NIl Ezsass

Principle and Practice of Putback-based Bidirectional
Programming in BiIGUL

Zhenjiang Hu, Hsiang-Shang Ko
National Institute of Informatics, Japan

BX Summer School, Oxford

July 25-29, 2016
] ﬁ

Overview NI

® |ecture 1: Introduction to BiGUL
- Why is putback-based BX?
- What is its foundation?
- How to program in BiGUL?
e Lecture 2: Into BiGUL's Bidirectionality
- How is BiGUL implemented?

® |Lecture 3: Three Applications using BiGUL

- Matching/delta lenses in BiGUL
- Bidirectionalize relational queries with BiGUL
- Parsing and reflective printing (BiYacc)

https://goo.gl/MdJeyk: lecture notes and codes

YATLERAN

AVARNSARLL AN

=) ———

E NP FPR
Notional lativgte of Iormatics

Bidirectional Programming (using Functions)

Bidirectional Transformation (BX)

[Nate Foster, et al: POPL 2005]

get
Src ' tgt

_ rnOd

put

src’ tgt’

NIl

_Lfﬁﬁ?ﬂi%l’ﬁ

Notionol lativgte of Mdormatic

Roundtrip Properties

get
Src ' tgt

_ mOd

put

src’ tgt’

7 R 445 B S0P

NIIE

osoncl lauidate of MWcrmatiks

Get-Puft:
put s (get s) = s

Put-Get:
get (put s 1) = t

y \

Challenges NI iz

e One may “solve” the problem just by sticking
together two arbitrary functions in any
programming language you like.

\

e Tricky to get right... and even trickier fo maintain

\

e Need to find a way of deriving both functions from
a single description.

6 y \

Get-based Approach N | | sz s

[Mossional lativate of Idormatics |

"get” (forward transformation)

v

"put” (backward transformation)

e Domain Specific Bidirectional Languages (lensl, lens2, ...)
e Automatic Bidirectionization of ATL, XQuery, UnQL

7 y \

Ambiguity of “Put” N | | s

get
Src ' tgt

_ mod

\]

put

Src’ tgt’

Since get is generally non-injective, many suitable puts
correspond fo one get, each being useful in different context.

L L

Dr\:

Dw

NIl Ezsass

getHeight (w,h) = h

putHeightl (w,h) h" = (w,h")

PutHeight2 (w,h) h' = (W*h'/h, h')

putHeight3 (w,h) h’' | h==h" = (w,h)
| otherwise = (3,h’)

y \

One Solution: Enriching “get” NI |Ezhszass

Enrich “get” with more and more control over “put”

Get-based BX Combinator Library Lenses
(Foster et al.: POPL 2005)

3 %

' 4

Relational Lenses Quotient Lenses Matching Lenses
(Bohannon et al.: PODS'06) || (Foster et al.: POPL08) (Foster et al.: ICFP’10)

= We will have too many versions of “get” ...

m “A

Foundation of Putback-based Bidirectional
Programming

11

YATLERAN

AVARNSARLL AN
= B

N I E 2R PR
Notional lativgte of Iormatics

Putback 1s the essence of BX! N | | sz

e An important but little-known fact:

A4
A-

put uniquely determines get

m “A

Derived “get”: Uniqueness |\ || [t

Lemma: Given a put function, there exists at most one
get function such that GetPut and PutGet hold.

Proof:
Suppose we have two get functions, say get and get'.
get s

get' s

w “A

Derived “get”: Uniqueness

Lemma: Given a put function, there exists at most one
get function such that GetPut and PutGet hold.

Proof:

Suppose we have two get functions, say get and get'.
get s

=> { GetPut }
get (put s (get’ s))

== { PutGet }
get' s

m “A

Derived “get”: Existence |\ || [t

Lemma: Given a surjective put function (for any s, there
exist s, v, such that s = put s" v), the get function defined
by

get s = v such that put sv =s

satisfies GetPut and PutGet.

Proof:

get (put s v) put s (get)

15 V

Derived “get”: Existence |\ ||

Lemma: Given a surjective put function (for any s, there
exist s, v, such that s = put s" v), the get function defined

by
get s = v such that put sv =s

satisfies GetPut and PutGet.

Proof:

get (put s v) put s (get)

{ definition of get }
put s v

{ condition for put }

get s

{ condition for put }

{ definition of get}

Remark N | | &z

Lemma: if there exists a v satisfying put s’ v = s, then
so does put s v = s.

Proof:
put s'v =5
=> { put}
put (put s’ v) v = put s v
== { PutTwice: forall s v. put (put s v) v = put s v }
put s"v = put s v
== { Assumtion: put s’ v = s }
S=putsv

w “A

Well-behaved “put”

Definition: A “put” function is said to be well-behaved,
if there exists a (unique) “get” function such that
GetPut and PutGet hold.

Exercise
Which of the following puts are well-behaved?
@ putlsv=s

@ putzsv=v
@ put2 sv=v+l

18

Well-behaved “put” N | | ez

Lemma:

put is well-behaved, iff

1. View-deterministic
put sl vl = put s2 v2 = vl = v2

2. View-stable
for any s, there exists a v, such that put s v = s

Sebastian Fischer, Zhenjiang Hu, Hugo Pacheco, Pearl: A Clear Picture of
Lenses, MPC 2015.

w “A

Validity Check of “Put” N"rlﬁ

Theorem:

Well-behavedness of a put defined in freeless languages is
decidable.

*

Validation Algorithm:
(Soundness): A validated put is well-behaved.
(Completeness): Any well-behaved put can be validated.

Zhenjiang Hu, Hugo Pacheco, Sebastian Fischer, Validity Verification of Putback
Transformations in Treeless Languages in Bidirectional Programming, FM 2014.

: "y

Putback-based Bidirectional Programming in BIGUL

 Full control of bidirectional behavior

* Put is not that difficult to write

m “A

http://www.prg.nii.ac.jp/bx/ N || azssass

[

- o) My g ~ - (] [y

work v inbox {A¥iZELEiANL REIRE FR BBV NIv B&U5v Zi:—Av SH iGoogle YouTube Facebook iCloud BEE

ng... Bidirectional t...

: B&i’x BlYAC,a BIGUL PUBLICATIONS EAM CONTACT
] ," . v\ P
- ' ; N D
W<

.

»

PUTBACK-BASED BX

A}g'éntle approach to synz‘fhronising‘*kinds of data

Installing BIGUL N | | i

23

1. Get the Glasgow Haskell Compiler (GHC) version
7.10.3. The easiest way is to install the Haskell
Platform:

Use Haskell's default build system "cabal" to
install BiGUL 1.0 (as a library). Start your
terminal and run

> cabal update
> cabal install BiGUL

Test.hs N || Ezass

_g test.hs

O O
DEExEH9 $ B R

{-# LANGUAGE FlexibleContexts, TemplateHaskell, TypeFamilies #-}
import Generics.BiGUL
import Generics.BiGUL.Interpreter
4 import Generics.BiGUL.TH
import Generics.BiGUL.Lib

-- hello: _ <-> Hello!
hello :: Show a => BiGUL a String
hello = Skip (_ -> "Hello!")

-:--- test.hs All LS Git:oxford-ssbx16 (Haskell FlyC-)
Wrote /Users/hu/Repositories/prl_tokyo/bigul/SummerSchooll6/test.hs

24

Put and Its Bidirectional Interpretation N | | sz

e A putback function:
px :: BIGUL s v

desrcibes how to use the view to update the source.

e Bidirectional Interpretation:
get px :: s 2 Maybe v
put px :: s 2 v 2 Maybe s

25

y \

26

NI

(12 tA 882 R FE P

Nebcnd Attt of Miormotics

-- hello: _ <-> Hello!
hello :: Show a => BiGUL a String
hello = Skip (_ -> "Hello!")

*Main> get hello 1
Just "Hello!”

*Main> get hello 2
Just "Hello!”

*Main> put hello 2 "Hello!"
Just 2

*Main> put hello 2 "Hello!!"
Nothing

A Quick Tour of BIGUL

Skip

Replace

Product

Source/View Rearragement
Case

auHhwn =

27

Nil=S==s

4?!!5?9132?)?

Notionol lativgte of Mdormatic

1. Skip

28

Disallow any change on the view

NI

(12 tA 882 R FE P

[Mossional lativate of Idormatics |

Skip :: (s 2 v) 2 BiGUL s v

*Main> put (Skip square) 10 100
Just 10

*Main> put (Skip square) 10 250
Nothing

*Main> get (Skip square) 5
Just 25

skipl :: BiGUL s ()
skipl = Skip (const ())

2. Replace

29

Use the view to completely replace the source

NI

(12 tA 882 R FE P

Nebcnd Attt of Miormotics

Replace :: BiGUL s s

*Main> put Replace 1 100
Just 100

*Main> put Replace (1,1) (100,200)
Just (100,200)

3. Prod: Production of two puts N | | E&hssZass

30

(12 tA 882 R FE P

[Mossional lativate of Idormatics |

Prod :: BiGUL sl vl =2 BiGUL s2 v2
- BiGUL (s1,52) (v1,v2)

*Main> put (skipl *Prod" Replace) (5,1) ((),100)
Just (5,100)

*Main> put ((skipl ‘Prod' Replace) ‘Prod' Replace) ((5,1),2) (((),100),200)

Just ((5,100),200)

y \

4. Source/View Rearrangements N || Eztuzass

Rearrange the source/view through a natural transformation
tau to make the view and the source have the same structure.

$(rearrsS [| tau :: sl -> s2 []) :: BiGUL s2 v -> BiGUL sl v

$(rearrV [| tau :: vl -> v2 []) :: BiGUL s v2 -> BiGUL s vl

putPairOverNPair :: (Show sl, Show s2) => BiGUL ((sO,s1),s2) (s1,52)
putPairOverNPair = $(rearrs [| \((sO,s1),52) -> (s1,52) |]) Replace

putPairOverNPair' :: (Show sO, Show sl, Show s2) => BiGUL ((sO,s1),s2) (s1,52)
putPairOverNPair' = $(rearrV [| \(viv2) -> ((Ov1),v2) []) $
(skipl "Prod” Replace) "Prod"™ Replace

m “A

A syntactic sugar:

NI iiszies

$(update [p
P
d

source-pattern |]
view-pattern |[]
updating-strategy])

putPairOverNPair” :: (Show sl, Show s2) => BiGUL ((sO,s1),s2) (s1,52)
putPairOverNPair” = $(update [pl ((_,s1),52) []

32

[pl (s1,52) []
[dl s1 = Replace; s2 = Replace])

y \

NIz

Exercise:
Define pHead to use the view to replace to first element of
the source list.

pHead :: BiGUL [s] s

pHead :: Show s => BiGUL [s] s
pHead = $(rearrS [| \(s:_) -> s |]) Replace

pHead :: Show s => BiGUL [s] s
pHead = $(update [pl s:_ 11 [s I] [dl s = Replace |]

33

y \

34

N | Bz R F R 2 PR

[Motionol lagtitute of Mndcrmotics

Exercise:

Define pNth to use the view to replace to the ith element of
the source list.

pNth :: Int > BiGUL [s] s

pNth :: Show s => Int -> BiGUL [s] s
pNth i = if i == O then pHead
else $(rearrsS [| \(x:xs) -> (x,xs) |]) $
$(rearrV [\v > (), v) I1) $
skipl “Prod” pNth (i-1)

*PBasic> put (pNth 3) [1..10] 100
JUSf [112/311001516171819110]

*PBasic> get (pNth 3) [1..10]

5. Case NIz

Case [$(normal [| enteringCondl ::s -> v -> Bool |] [lexitCondl :: s -> Bool [])
==> (bxl :: BiGUL s v)

$(adaptive [| enteringCondl' :: s -> v -> Bool [])
==> (fl s ->Vv ->5)

~

$(normal [| enteringCondn ::'s -> v -> Bool |] [lexitCondl :: s -> Bool |])
==> (bxn :: BiGUL s v)

~

$(adaptive [| enteringCondm' :: s -> v -> Bool)
=> (fm s ->Vv ->5)

~

]
e BiIGUL s v

% "y

36

N | 132 RSB S R TR

[Mossional lativate of Idormatics |

pHead :: Show s => BiGUL [s] s
pHead = $(rearrsS [| \(s:_) -> s |]) Replace

¥

repHead :: BiGUL [Int] Int
repHead = Case |
$(normal [| \s v -> length s > 0 [] [| \s -> length s > O [])
==> $(rearrsS [| \(x:_) -> x |]) Replace,
$(adaptive [| \s v -> length s == 0 [])
==> \s v -> [O]
]

y \

N | | Ezsssiss

Exercise

Define a safe embedding of a pair of well-behaved
get and put as a putback ftransformation.

emb ::EQVv=(s->Vv)->(s->v->s)->BiGUL s v
emb g p = Case [$(normal [| \s v -> g s == v [] [pl _ I])
==> SKip g
, $(adaptive [| \s v -> {- g s /= v -} True [])
==> p

]

distSum :: BiGUL (Int, Int) Int
distSum = emb g p

where g (x,y) = x+y; p (X,y) v = (v=y,y)

w “A

