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Motion Tracking with On-board Sensors

3 x Grasshopper2 Bumblebee XB3 Novatel OEMV
1024x1024, 12Hz 1280x960x3, 16Hz 5Hz wa GPS

2 x SICK LMS151 SICK LD-MRS NovAtel SPAN-CPT+ALIGN
270 deg, 50Hz 90 deg, 4 plane, 12.5Hz 50Hz GPS+INS

Self-driving Vehicles
GPS, IMU, RGB-Cameras, Lidar, etc.

Decision making, Motion Planning,
sensing surroundings
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Ambient light sensor Speaker

Proximity sensor ‘ Microphone

Flood illuminator | Front camera

Infrared camera ‘ | | ‘ Dot projector

Mobile Devices VR/AR Wearing Devices

Cameras, IMU, Magnetometer, GPS, etc. Cameras, IMU, Magnetometer, Light
sensors, etc.

Pedestrian Navigation, Sports/Health Entertainment, Cooperative Work
Monitoring, First-responders Support



From Model-based to Learning-based

f @
X: Sensor Data, Images, IMUs, Lidar

Y: Self-motion, Location

f: Modelled by hand vs. machine (algorithms vs. deep neural networks)
Conditioned on current observations
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Research Question

Can we develop learning methods to estimate self-motion using multimodal data
to achieve accurate and robust localization without hand-crafted engineering?
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1. Learning to Localize using Inertial Sensor

Inertial Sensor:

v' Completely self-contained

v’ |Is not influenced by environmental factors

v' Widespread, deployed on smartphones, robots,
drones

v’ Low cost, small-size, energy-efficient

Problems:

v' The measurements are corrupted with various error
sources

v Double integration leads to unbounded system error

v' Initialization and calibration is time-consuming
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\ Inputs: Deep Neural Networks Outputs:
1 IMU data Sequence Full Trajectory
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Inertial Odometry Neural Network (IONet)

Full Trajectory
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IMU Sequence

C. Chen, X. Lu, A. Markham, N. Trigoni. IONet: Learning to Cure the Curse of Drift in Inertial Odometry. AAAI-2018.
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Trolley Tracking with Inertial Sensor Only

AAAI 2018
IONet: Learning to Cure the Curse of Drift in Inertial Odometry

Trolley Tracking Experiment

Changhao Chen, Xiaoxuan Lu, Andrew Markham, Niki Trigoni
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University of Oxford
20 Nov 2017
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2. Selective Sensor Fusion

v" Previous work rarely focus on incorporating
robust fusion strategies for dealing with
imperfect input sensory data.

Normal Data

v" Real issues include camera occlusion or
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Driving Straight

operation in low-light conditions,
measurement noises, temporal or spatial
misalignment between two sensors.

v The learning-based methods are not explicitly
modelling the sources of degradation in real- .l

Corrupted Data
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Visual Mask Inertial Mask

Tluning

world usages.

Soft

v" Naively using all features before fusion will
lead to unreliable state estimation.

Visual Mask " Inertial Mask Inertial Mask

AR YR 0l

Blur + Salt&Pepper Noise

Visual Mask

Temporal misalignment

C. Chen, S. Rosa, Y. Miao, C. Lu, W. Wu, A. Markham, N. Trigoni.
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Selective Sensor Fusion for Neural Visual-Inertial Odometry. CVPR-2019
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Selective Sensor Fusion for Neural VIO

Inertial Encoder
Temporal
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v A generic framework to learn feature selections from two modalities,
enabling robust and accurate ego-motion estimation

v Our selective sensor fusion masks can be visualised and interpreted

v" A new and complete systematic research on the accuracy and

robustness of deep sensor fusion in presence of corrupted data
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3. Sequential Invariant Domain Adaptation

v"Huge domain shift/difference, e.qg.

handheld vs pocket

v'Model trained in one domain is
hard to generalise to new domain

v’ Labelled data are not easy to
obtain, expensive, time-
consuming, require extra
infrastructure

v Current generative models work
not well on long continuous data-
series data
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C. Chen, Y. Miao, C. Lu, L. Xie, P. Blunsom, A. Markham, N. Trigoni.
MotionTransformer: Transferring Neural Inertial Tracking Between Domains. AAAI-2019
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SIDA
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v A generic framework to transfer continuous long time-series sensory
data

v’ using a shared encoder to transform raw inertial sequences into a
domain-invariant hidden representation

v’ as no labelled or even paired data is required to achieve motion
transformation in new domains.
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Transterring Across Motion Doma
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Figure 3: Heading displacement estimation from training in (a) source domain, (b) target domain and (c) MotionTransformer,
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and location displacement estimation from training in (d) source domain, (e) target domain and (f) MotionTransformer
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Inertial Tracking in Unlabelled Domains

Figure 4: Inertial tracking trajectories of (a) Pocket (b) Trolley (c) Handbag, comparing our proposed unsupervised Motion-
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Other contributions

Localization:

* DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel Neural Network. IROS-2019

e AtlLoc: Attention Guided Camera Localization. In submission

* DeepTIlO: A Deep Thermal-Inertial Odometry with Visual Hallucination. In submission

Mapping:

* Simultaneous Localization and Mapping with Power Network Electromagnetic Field. MobiCom-2018

* milliMap: Robust Indoor Mapping with Low-cost mmWave Radar. In submission
Navigation:
* Learning with Stochastic Guidance for Navigation. NeurlPS-2018 workshop

Perception:
* Autonomous Learning for Face Recognition in the Wild via Ambient Wireless Cues. WWW-2019

mID: Privacy-Preserving Tracking and Identification with Millimeter Wave Radar. DCOSS-2019
* Heart-Rate Sensing With a Robot Mounted mmWave Radar. In sumission
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Thanks for your attention!

Changhao Chen, D.Phil. Student
Department of Computer Science, University of Oxford

Email: changhao.chen@cs.ox.ac.uk
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