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Motion Tracking with On-board Sensors
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Mobile DevicesSelf-driving Vehicles

GPS, IMU, RGB-Cameras, Lidar, etc. Cameras, IMU, Magnetometer, GPS, etc.

VR/AR Wearing Devices

Cameras, IMU, Magnetometer, Light 
sensors, etc.

Decision making, Motion Planning, 
sensing surroundings

Pedestrian Navigation, Sports/Health 
Monitoring, First-responders Support

Entertainment, Cooperative Work



From Model-based to Learning-based
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X: Sensor Data, Images, IMUs, Lidar
Y: Self-motion, Location

f: Modelled by hand vs. machine (algorithms vs. deep neural networks)
Conditioned on current observations



Research Question

Can we develop learning methods to estimate self-motion using multimodal data 
to achieve accurate and robust localization without hand-crafted engineering?
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1. Learning to Localize using Inertial Sensor 
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Inertial Sensor:
ü Completely self-contained
ü Is not influenced by environmental factors
ü Widespread, deployed on smartphones, robots, 

drones
ü Low cost, small-size, energy-efficient

Problems:
ü The measurements are corrupted with various error 

sources
ü Double integration leads to unbounded system error
ü Initialization and calibration is time-consuming



Inertial Odometry Neural Network (IONet)
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• Inertial tracking problem as a sequential 
learning approach.
• The first deep neural network (DNN) 

framework that learns self-motion from raw 
IMU 
• Generalise across different attachments, 

users/devices and new environment. 
• Solve a more general motion, e.g. wheeled 

configurations

C. Chen, X. Lu, A. Markham, N. Trigoni. IONet: Learning to Cure the Curse of Drift in Inertial Odometry. AAAI-2018.



Trolley Tracking with Inertial Sensor Only
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2. Selective Sensor Fusion
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ü Previous work rarely focus on incorporating 
robust fusion strategies for dealing with 
imperfect input sensory data.

ü Real issues include camera occlusion or 
operation in low-light conditions, 
measurement noises, temporal or spatial 
misalignment between two sensors.

ü The learning-based methods are not explicitly 
modelling the sources of degradation in real-
world usages.

ü Naively using all features before fusion will 
lead to unreliable state estimation.

C. Chen, S. Rosa, Y. Miao, C. Lu, W. Wu, A. Markham, N. Trigoni. 
Selective Sensor Fusion for Neural Visual-Inertial Odometry. CVPR-2019



Selective Sensor Fusion for Neural VIO
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ü A generic framework to learn feature selections from two modalities, 
enabling robust and accurate ego-motion estimation

ü Our selective sensor fusion masks can be visualised and interpreted
ü A new and complete systematic research on the accuracy and
robustness of deep sensor fusion in presence of corrupted data



3. Sequential Invariant Domain Adaptation 
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üHuge domain shift/difference, e.g. 
handheld vs pocket

üModel trained in one domain is 
hard to generalise to new domain

üLabelled data are not easy to 
obtain, expensive, time-
consuming, require extra 
infrastructure

üCurrent generative models work 
not well on long continuous data-
series data

C. Chen, Y. Miao, C. Lu, L. Xie, P. Blunsom, A. Markham, N. Trigoni. 
MotionTransformer: Transferring Neural Inertial Tracking Between Domains. AAAI-2019



SIDA
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ü A generic framework to transfer continuous long time-series sensory 
data

ü using a shared encoder to transform raw inertial sequences into a 
domain-invariant hidden representation

ü as no labelled or even paired data is required to achieve motion 
transformation in new domains.



Transferring Across Motion Domains

11



Inertial Tracking in Unlabelled Domains
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Other contributions

Localization:
• DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel Neural Network. IROS-2019
• AtLoc: Attention Guided Camera Localization. In submission
• DeepTIO: A Deep Thermal-Inertial Odometry with Visual Hallucination. In submission

Mapping:
• Simultaneous Localization and Mapping with Power Network Electromagnetic Field. MobiCom-2018
• milliMap: Robust Indoor Mapping with Low-cost mmWave Radar. In submission

Navigation:
• Learning with Stochastic Guidance for Navigation. NeurIPS-2018 workshop

Perception:
• Autonomous Learning for Face Recognition in the Wild via Ambient Wireless Cues. WWW-2019
• mID: Privacy-Preserving Tracking and Identification with Millimeter Wave Radar. DCOSS-2019
• Heart-Rate Sensing With a Robot Mounted mmWave Radar. In sumission
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