Archltecture DeS|gn (and éllttle
Verification) for BX

Richard Paige

Dept of Computer Science, University of York
@richpaige

Migrating Uber from MySQL to i)

P ' WHY UBER ENGINEERING SWITCHED
o Kl FROM POSTGRES TO MYSQL

UUUUUUUUU

March 13, 2013 3Y EVAN KLITZKE

* What is architecture and design for
transformations and BX?

 Architecture specification for BX.
» Detailed design specification for BX.
* Design patterns for BX.

* (just a little on...) Verification for BX.

« Large and complicated BX are like large
and complicated software systems:

— Many parts

— Complex interrelationships and dependencies
— Sophisticated behaviour (often implicit)

— Difficult to get right, difficult to verify.

« Large software is seldom monolithic.
— Decomposed into interdependent components

* Architecture for BX and transformations is
complicated:

— What are the constituent blocks?

— How can they be related? (ports, protocols,
buffers)

— How can a transformation architecture be
iIntegrated with other components

 e.¢g., code generators, visualisations (e.g., non-
MDE).

Architecture

In transML

architectu re|

@ Architecture

Connector |~
Emm—
Interface * << enumeration >>
T~ - -
-name:String +ports Direction
-direction:Direction +IN:int=0
+OUT:int=1
* \|; + constraints +INOUT:int=2
<< from mappings >>
Constraint
* type§ 0..1 type ‘ - + components
IType ArchComponent
T~
-name:String -name:String + children

Zr Zf Z‘k Actor ArchComposite

Event Artefact Metamodel

Transformation SWComponent

Architecture

In transML

« Components and connectors that interact via
directional interfaces.
— Architectural components can be transformations,

software (black box), actors (human intervention), or
composites

e BX do not exist in a vacuum!

— Types (of interfaces, ports, components) given by
metamodels, event types, artefacts or architectural
components.

* Contracts can be imposed to restrict expected
inputs and outputs, and to enable conformance
checking.

Architecture

in
aM2T»
GenSchSQL

I

|

|

|

|

N ~
UML SQL Grammar j
ISO/IEC 9075-2008

e Transformation centric view
* Unidirectional: OO->DB->optimise->SQL

g

v

w

/
/ e
/

.

*

2

3

v @

N D
Q

Architecture

i M
n
zinPlace»
Normalize «M2T»
/] GenSchSQL
|
|
- |
X ~-
DB SQL Grammar
UnML [ﬁ ISO/IEC 9075-2008 [T

* Transformation centric view

* Bidirectional components: OO->DB->optimise-
>SQL

Architecture

out in ,
out n
00206_\- sinPlacex _
Normalize «M2T»
i / GenSchsQL
I |
/ N l
: N 1
N Sy ~J-

DB SQL Grammar
UML ﬁ ISO/IEC 9075-2008 j

* Transformation centric view

* Bidirectional components: OO->DB->optimise-
>SQL

Architecture

Example

Normalise

[|

u 002DB uGenSchSQL)Lmn:J

e Type centric view (is this a slightly different
architecture?)

e BX: O02DB, Normalise, GenSchSQL could be run
individually in either direction.

* Similar to a megamodel, where components are
visualised as arrows connecting interfaces.

— Useful for bridging grammars and models.

Architecture
Styles?

* Are there BX equivalents to typical software
architectural styles?

— Pipe-and-Filter

— Model-View-Controller
— Layered

— Pub-Sub

— Data-Centric

BX Design

* The architecture of a transformation indicates
the key components and their connectors.

* Engineering of BX continues with design.
— High-level design: what is transformed into what?

— Low-level design: how is the transformation
carried out?

e Take each in turn

BX High-Level
Design

* Mapping diagram.
e Captures the mappings between arbitrary
elements in the transformation.

* transML uses a concrete syntax inspired by
TGGs.

— However, mappings are not meant to be used as a
tracing mechanism to guide execution of code.

 Don’t address, e.g., execution flow.

BX Mapping

Metamodel

mappingsl

MappingModel |qgp—> ModelEnd Language
1. -name:String
? -navigable:Boolean $
1.*
Package MetaModel
MappingEnd
' -name:String
-min:int *
-max:int :
ModellingElement
Mapping [€@———> -navigable:Boolean I

-language:String

‘ + children InterpretedConstraint
0..1 J/+ when

Constraint

OpaqueConstraint

-text:String

<< from analysis >>
Pattern

BX Mapping

Example

OO0 k->| Class2Relational k>

Class
Class o / Classes are transformed to
\ tables /‘ N
\pkey
p / Reference \ fke
Reference Column

References are transformed
\ into foreign keys /

/< Single-Valued-Att
Single-valued attributes are

transformed into a column

Multi-Val-Att-Child \

Attribute In children dasses the table

is not created, but only the
foreign key

N

Multi-Val-Att-Top \

Muiti-valued attributes are \
transformed into a table,

with a pkey, a key, and a
column for their values

BX Mapping Example —
Adding Constraints

Attribute

at

OCL| l ______________
| at.owner. general.size()= O

Multi-Val-Att-Top
Multi-valued attnbutes are
transformed into a table,
with a pkey, a fkey, and a
column for their values

[\

BX Low-

Level Design

* Indicates how the BX is to be implemented.

* Could use a BX programming language here.

— But transML provides low-level design languages
to try to support platform independence, focus on
essentials

— Essentials: rule structure, control flow, blocks
(some not present in programming languages).

e transML: rule structure model and rule
behaviour model.

Rule Structure

Metamodel

<< from mappings >> | _+Implements Transformation

mles~stmcturel

MappingModel -isBidirectional:Boolean
—{ Invocation H

1..*J,+rules " [Call][When I
+src {ordered}

. Component Flow
AR <H—{_Ater_|

-

+ elements | ISALAP:Boolean + tar {ordered)
< %{ Cholce |
Y . DataDependency
? lr 0.1 « | +children guard -expressionParam:String
Block 7 Helper 7 Rule +guard_ | << from mappings >>
-isConcurrent:Boolean -isAbstract:Boolean 0.1 Constraint
-isNondeterministic:Boolean -isTop:Boolean .
-isInitial:Boolean -isLazy:Boolean +Implements_ |-« from mappings >>
-priority:int ® Mapping vere | - wtar
Domaln —— +type _ | << from mappings >>
. . ~| ModellingElement
Zﬁ lﬁ \J/ + 0.1 .
DirectionalRule BidirectionalRule << from mappings >> return + params
Language {ordered)

* Describes structure of rules (input, output),
execution flow, and data dependencies

Rule Structure
Models

* These refine mapping diagrams.

* Arule can contribute to the implementation
of several mappings.

* Rules may be uni- or bidirectional.

e Execution flow may be explicit (e.g., a subclass
of Flow) or non-deterministic:

— A set of rules can be placed inside a non-
deterministic block

Directional Transformation
from OO to DB (ETL)

-

*
A4
'd ™~
c:Class
calls n QZ
{c. parent r'
Class2Table
{Class]

-

after

e

00 DB %
r:Refarence m m
Reference2Column
{Reference)

O D8
a:Attribute —M @
SingleValuedA
2Column
fSahg!e- Vah:ed—Aﬂ‘}
a:Attribute

MultiValuedAtt
2Table

{Muis-Val-Att-Chiid,

Muit-Val-Att-Top)

transformation Tree2Graph {

nondeterministic RuleBlockForward {
bidirectional Tree2Node {..};
bidirectional TreeEdge2GraphEdge {..} ;

}

nondeterministic RuleBlockBackward {
bidirectional TreelLabelsfromNodelabels {..};
bidirectional TreeEdgesfromGraphEdges{..};

Rule Structure
Model

* With rule structure, the particular
implementation language of choice needs to
be considered.

* This is because these models capture the rules
and their execution flow (which is language
semantics-specific).

— For example, execution flow in ETL: each rule is
executed once at each instance of input; for graph

transformation it’s “as long as possible”.

Rule Behaviour
Diagram

e The rule structure models treat rules as black-
boxes, ignoring behaviour:

— Attribute computation, object and link creation.

e Specified using rule behaviour diagrams:
— Action language
— Declarative graphical pre/post

— Object diagrams annotated with operations
(similar to Catalysis snapshots)

Class2Table

-~

c:Class

«new»
t-Table

name:=C.name

)
)
! «new»

«n

coumns prima

EW»

Keys

-

«New»
pk:Column

name:=t.pkName()
type:=*‘NUMBER’

transform c: OO!Class
to t:DB!Table, pk: DB!Column

t.name:=c.name;
pk.name:=t.pkName();
pk.type:="NUMBER’;
t.columns.add(pk);
t.primaryKeys.add(pk);

Design Patterns for BX

Design Patterns

e Capture recurring design problems and their
solutions (which must be instantiated).

 Many different patterns in the literature,

including some for model transformation

design.

— Some of these patterns are applicable to the
design of uni- or bidirectional transformations.

— Some specific for BX.

— Several examples.

Auxiliary

Correspondence Model

* Weaving tools (such as AMW, EML) can be used to
propagate changes from/to models in a BX.

— They do or can make use of an auxiliary correspondence
(weaving) model.

e Pattern: defines auxiliary model elements and
associations that link source and target elements.

* Why: used to record mappings performed by a BX, and
to propagate modifications when one model changes.

* Benefits: separation of concerns, helps to ensure
correctness

* Disadvantages: must maintain an additional model.

Unique Instantiation

* Why: Avoids creation of unnecessary elements of
models and helps to resolve nondeterministic
choice in reverse mappings.

— E.g., in check-before-enforce in QVT-R: new elements

are not created if there are elements that satisfy the
relations.

* Benefits: helps to establish hippocraticness

* Disadvantages: must test for existence, adds to
cost (but other patterns like indexing can help).

Map Objects Before

Links

 Why: Separates the relation between elements in
target and source models from the relation between
links in the models.

— That is, first map “nodes”, then map “edges” (largely
useful for models with self-associations or circular
dependencies)

* Benefits: modular specification, e.g., if new association

is added to languages, new relation can be added more
easily.

* Disadvantages: edges modular, features may not be!
— We’ve seen this type of trade-off before!

Verification of BX

Verification of BX

* Many approaches, including correctness by
construction, unit testing, etc.

— transML includes a model-based testing approach

where tests can be automatically generated from
transformation scenarios

* Will talk about one specific and different
approach.

BX: iIs there another

f “
if a framework existed in which it were possible to

write the directions of a transformation separately
and then check, easily, that they were coherent, we
might be able to have the best of both worlds

Stevens, P.: A landscape of bidirectional model transformations. In: GTTSE 2007.

“Faking” BX In

Epsilon

* Epsilon is a platform of interoperable model
management languages

* No direct support for BX, but:
=> languages for unidirectional transformations (ETL,

EWL, EOL)
=> an inter-model consistency language (EVL)

 BX can be faked in Epsilon by:
(1) defining pairs of unidirectional transformations
(2) defining consistency via inter-model constraints

update transformation constraint violation repair transformation

 r———0

OO2RDBMS

* two metamodels: class diagram and relational DB

e consistency defined in terms of a correspondence between
the data (attributes) in the models

:Class
:Table
name = "users"

name = "users"

feature feature
pke Y column

Attribute ‘Attribute

pkey = True pkey = False
name = "id" | |[name = "username"

:Column :Column

name = "id"| [name = "username"

\. J \.

class diagram relational DB

Example BX “faked”

in Epsilon

» users of the models should be able to create new classes (or
tables) whilst maintaining consistency

» first, we specify a pair of unidirectional transformations in
Epsilon’s update-in-place language

wizard AddClass { wizard AddTable {
do { do {
var c:. new Class; var table: new Table;
c.name = newName,; table.name = newName;
self.Class.all.first().contents.add(self.Table.all.first () .contents.add(
c); table);
I3 I3

Example BX “faked”

in Epsilon

* then, we specify and monitor inter-model constraints that
express what it means to be consistent

context 00!Class {
constraint TableExists {
check : DB!Table.all.select(t|t.name
= self.name).size() > 0

i3

context DB!Table {
constraint ClassExists {
check : 00O!Class.all.select(c|c.name
= self.name).size() > 0

i3

Example BX “faked”

in Epsilon

* then, we specify and monitor inter-model constraints that
express what it means to be consistent

context 00!Class { context DB!Table {
constraint TableExists { constraint ClassExists {
check : DB!Table.all.select(t]|t.name check : 0OO!Class.all.select(c|c.name
= self.name).size() > 0 = self.name).size() > 0
TableExists fails

More needs to be

“faked”

e fake BXlack the consistency guarantees that true BX have
by construction

* what does this mean?
=> compatibility of the directions might not be maintained
(e.q., discovered when checking consistency)

=> repair transformations might not actually restore consistency

 our example is obviously compatible, but we should be able
to check this easily and automatically

Our proposal

Exploit graph transformation verification
techniques to check compatibility

e graph transformation (GT) is a computation abstraction
=> state is represented as a graph

=>computational steps represented as GT rule applications

Our proposal

Exploit graph transformation verification
techniques to check compatibility

e graph transformation (GT) is a computation abstraction
=> state is represented as a graph

=>computational steps represented as GT rule applications

o ~
init :

) = e

Our proposal

Exploit graph transformation verification
techniques to check compatibility

e graph transformation (GT) is a computation abstraction
=> state is represented as a graph

=>computational steps represented as GT rule applications

4)
init:
) = e ®:> e — o>o
init grow
grow : o
= e => oTmere
e — o >0 grow grow
1 1

GT Verification

 functional correctness of GT rules can be verified in a
weakest precondition style

* pre-and postconditions are expressed in the graph-based
logic of nested conditions, equiv. to FO logic

* roughly, to verify {pre} P {post}:

P

[GT rules |

J

nested conditions
pre & post

\

J

d

calculate WP(P, post)

N

Does pre =>WP(P, post)?

Rigorous “faking”

 translate the unidirectional transformations to GT rules
=> denoted Ps and Pt

 translate the inter-model constraints to nested conditions
=> denoted evl

* automatically discharge the following specifications using
the weakest precondition calculi

{ {evl} Ps; Pt {evl} J { {evl} P; Ps {evl} J

Proving consistency of
our CD/DB bx

. :Class . ‘Table
) =) =

name = newName name = newName

Proving consistency of
our CD/DB bx

. :Class . ‘Table
) =) =

name = newName name = newName

name = e=x name = x
\V/ :Table 3 :Table :Class
/\ (name =y 9 (name =y name =y))

2
\. J

/ compatible: WP(Ps;Pt,evl) = WP(Pt1;Ps,evl) = evl

Putting it all

together

we need to do this bit

/ \
no [loop .,
/ o

Pe evl =
model transformations \ Wilp(Ps: Py, evl) FO validity

. Y to graph programs Pr / yes
‘faked” BX ¥ | WLP compatible
in Epsilon ~, construction \ yes

EVL constraints to Sl

nested conditions 4 C(U =) SO

Wlp(Pr; Ps, evl ?2?

no [loop

T

exploit existing theorem provers here

Our next steps

* identify a selection of BX case studies J

 fake them in Epsilon, manually translate them into GT
rules and nested conditions, and verify compatibility

 implement the translations for an expressive subset of
the Epsilon languages; implement the WP calculation

* challenges and open questions:
=> finding counterexamples (e.g. using GROOVE)
=> theoretical / practical limitations (e.g. is FO expressive

enough?)

e State of the art in MDE for BX.

* Requirements engineering for BX.
* Architecture and design for BX.

* (A little) Verification of BX.

 What are the future challenges from a SE/MDE
perspective?
— QVT-R: the bugbear.

— Value proposition of BX versus two unidirectional transformations
(Empirical studies! Empirical studies!)

— When does the requirement for a BX “emerge” in the engineering
process? (Work bottom up, top down...)

