition: The Posterior

4 of 1

From beliefs to ML

▶ I measured the temp this morning with my phone, phone said 8c

▶ My phone’s temp sensor is noisy though.. (spec says it has 5c
standard deviation)

▶ What do you think the actual temp was? (I don’t want a single
number!)

5 of 1

From beliefs to ML

▶ We can write this down in maths
▶ “I measured temp x = 8; sensor is noisy σ = 5; True temp µ?”

We call this the likelihood [how I believe data/obs was generated
given params]

X | µ, σ = 5 ∼ N (µ, σ2).

▶ Since rational beliefs must follow the laws of prob theory, given our
observation x = 8 we can encode our belief about what the true
temp µ might have been using Bayes law [whiteboard]

Posterior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5) =

Likelihood︷ ︸︸ ︷
p(D = {8}|µ, σ = 5)

Prior︷ ︸︸ ︷
p(µ|σ = 5)

p(D = {8}|σ = 5)︸ ︷︷ ︸
Model evidence

▶ The prior above is what I thought the temp might be before
making my obs, eg µ ∼ N (5,10). This will make more sense next

6 of 1

From beliefs to ML

▶ We can write this down in maths
▶ “I measured temp x = 8; sensor is noisy σ = 5; True temp µ?”

We call this the likelihood [how I believe data/obs was generated
given params]

X | µ, σ = 5 ∼ N (µ, σ2).

▶ Since rational beliefs must follow the laws of prob theory, given our
observation x = 8 we can encode our belief about what the true
temp µ might have been using Bayes law [whiteboard]

Posterior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5) =

Likelihood︷ ︸︸ ︷
p(D = {8}|µ, σ = 5)

Prior︷ ︸︸ ︷
p(µ|σ = 5)

p(D = {8}|σ = 5)︸ ︷︷ ︸
Model evidence

▶ The prior above is what I thought the temp might be before
making my obs, eg µ ∼ N (5,10). This will make more sense next

6 of 1

From beliefs to ML

▶ We can write this down in maths
▶ “I measured temp x = 8; sensor is noisy σ = 5; True temp µ?”

We call this the likelihood [how I believe data/obs was generated
given params]

X | µ, σ = 5 ∼ N (µ, σ2).

▶ Since rational beliefs must follow the laws of prob theory, given our
observation x = 8 we can encode our belief about what the true
temp µ might have been using Bayes law [whiteboard]

Posterior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5) =

Likelihood︷ ︸︸ ︷
p(D = {8}|µ, σ = 5)

Prior︷ ︸︸ ︷
p(µ|σ = 5)

p(D = {8}|σ = 5)︸ ︷︷ ︸
Model evidence

▶ The prior above is what I thought the temp might be before
making my obs, eg µ ∼ N (5,10). This will make more sense next

6 of 1

From beliefs to ML

▶ I made a second measurement with my phone, and this time it said
13c

▶ Remember: phone’s temp sensor is noisy.. (5c standard deviation)

▶ What do you think the actual temp µ was now?

8 of 1

From beliefs to ML

▶ Our posterior belief from before is our new prior belief

Prior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5)

▶ Which, given the new obs x = 13, we must update using the laws
of probability:

Posterior︷ ︸︸ ︷
p(µ|D = {8,13}, σ = 5) =

Likelihood︷ ︸︸ ︷
p(D = {8,13}|µ, σ = 5)

Prior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5)

p(D = {8,13}|σ = 5)︸ ︷︷ ︸
Model evidence

▶ And so on... (we’ll see soon how to eval these things)

9 of 1

From beliefs to ML

▶ Our posterior belief from before is our new prior belief

Prior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5)

▶ Which, given the new obs x = 13, we must update using the laws
of probability:

Posterior︷ ︸︸ ︷
p(µ|D = {8,13}, σ = 5) =

Likelihood︷ ︸︸ ︷
p(D = {8,13}|µ, σ = 5)

Prior︷ ︸︸ ︷
p(µ|D = {8}, σ = 5)

p(D = {8,13}|σ = 5)︸ ︷︷ ︸
Model evidence

▶ And so on... (we’ll see soon how to eval these things)

9 of 1

Probabilistic Modelling and Assumptions

Above is an example of encoding our assumptions into a model.
▶ can’t do ML without assumptions

▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

10 of 1

Probabilistic Modelling and Assumptions

Above is an example of encoding our assumptions into a model.
▶ can’t do ML without assumptions

▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

▶ eg – astrophysics: gravitational lensing
▶ there exists a physics process magnifying far

away galaxies

▶ Nature chose lensing coeff → gravitational
lensing mechanism → transform galaxy

▶ We observe transformed galaxies, want to
infer lensing ceoff

10 of 1

Probabilistic Modelling and Assumptions

Above is an example of encoding our assumptions into a model.
▶ can’t do ML without assumptions

▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

▶ eg – cats vs dogs classification
▶ there exist some underlying rules we don’t

know

▶ eg “if has pointy ears then cat”

▶ We observe pairs (image, “cat”/“no cat”),
and want to infer underlying mapping from
images to labels

10 of 1

Probabilistic Modelling and Assumptions

▶ can’t do ML without assumptions
▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

▶ eg – Gaussian density estimation
▶ I tell you the process I used to generate data and give 5 data points

xn ∼ N (xn;µ, σ
2), σ = 1

▶ you observe the points {x1, ..., x5}, and want to infer my µ
▶ Reminder: Gaussian density with mean µ and variance σ2

p(x |µ, σ2) =
1√

2πσ2
e− (x−µ)2

2σ2

10 of 1

Probabilistic Modelling and Assumptions

▶ can’t do ML without assumptions
▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

▶ eg – Gaussian density estimation

X Which µ generated my data?
V What’s the probability that µ = 10 generated my data? (want to

infer distribution over µ!)

10 of 1

Probabilistic Modelling and Assumptions

▶ can’t do ML without assumptions
▶ there always exists some underlying process that generated obs
▶ all models make assumptions about this process, either explicitly,

or implicitly
▶ in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
▶ want to infer underlying process (find dist that generated data)

▶ eg – Gaussian density estimation

X Which µ generated my data?
V What’s the probability that µ = 10 generated my data? (want to

infer distribution over µ!)

10 of 1

Probabilistic Modelling and Assumptions

▶ My data:

▶ These are the hypotheses we’ll play with: (in parameter space)

▶ I chose a Gaussian (one of those) from which I generated my data
▶ Which Gaussian do you think I chose?

11 of 1

Probabilistic Modelling and Assumptions

▶ My data:

▶ And this is what the hypotheses look like in data space:

▶ I chose a Gaussian (one of those) from which I generated my data
▶ Which Gaussian do you think I chose?

11 of 1

Probabilistic Modelling and Assumptions

▶ My data:

▶ And this is what the hypotheses look like in data space:

▶ I chose a Gaussian (one of those) from which I generated my data
▶ Which Gaussian do you think I chose?

11 of 1

Generative story / probabilistic model

In Bayesian probabilistic modelling

▶ want to represent our beliefs / assumptions about how data was
generated explicitly

▶ eg via generative story [‘My assumptions are...’]:
▶ Someone (me / Nature / etc) selected parameters µ, σ
▶ Generated N data points xn ∼ N (µ, σ2)
▶ Gave us D = {x1, ..., xN} (and also σ = 1)

12 of 1

Generative story / probabilistic model

In Bayesian probabilistic modelling

▶ want to represent our beliefs / assumptions about how data was
generated explicitly

▶ eg via generative story [‘My assumptions are...’]:
▶ Someone (me / Nature / etc) selected parameters µ, σ
▶ Generated N data points xn ∼ N (µ, σ2)
▶ Gave us D = {x1, ..., xN} (and also σ = 1)

12 of 1

Generative story

▶ Can represent generative story pictorially as a plate diagram (also
known as a Bayesian network / graphical model)

▶ Circle = random variable; plate = repetition;
▶ Black = observed; white = unobserved;

▶ This represents how we believe our data was generated – what
depends on what:

▶ we’re given σ, there exists some µ, and our observed xi ’s are
dependent on both

13 of 1

Joint distribution

Mathematically, this corresponds to this joint distribution:

p(D = {x1, .., xN}|µ, σ) · p(µ) · p(σ)

with (product rule)

p(D = {x1, .., xN}|µ, σ) =
N∏

i=1

p(xn|µ, σ)

But we haven’t specified what these distributions are yet... (e.g., what’s
p(µ)?)

14 of 1

Generative story → probabilistic model
We can build a Bayesian probabilistic model following this generative
story:

▶ prior [what I believe params might look like]

µ ∼ N (0,10), σ = 1

▶ likelihood [how I believe data was generated given params]

xn | µ, σ ∼ N (µ, σ2), n = 1..N

And plug these into the above joint distribution:

p(xn|µ, σ) = N (xn;µ, σ
2)

p(µ) = N (µ;0,10)

and
p(σ) = δ(σ = 1)

(σ equals 1 with prob 1)
15 of 1

Generative story / probabilistic model (Exercise)

Exercise: Draw a plate diagram, write the joint probability, and build a
prob model for this generative story

My assumptions are...
▶ Someone (me / Nature / etc) selected parameters

µn ∈ R10, σn ∈ R+ for n = 1..N, and decoder function
f : R10 → X

▶ Generated N latent points zn ∼ N (µn, σ
2
n)

▶ Decoded these z’s and generated N data points xn ∼ N (f (zn),1)
▶ Gave us f ,D = {x1, ..., xN}

16 of 1

Can you find my Gaussian?
How can we update prior belief on µ conditioned on data you give me?
(infer posterior distribution over µ | {x1, ..., xN})

Everything follows the laws of prob..

▶ Sum rule

p(X = x) =
∑

y

p(X = x ,Y = y) =
∫

p(X = x ,Y)dY

▶ Product rule

p(X = x ,Y = y) = p(X = x |Y = y)p(Y = y)

▶ Bayes rule

p(X = x |Y = y ,H) =
p(Y = y |X = x ,H)p(X = x |H)

p(Y = y |H)

Note: H is often omitted in conditional for brevity
18 of 1

Can you find my Gaussian?

Remember: products, ratios, marginals, and conditionals of Gaussians
are Gaussian!

Summary (and playgroud) here: yr.gl/udl101

19 of 1

http://yr.gl/udl101

Updating our beliefs (Inference)

Bayes rule:

p(X = x |Y = y ,H) =
p(Y = y |X = x ,H)p(X = x |H)

p(Y = y |H)
,

and in probabilistic modelling:

Posterior︷ ︸︸ ︷
p(µ|D, σ,H) =

Likelihood︷ ︸︸ ︷
p(D|µ, σ,H)

Prior︷ ︸︸ ︷
p(µ|σ,H)

p(D|σ,H)︸ ︷︷ ︸
Model evidence

with model evidence p(D|σ,H) =
∫

p(D|µ, σ,H)p(µ|σ,H)dµ (sum
rule).

Let’s look into each one of these quantities in more detail.

20 of 1

The Likelihood in more detail: Intuition
Likelihood p(D|µ, σ,H)

▶ we explicitly assumed data comes iid from a Gaussian
▶ compute p(D|µ, σ) = multiply all p(xn|µ, σ) (product rule)

21 of 1

Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space

22 of 1

Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space

22 of 1

Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space

22 of 1

Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space

22 of 1

Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space

22 of 1

Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space
This is what the likelihood look like as a function of the params

22 of 1

Likelihood as a function of parameters

Let’s look in detail – reducing dataset from 5 points to 1:

▶ What does the likelihood look like? let’s ‘scan’ the parameter space
and with smaller σ..

▶ MLE (max lik) will get “absolutely certain that σ = 0 & µ = 0”
▶ Does this make sense? (I told you xn ∼ N !)
▶ MLE failure

22 of 1

Likelihood as a function of parameters

And now scanning with all data, computing product of likelihoods:

23 of 1

Likelihood as a function of parameters

And now scanning with all data, computing product of likelihoods:

23 of 1

Likelihood as a function of parameters

And now scanning with all data, computing product of likelihoods:

23 of 1

Likelihood as a function of parameters

And now scanning with all data, computing product of likelihoods:

Likelihood function tells us how well every value of µ, σ predicted what
would happen.

23 of 1

The Posterior in more detail

Posterior︷ ︸︸ ︷
p(µ|D, σ,H) =

Likelihood︷ ︸︸ ︷
p(D|µ, σ,H)

Prior︷ ︸︸ ︷
p(µ|σ,H)

p(D|σ,H)︸ ︷︷ ︸
Model evidence

In contrast to the likelihood, posterior would say

‘with the data you gave me and prior assumptions, this is what I think µ
could be, and I might become more confident if you give me more data’

▶ normaliser = marginal likelihood = evidence = sum of likelihood *
prior

▶ p(D|σ,H) =
∫

p(D|µ, σ,H)p(µ|σ,H)dµ (sum rule)
▶ (but often difficult to calculate... more in the next lecture)

24 of 1

The Posterior in more detail

▶ Eg, inference w prior = ‘we believe data is equally likely to have
come from one of the 5 Gaussians w σ = 1’

p(µ = µi |σ,H) =
1
5

and p(µ ̸= µi for all i |σ,H) = 0

then marginal likelihood is

p(D|σ,H) =
∑

i

p(D|µ = µi , σ,H)p(µ = µi |σ,H)

=
∑

i

p(D|µ = µi , σ,H)
1
5

and posterior is

p(µ = µi |σ,D,H) =
1/5p(D|µ = µi , σ,H)∑
i 1/5p(D|µ = µi , σ,H)

25 of 1

The Posterior in more detail

Using likelihood from above, our posterior distribution over µ (prob of
different values for µ given the observed data) is given by:

Some useful terminology we will use in the future:
▶ marginal likelihood of sigma=1 = p(D|σ = 1,H) = ‘prob that

data came from single Gaussian with param σ = 1’
▶ similarly, marginal likelihood of hypothesis = p(D|H) = ‘prob that

data came from single Gaussian (with some µ, σ)’
26 of 1

Bayesian Deep Learning

Bayesian Probabilistic
Modelling of Functions

27 of 1

Structure

▶ Why uncertainty over functions

▶ Linear regression

▶ Linear basis function regression

▶ Parametrised basis functions

▶ Hierarchy of parametrised basis functions (aka neural networks)

▶ NNs through a probabilistic lens (generative story, prob model,
inference, predictions)

28 of 1

Why uncertainty over functions

▶ Going beyond beliefs over discrete set of bets (‘heads happened’) /
scalars (µ)

▶ Want to know uncertainty (belief/distribution) of system in its
prediction

▶ Distribution over outputs for each input x = dist over functions

▶ First, some preliminaries, some historical context, and notation.

29 of 1

Why uncertainty over functions

▶ Going beyond beliefs over discrete set of bets (‘heads happened’) /
scalars (µ)

▶ Want to know uncertainty (belief/distribution) of system in its
prediction

▶ Distribution over outputs for each input x = dist over functions

▶ First, some preliminaries, some historical context, and notation.

29 of 1

Why uncertainty over functions

▶ Going beyond beliefs over discrete set of bets (‘heads happened’) /
scalars (µ)

▶ Want to know uncertainty (belief/distribution) of system in its
prediction

▶ Distribution over outputs for each input x = dist over functions

▶ First, some preliminaries, some historical context, and notation.

29 of 1

Why uncertainty over functions

▶ Going beyond beliefs over discrete set of bets (‘heads happened’) /
scalars (µ)

▶ Want to know uncertainty (belief/distribution) of system in its
prediction

▶ Distribution over outputs for each input x = dist over functions

▶ First, some preliminaries, some historical context, and notation.

29 of 1

Linear regression [Gauss, 1809]
▶ Given a set of N input-output pairs

{(x1,y1), ..., (xN ,yN)}
▶ eg average number of accidents for

different driving speeds

▶ assumes exists linear func mapping vectors
xi ∈ RQ to yi ∈ RD (with yi potentially
corrupted with observation noise)

▶ model is linear trans. of inputs:
f (x) = Wx + b, w W some D by Q matrix
over reals, b real vector with D elements

▶ Different params W ,b define different linear
trans

▶ aim: find params that (eg) minimise
1/N

∑
i ||yi − (Wxi + b)||2

▶ but relation between x and y need not be
linear...

30 of 1

Linear regression [Gauss, 1809]
▶ Given a set of N input-output pairs

{(x1,y1), ..., (xN ,yN)}
▶ eg average number of accidents for

different driving speeds

▶ assumes exists linear func mapping vectors
xi ∈ RQ to yi ∈ RD (with yi potentially
corrupted with observation noise)

▶ model is linear trans. of inputs:
f (x) = Wx + b, w W some D by Q matrix
over reals, b real vector with D elements

▶ Different params W ,b define different linear
trans

▶ aim: find params that (eg) minimise
1/N

∑
i ||yi − (Wxi + b)||2

▶ but relation between x and y need not be
linear...

30 of 1

Linear regression [Gauss, 1809]
▶ Given a set of N input-output pairs

{(x1,y1), ..., (xN ,yN)}
▶ eg average number of accidents for

different driving speeds

▶ assumes exists linear func mapping vectors
xi ∈ RQ to yi ∈ RD (with yi potentially
corrupted with observation noise)

▶ model is linear trans. of inputs:
f (x) = Wx + b, w W some D by Q matrix
over reals, b real vector with D elements

▶ Different params W ,b define different linear
trans

▶ aim: find params that (eg) minimise
1/N

∑
i ||yi − (Wxi + b)||2

▶ but relation between x and y need not be
linear...

30 of 1

Linear regression [Gauss, 1809]
▶ Given a set of N input-output pairs

{(x1,y1), ..., (xN ,yN)}
▶ eg average number of accidents for

different driving speeds

▶ assumes exists linear func mapping vectors
xi ∈ RQ to yi ∈ RD (with yi potentially
corrupted with observation noise)

▶ model is linear trans. of inputs:
f (x) = Wx + b, w W some D by Q matrix
over reals, b real vector with D elements

▶ Different params W ,b define different linear
trans

▶ aim: find params that (eg) minimise
1/N

∑
i ||yi − (Wxi + b)||2

▶ but relation between x and y need not be
linear...

30 of 1

Linear regression [Gauss, 1809]
▶ Given a set of N input-output pairs

{(x1,y1), ..., (xN ,yN)}
▶ eg average number of accidents for

different driving speeds

▶ assumes exists linear func mapping vectors
xi ∈ RQ to yi ∈ RD (with yi potentially
corrupted with observation noise)

▶ model is linear trans. of inputs:
f (x) = Wx + b, w W some D by Q matrix
over reals, b real vector with D elements

▶ Different params W ,b define different linear
trans

▶ aim: find params that (eg) minimise
1/N

∑
i ||yi − (Wxi + b)||2

▶ but relation between x and y need not be
linear...

30 of 1

Linear basis function regression [Gergonne, 1815]

▶ input x fed through K fixed scalar-valued non-linear trans. ϕk (x)

▶ trans. ϕk are the basis functions; with scalar input x, trans. can be
▶ polynomials of degrees k : xk

▶ sinusoidals with various frequencies: sin(kx)
▶ wavelets parametrised by k : cos(kπx)e−x2/2

▶ collect into a feature vector ϕ(x) = [ϕ1(x), ..., ϕK (x)], e.g.

ϕ(x) = [sin(x), sin(2x)..., sin(Kx)] ∈ RK

▶ do linear regression with ϕ(x) vector instead of x itself
31 of 1

Linear basis function regression [Gergonne, 1815]

▶ input x fed through K fixed scalar-valued non-linear trans. ϕk (x)

▶ trans. ϕk are the basis functions; with scalar input x, trans. can be
▶ polynomials of degrees k : xk

▶ sinusoidals with various frequencies: sin(kx)
▶ wavelets parametrised by k : cos(kπx)e−x2/2

▶ collect into a feature vector ϕ(x) = [ϕ1(x), ..., ϕK (x)], e.g.

ϕ(x) = [sin(x), sin(2x)..., sin(Kx)] ∈ RK

▶ do linear regression with ϕ(x) vector instead of x itself
31 of 1

Linear basis function regression [Gergonne, 1815]

▶ input x fed through K fixed scalar-valued non-linear trans. ϕk (x)

▶ trans. ϕk are the basis functions; with scalar input x, trans. can be
▶ polynomials of degrees k : xk

▶ sinusoidals with various frequencies: sin(kx)
▶ wavelets parametrised by k : cos(kπx)e−x2/2

▶ collect into a feature vector ϕ(x) = [ϕ1(x), ..., ϕK (x)], e.g.

ϕ(x) = [sin(x), sin(2x)..., sin(Kx)] ∈ RK

▶ do linear regression with ϕ(x) vector instead of x itself
31 of 1

Linear basis function regression [Gergonne, 1815]

▶ input x fed through K fixed scalar-valued non-linear trans. ϕk (x)

▶ trans. ϕk are the basis functions; with scalar input x, trans. can be
▶ polynomials of degrees k : xk

▶ sinusoidals with various frequencies: sin(kx)
▶ wavelets parametrised by k : cos(kπx)e−x2/2

▶ collect into a feature vector ϕ(x) = [ϕ1(x), ..., ϕK (x)], e.g.

ϕ(x) = [sin(x), sin(2x)..., sin(Kx)] ∈ RK

▶ do linear regression with ϕ(x) vector instead of x itself
31 of 1

Linear basis function regression [Gergonne, 1815]

▶ When ϕk (x) := xk and K = Q, basis function regression = linear
regression

▶ basis functions often assumed fixed and orthogonal to each other
(optimal combination is sought), e.g. Legendre polynomials

▶ but need not be fixed and mutually orth. → param. basis functions

32 of 1

Linear basis function regression [Gergonne, 1815]

▶ When ϕk (x) := xk and K = Q, basis function regression = linear
regression

▶ basis functions often assumed fixed and orthogonal to each other
(optimal combination is sought), e.g. Legendre polynomials

▶ but need not be fixed and mutually orth. → param. basis functions
32 of 1

Linear basis function regression [Gergonne, 1815]

▶ When ϕk (x) := xk and K = Q, basis function regression = linear
regression

▶ basis functions often assumed fixed and orthogonal to each other
(optimal combination is sought), e.g. Legendre polynomials

▶ but need not be fixed and mutually orth. → param. basis functions

32 of 1

Parametrised basis functions [Bishop, 2006]

▶ eg basis functions ϕwk ,bk
k where scalar-valued function ϕk is applied

to inner-product wT
k x + bk

▶ ϕk often def’d to be identical for all k (only params change)
▶ eg ϕk (·) = tanh(·) , giving ϕwk ,bk

k (x) = tanh(wT
k x + bk)

▶ feature vector = basis functions’ outputs = input to linear trans.
▶ in vector form:

▶ W1 a matrix of dimensions Q by K
▶ b1 a vector with K elements
▶ ϕW1,b1(x) = ϕ(W1x + b1)
▶ W2 a matrix of dimensions K by D
▶ b2 a vector with D elements
▶ model output:

f W1,b1,W2,b2(x) = ϕW1,b1(x)W2 + b2
▶ want to find W1,b1,W2,b2 that minimise

1/N
∑

i ||yi − f W1,b1,W2,b2(xi)||2

33 of 1

Parametrised basis functions [Bishop, 2006]

▶ eg basis functions ϕwk ,bk
k where scalar-valued function ϕk is applied

to inner-product wT
k x + bk

▶ ϕk often def’d to be identical for all k (only params change)
▶ eg ϕk (·) = tanh(·) , giving ϕwk ,bk

k (x) = tanh(wT
k x + bk)

▶ feature vector = basis functions’ outputs = input to linear trans.
▶ in vector form:

▶ W1 a matrix of dimensions Q by K
▶ b1 a vector with K elements
▶ ϕW1,b1(x) = ϕ(W1x + b1)
▶ W2 a matrix of dimensions K by D
▶ b2 a vector with D elements
▶ model output:

f W1,b1,W2,b2(x) = ϕW1,b1(x)W2 + b2
▶ want to find W1,b1,W2,b2 that minimise

1/N
∑

i ||yi − f W1,b1,W2,b2(xi)||2

33 of 1

Parametrised basis functions [Bishop, 2006]

▶ eg basis functions ϕwk ,bk
k where scalar-valued function ϕk is applied

to inner-product wT
k x + bk

▶ ϕk often def’d to be identical for all k (only params change)
▶ eg ϕk (·) = tanh(·) , giving ϕwk ,bk

k (x) = tanh(wT
k x + bk)

▶ feature vector = basis functions’ outputs = input to linear trans.
▶ in vector form:

▶ W1 a matrix of dimensions Q by K
▶ b1 a vector with K elements
▶ ϕW1,b1(x) = ϕ(W1x + b1)
▶ W2 a matrix of dimensions K by D
▶ b2 a vector with D elements
▶ model output:

f W1,b1,W2,b2(x) = ϕW1,b1(x)W2 + b2
▶ want to find W1,b1,W2,b2 that minimise

1/N
∑

i ||yi − f W1,b1,W2,b2(xi)||2

33 of 1

Parametrised basis functions [Bishop, 2006]

▶ eg basis functions ϕwk ,bk
k where scalar-valued function ϕk is applied

to inner-product wT
k x + bk

▶ ϕk often def’d to be identical for all k (only params change)
▶ eg ϕk (·) = tanh(·) , giving ϕwk ,bk

k (x) = tanh(wT
k x + bk)

▶ feature vector = basis functions’ outputs = input to linear trans.
▶ in vector form:

▶ W1 a matrix of dimensions Q by K
▶ b1 a vector with K elements
▶ ϕW1,b1(x) = ϕ(W1x + b1)
▶ W2 a matrix of dimensions K by D
▶ b2 a vector with D elements
▶ model output:

f W1,b1,W2,b2(x) = ϕW1,b1(x)W2 + b2
▶ want to find W1,b1,W2,b2 that minimise

1/N
∑

i ||yi − f W1,b1,W2,b2(xi)||2

33 of 1

Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
▶ called “NNs” for historical reasons

▶ layers
▶ =‘feature vectors’ in hierarchy
▶ linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
▶ ‘input layer’, ‘output layer’, ‘hidden layers’
▶ trans. matrix = weight matrix = W ;

intercept = bias = b

▶ units
▶ elements in a layer

▶ feature vector (overloaded term)
▶ often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

▶ denote feature vector
ϕ(x) = [ϕ1(x), .., ϕK (x)] with K units (a K
by 1 vector)

▶ denote feature matrix
Φ(X) = [ϕ(x1)

T , ..., ϕ(xN)
T], N by K

matrix

34 of 1

Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
▶ called “NNs” for historical reasons

▶ layers
▶ =‘feature vectors’ in hierarchy
▶ linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
▶ ‘input layer’, ‘output layer’, ‘hidden layers’
▶ trans. matrix = weight matrix = W ;

intercept = bias = b

▶ units
▶ elements in a layer

▶ feature vector (overloaded term)
▶ often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

▶ denote feature vector
ϕ(x) = [ϕ1(x), .., ϕK (x)] with K units (a K
by 1 vector)

▶ denote feature matrix
Φ(X) = [ϕ(x1)

T , ..., ϕ(xN)
T], N by K

matrix

34 of 1

Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
▶ called “NNs” for historical reasons

▶ layers
▶ =‘feature vectors’ in hierarchy
▶ linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
▶ ‘input layer’, ‘output layer’, ‘hidden layers’
▶ trans. matrix = weight matrix = W ;

intercept = bias = b

▶ units
▶ elements in a layer

▶ feature vector (overloaded term)
▶ often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

▶ denote feature vector
ϕ(x) = [ϕ1(x), .., ϕK (x)] with K units (a K
by 1 vector)

▶ denote feature matrix
Φ(X) = [ϕ(x1)

T , ..., ϕ(xN)
T], N by K

matrix

34 of 1

Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
▶ called “NNs” for historical reasons

▶ layers

▶ units

▶ feature vector (overloaded term)
▶ often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

▶ denote feature vector
ϕ(x) = [ϕ1(x), .., ϕK (x)] with K units (a K
by 1 vector)

▶ denote feature matrix
Φ(X) = [ϕ(x1)

T , ..., ϕ(xN)
T], N by K

matrix

34 of 1

Hierarchy of parametrised basis functions

▶ regression
▶ compose multiple basis function layers

into a regression model

▶ result of last trans. also called “model
output”; often no non-linearity here

▶ classification
▶ further compose a softmax function at the end; also called

“logistic” for 2 classes
▶ “squashes” its input → probability vector; prob vector also called

model output / softmax vector / softmax layer

▶ “building blocks”
▶ layers are simple
▶ modularity in layer composition → versatility of deep models
▶ many engineers work in field → lots of tools that scale well

35 of 1

Hierarchy of parametrised basis functions

▶ regression
▶ compose multiple basis function layers

into a regression model

▶ result of last trans. also called “model
output”; often no non-linearity here

▶ classification
▶ further compose a softmax function at the end; also called

“logistic” for 2 classes
▶ “squashes” its input → probability vector; prob vector also called

model output / softmax vector / softmax layer

▶ “building blocks”
▶ layers are simple
▶ modularity in layer composition → versatility of deep models
▶ many engineers work in field → lots of tools that scale well

35 of 1

Hierarchy of parametrised basis functions

▶ regression
▶ compose multiple basis function layers

into a regression model

▶ result of last trans. also called “model
output”; often no non-linearity here

▶ classification
▶ further compose a softmax function at the end; also called

“logistic” for 2 classes
▶ “squashes” its input → probability vector; prob vector also called

model output / softmax vector / softmax layer

▶ “building blocks”
▶ layers are simple
▶ modularity in layer composition → versatility of deep models
▶ many engineers work in field → lots of tools that scale well

35 of 1

Assumptions for the moment

▶ we’ll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

▶ (for the moment) look only at last layer W , everything else fixed –
ie weights other than W do not change

▶ later we’ll worry about other layers

▶ assume that y is scalar
▶ so W is K by 1 (all vectors are forever column vectors)
▶ write wk for the k ’th elem

▶ assume that output layer’s b is zero (or, obs y ’s are normalised)
▶ both will simplify derivations here (but pose no difficulty otherwise)

▶ then f W (x) =
∑

wkϕk (x) = W Tϕ(x) with ϕ(x) a ‘frozen’ feature
vec for some NN

▶ some notation you’ll need to remember...
X, x ,N,xn,Q,D,K ,D = {(x1, y1), .., (xN , yN)} = X,Y

36 of 1

Assumptions for the moment

▶ we’ll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

▶ (for the moment) look only at last layer W , everything else fixed –
ie weights other than W do not change

▶ later we’ll worry about other layers

▶ assume that y is scalar
▶ so W is K by 1 (all vectors are forever column vectors)
▶ write wk for the k ’th elem

▶ assume that output layer’s b is zero (or, obs y ’s are normalised)
▶ both will simplify derivations here (but pose no difficulty otherwise)

▶ then f W (x) =
∑

wkϕk (x) = W Tϕ(x) with ϕ(x) a ‘frozen’ feature
vec for some NN

▶ some notation you’ll need to remember...
X, x ,N,xn,Q,D,K ,D = {(x1, y1), .., (xN , yN)} = X,Y

36 of 1

Assumptions for the moment

▶ we’ll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

▶ (for the moment) look only at last layer W , everything else fixed –
ie weights other than W do not change

▶ later we’ll worry about other layers

▶ assume that y is scalar
▶ so W is K by 1 (all vectors are forever column vectors)
▶ write wk for the k ’th elem

▶ assume that output layer’s b is zero (or, obs y ’s are normalised)
▶ both will simplify derivations here (but pose no difficulty otherwise)

▶ then f W (x) =
∑

wkϕk (x) = W Tϕ(x) with ϕ(x) a ‘frozen’ feature
vec for some NN

▶ some notation you’ll need to remember...
X, x ,N,xn,Q,D,K ,D = {(x1, y1), .., (xN , yN)} = X,Y

36 of 1

Assumptions for the moment

▶ we’ll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

▶ (for the moment) look only at last layer W , everything else fixed –
ie weights other than W do not change

▶ later we’ll worry about other layers

▶ assume that y is scalar
▶ so W is K by 1 (all vectors are forever column vectors)
▶ write wk for the k ’th elem

▶ assume that output layer’s b is zero (or, obs y ’s are normalised)
▶ both will simplify derivations here (but pose no difficulty otherwise)

▶ then f W (x) =
∑

wkϕk (x) = W Tϕ(x) with ϕ(x) a ‘frozen’ feature
vec for some NN

▶ some notation you’ll need to remember...
X, x ,N,xn,Q,D,K ,D = {(x1, y1), .., (xN , yN)} = X,Y

36 of 1

Assumptions for the moment

▶ we’ll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

▶ (for the moment) look only at last layer W , everything else fixed –
ie weights other than W do not change

▶ later we’ll worry about other layers

▶ assume that y is scalar
▶ so W is K by 1 (all vectors are forever column vectors)
▶ write wk for the k ’th elem

▶ assume that output layer’s b is zero (or, obs y ’s are normalised)
▶ both will simplify derivations here (but pose no difficulty otherwise)

▶ then f W (x) =
∑

wkϕk (x) = W Tϕ(x) with ϕ(x) a ‘frozen’ feature
vec for some NN

▶ some notation you’ll need to remember...
X, x ,N,xn,Q,D,K ,D = {(x1, y1), .., (xN , yN)} = X,Y

36 of 1

Assumptions for the moment

▶ we’ll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

▶ (for the moment) look only at last layer W , everything else fixed –
ie weights other than W do not change

▶ later we’ll worry about other layers

▶ assume that y is scalar
▶ so W is K by 1 (all vectors are forever column vectors)
▶ write wk for the k ’th elem

▶ assume that output layer’s b is zero (or, obs y ’s are normalised)
▶ both will simplify derivations here (but pose no difficulty otherwise)

▶ then f W (x) =
∑

wkϕk (x) = W Tϕ(x) with ϕ(x) a ‘frozen’ feature
vec for some NN

▶ some notation you’ll need to remember...
X, x ,N,xn,Q,D,K ,D = {(x1, y1), .., (xN , yN)} = X,Y

36 of 1

Generative story

Want to put dist over functions..

▶ difficult to put belief over funcs., but
easy to put over NN params

▶ assumptions for the moment: our data
was generated from the fixed ϕ (NN)
using some W (which we want to
infer)

37 of 1

Generative story

Want to put dist over functions..

▶ difficult to put belief over funcs., but
easy to put over NN params

▶ assumptions for the moment: our data
was generated from the fixed ϕ (NN)
using some W (which we want to
infer)

Generative story [what we assume about the data]
▶ Nature chose W which def’s a func: f W (x) := W Tϕ(x)
▶ generated func. values with inputs x1, .., xN : fn := f W (xn)

▶ corrupted func. values with noise [also called "obs noise"]
yn := fn + ϵn, ϵn ∼ N (0, σ2) [additive Gaussian noise w param σ]

▶ we’re given observations {(x1, y1), ..., (xN , yN)} and σ = 1

37 of 1

Model
▶ qs

▶ how can we find function value f ∗ for a new x∗?
▶ how can we find our confidence in this prediction?
▶ → ‘everything follows from the laws of probability theory’

▶ we build a model:
▶ put prior dist over params W

p(W) = N (W ;0K , s2IK)

▶ likelihood [conditioned on W generate obs by adding gaussian noise]

p(y |W , x) = N (y ;W Tϕ(x), σ2)

▶ prior belief “wk ∼ N (0,1)” means that funcs are likely to be
smooth, vs “wk ∈ N (0,100)” means funcs likely to be erratic; eg,
visualising func draws from prior:

▶ we want to infer W (find dist over W given D)

38 of 1

Model
▶ qs

▶ how can we find function value f ∗ for a new x∗?
▶ how can we find our confidence in this prediction?
▶ → ‘everything follows from the laws of probability theory’

▶ we build a model:
▶ put prior dist over params W

p(W) = N (W ;0K , s2IK)

▶ likelihood [conditioned on W generate obs by adding gaussian noise]

p(y |W , x) = N (y ;W Tϕ(x), σ2)

▶ prior belief “wk ∼ N (0,1)” means that funcs are likely to be
smooth, vs “wk ∈ N (0,100)” means funcs likely to be erratic; eg,
visualising func draws from prior:

▶ we want to infer W (find dist over W given D)

38 of 1

Model
▶ qs

▶ how can we find function value f ∗ for a new x∗?
▶ how can we find our confidence in this prediction?
▶ → ‘everything follows from the laws of probability theory’

▶ we build a model:
▶ put prior dist over params W

p(W) = N (W ;0K , s2IK)

▶ likelihood [conditioned on W generate obs by adding gaussian noise]

p(y |W , x) = N (y ;W Tϕ(x), σ2)

▶ prior belief “wk ∼ N (0,1)” means that funcs are likely to be
smooth, vs “wk ∈ N (0,100)” means funcs likely to be erratic; eg,
visualising func draws from prior:

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.51e2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.51e3

▶ we want to infer W (find dist over W given D)

38 of 1

Model
▶ qs

▶ how can we find function value f ∗ for a new x∗?
▶ how can we find our confidence in this prediction?
▶ → ‘everything follows from the laws of probability theory’

▶ we build a model:
▶ put prior dist over params W

p(W) = N (W ;0K , s2IK)

▶ likelihood [conditioned on W generate obs by adding gaussian noise]

p(y |W , x) = N (y ;W Tϕ(x), σ2)

▶ prior belief “wk ∼ N (0,1)” means that funcs are likely to be
smooth, vs “wk ∈ N (0,100)” means funcs likely to be erratic; eg,
visualising func draws from prior:

▶ we want to infer W (find dist over W given D)

38 of 1

Analytic inference w functions [new technique!]

We know that the prior and likelihood are Gaussians, therefore the
posterior prob over W must be Gaussian too (conjugacy). We’ll

complete the squares in the exponents to find it:

[whiteboard]

39 of 1

Analytic inference w functions [new technique!]

We know that the prior and likelihood are Gaussians, therefore the
posterior prob over W must be Gaussian too (conjugacy). We’ll

complete the squares in the exponents to find it:

[whiteboard]
▶ posterior variance

Σ′ = (σ−2
∑

n

(ϕ(xn)ϕ(xn)
T) + s−2IK)−1

and in vector form: (σ−2Φ(X)TΦ(X) + s−2IK)−1

▶ posterior mean
µ′ = Σ′σ−2

∑
n

(ynϕ(xn))

and in vector form: Σ′σ−2Φ(X)T Y
41 of 1

Analytic predictions with functions

How do we predict function values y∗ for new x∗?

▶ There’s only one correct way – use prob theory to perform preds!

p(y∗|x∗,X ,Y) this is the predictive dist (we’ll use it a lot)

=

∫
p(y∗,W |x∗,X ,Y)dW sum rule

=

∫
p(y∗|x∗,W ,X ,Y)p(W |X ,Y)dW product rule

=

∫
p(y∗|x∗,W)p(W |X ,Y)dW model assumptions

▶ how to eval? [a new technique!]
▶ likelihood p(y∗|x∗,W) is Gaussian
▶ posterior p(W |X ,Y) is Gaussian (from above)
▶ so predictive p(y∗|x∗,X ,Y) is Gaussian..

42 of 1

Analytic predictions with functions

We know that the likelihood and posterior are Gaussians, therefore the
predictive prob over y∗ must be Gaussian too (conjugacy). We’ll use

moment matching to find it:

[whiteboard]

43 of 1

Analytic predictions with functions

We know that the likelihood and posterior are Gaussians, therefore the
predictive prob over y∗ must be Gaussian too (conjugacy). We’ll use

moment matching to find it:

▶ Exercise (10min): Derive the variance of the predictive distribution
(predictive variance) (hint: use the identity
Var(z) = E [zT z]− E [z]T E [z] with simple manipulations)

Useful resources: yr.gl/udl101

45 of 1

http://yr.gl/udl101

Analytic predictions with functions (Exercise)

▶ Predictive variance (hint: use the identity
Var(z) = E [zT z]− E [z]T E [z] with simple manipulations)

47 of 1

Uncertainty in Deep Learning

Questions & discussion

48 of 1

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there
was some unprocessed data that should have been added to the final
page this extra page has been added to receive it.
If you rerun the document (without altering it) this surplus page will go
away, because LATEX now knows how many pages to expect for this
document.

