Requirements Engineering for BX

Richard Paige

Dept of Computer Science, University of York
@richpaige

 Why consider requirements for
transformations and BX?

 What are requirements for BX?
 Requirements engineering processes for BX.
* Requirements specification languages for BX.

Motivation

A number of BX languages and tools have been
proposed (see last lecture).
— Each tool has its own characteristics, strengths,
weaknesses, etc.

* In a number of transformation applications, the
requirements for BX are “discovered” late.

— Sometimes requiring substantial rework!

e A better understanding of requirements
engineering for BX can help mapping tools/
approaches to problems, and mapping problems
to BX.

Selected

Literature

R. Eramo et al, “Representing uncertainty in bidirectional
transformations”

R. Eramo et al, “Towards a taxonomy for bidirectional
transformations”

N. Macedo et al, “Least-change bidirectional model
transformations with QVT-R and ATL”

S. Hidaka et al, “Feature-based classification of
bidirectional transformation approaches”

E. Guerra et al, “Engineering model transformations with
transML”

S. Tehrani et al, “Requirements engineering in model
transformation development”

Requirements and BX

General Questions

 What are some general questions to be
addressed when we engineer a BX?

1.
2.

3.

What needs to be transformed into what?

What mechanisms can be used for building the BX?
(includes theory, tools, techniques)

What are the application domains for the BX?

What are the specific characteristics of the BX (e.g,
what patterns are appropriate to use)?

What are the quality requirements (eg.,
performance) for the BX?

What are the success criteria for the BX?

General Properties for BX

* Size:is the BX small (e.g., a single reversible
refactoring) or large (e.g., a reversible
codegen)?

* Level of automation: fully automated, human-
in-the-loop?

* Visualisation: how is the BX, its results, and its
input presented to users?

e Level of industry application
* Maturity level: is there a tool, is it theoretical?

Functional Requirements

* Define what a BX must, should or could provide.

* Some examples.

* Correctness:
— when the BX is run in the forward direction, the target
model must be well formed
— when the BX is run in the reverse, the source model
must be well formed

— (well formedness usually defined in terms of
conformance to metamodel/constraints evaluate to

true).

Functional Requirements

* |nconsistency tolerance:
— Should be able to support incomplete or inconsistent
artefacts (e.g., temporarily inconsistent models)
* Modularity: should provide the ability to
compose transformations into new ones.

* Traceability: should support generation of links
(correspondence model) between source and
target models

— as well as between the steps of a transformation
process (chaining)

Functional Requirements

* Change propagation: should provide support
for propagating changes in a model from one
direction to another.

* Incrementality: should support the ability to
update target models based on only the
changes made in the source models.

* Unigueness: could support the ability to

generate a unique solution to a BX problem (cf
JTL).

Functional Requirements

* Termination: should support the definition of
terminating transformation executions.

* Mechanisms/styles: must support a
transformation style, i.e., declarative,
operational or hybrid.

— Will vary in terms of what they make implicit, e.g.,

navigation of source model, creation of target
model, order of rule execution, etc

Non-Functional

Requirements

* Specifies criteria with which we can judge the
quality of a BX.

 Examples.
— Extensibility and modifiability
— Usability (tricky!)

— Robustness: can the BX manage invalid models and
deal with corresponding errors?

— Conciseness

— Interoperability: connection with other (especially
non-MDE) tools

— Verifiability and validity.

Requirements Engineering Processes
for BX

Key Concepts

 What are the typical stages of a RE process for
BX?

nat are the key artefacts that are involved?
no are the stakeholders?
nat problems may arise?

S 2=

nat techniques can be applied?

Typical RE Stages

* Domain analysis and elicitation:
— Who are your stakeholders?
— Gather information from users, customers, etc on
the system domain and system requirements.
* Evaluation and negotiation:

— |dentify imprecision, conflicts, omissions and
redundancies in these “informal” requirements

— Resolve these (if possible and appropriate) via
negotiation and consultation

Typical RE Stages

e Specification:
— Document the formal requirements in a
specification (more later)

— Often the basis for a contract between developers
and customers

e Validation & Verification:

— Check the specification for consistency,
completeness and acceptability to stakeholders

RE Processes for BX

stakeholder |7 prototyping,

identification, detailed stakeholder Completed MT
initial requirements Scenariosin feedback spec,ﬁcat,on
requirements Informal elicitation text/concrete Initial MT

elicitation Requirements grammar specuﬁcatlon

goal speclﬁcatlon
decomposition formalisation

completeness,
consistency,
conflict resolution

validation/verification,
static analysis, proof,
testing

From Tehrani et al, ICMT 2016

RE Processes for BX

* Previous diagram: a typical RE process.

 Points of note:

— Use of BX scenarios as a concrete mechanism for
driving the development of a specification.

— Distinction between local and global requirements.

— Local requirements: mapping, rewriting, defining
correspondences

— Global requirements: properties of an entire model,
e.g., a measure of complexity is reduced by running a
BX, performance obligations, information hiding.

BX Elicitation

* Observation/ethnographic methods: observe
current (possibly) manual BX process.

— E.g., consistency between an Excel spreadsheet and a
SysML requirements diagram.

* Unstructured interviews: ask open-ended
guestions about domain, current BX process.

— Useful for transformation goals, e.g., “ensure
refactorings are applied to both source and target

within 10ms”, “preserve performance properties of
models”

BX Elicitation

e Questions for unstructured interviews?

— Size range of source/target models? (what kind of
infrastructure should be supported? — led us to use
NoSQL for a couple of projects)

— Formats for encodings of models and BX? (explored
binary encodings instead of text/XMI)

— Assumptions about source/target models? (e.g.,
always available, being incrementally updated)

* Who checks that assumptions are met?
— Read, write, read-write?
— Confidentiality restrictions?

BX Elicitation

e Structured interviews:
— Preloaded questions about the domain and BX.

— Can focus on a checklist based around a
requirements pattern catalogue.

— Examples:

* Global functional requirements: hippocraticness,
synchronisation, semantic preservation, completeness
(i.e., are all entities and language features covered?)

* Local non-functional requirements: specific rule
satisfies a time bound

BX Elicitation

* Scenario-based analysis:

— Scenarios used to capture different required
transformation processing cases.

— Can use a concrete scenario language (e.g., CNL)
with sketches of sample models.

— Example: refactor object-oriented design

* define a success measure to improve OO structure,
e.g., increase cohesion.

* then decompose the scenario into specific cases
addressing individual examples of poor structure,
where specific update transformations can be applied

Another BX Elicitation Example

Zoo ;;

Lion
I Simba
: : Doctor

Doom
4 Elephant
Doctor Babhr
Ninja Tige
Doctor Holhes
Doom : \
Fan Fan Fan Lily
Sarah Angela Fan Fan Fan

Sarah Angela Lily

BX Evaluation

* Techniques:

— Prototyping (how easy is this with our current BX
tools?)

— Goal-oriented analysis (link between goal-based
approaches and BX???)

— Further scenarios (testing) for specific poorly
understood corner cases

BX Requirements

Specification

* Wide range of techniques, including use of
controlled natural language, UML, OCL.

* We will explore the transML family of
languages shortly.

— Also worth looking at DSL-Maps, see paper by
Pescador at ASE’16.

* Supplementing with natural language can be
very useful.

BX Requirements V&V

 More details later, but general techniques
include:

— BX requirements inspection
— Testing
— Checklists
— Static analysis
— Proof/model checking
 Example: a requirement for semantic property
preservation

— can be refined into a set of checks that individual BX
rules maintain an invariant.

BX Requirements Problems

 What problems might we encounter in RE for BX?

— Unrealistic requirements: address this by frequent
short iterations

— Changing requirements: check requirements at the
start of each iteration; proper contracting.

— Conflicts: capture trade-offs and negotiate
— Uncertainty: identify, resolve, refine, negotiate

* Anything new under the sun? (Ecclesiastes 1.9)

* A family of languages to support the lifecycle
of transformation development.

— Not just BX.

* Can be used with any transformation
implementation language.

— Experience of QVTo, EOL, ETL, ATL.

* Here we focus on the requirements support,
later on architecture, design and testing.

transNIL

> <
Requirements |
Analysis
Arc_hitecture b { Formal Simple
diagram specification scenarios
N\ \
. i E
High-level | Low-level design 5
design (1 =
. r I =
M.applng |(Rule % _____ Behavioural J 3
diagram diagrams diagrams g
_ _—
o
generation generation reengineering S gen ati:ln
\
Orchestration Transformation code | Testing
code | (e.g.ETL,ATL,QVT...) |2 model

> Traceability links > Derived traceability links

transML Requirements

e Can use any of the aforementioned RE
techniques for elicitation and negotiation.

* transML includes a diagram representation of
(BX) requirements.

— To support forward traceability.
— Based on SysML requirement diagrams.

transML Requirements

Metamodel

requirements

{ordered}
+children | |
ReqDiagram Requirement
—name:String * | —name:String
—description:String —text:String

—source:ReqSource
—type:ReqType
—/index:String

>~

N

+ derives/* + frefines

<< enumeration >>

ReqSource << enumeration >>
+sourceModel:int=1 ReqType
+targetModel:int=2 +functional:int=1
+transformation:int=3 +nonFunctional:int=2

transML Requirements
Metamodel

e Explicitly supports hierarchical decomposition,
classification, refinement and traceability.

— Classification is dual: are they functional/not? Are

they requirements of {input model, output model,
transformation itself}.

— Not all valid input instances need to be processed
or regenerated.

— Not all valid output instances need to be
generated or in scope.

«requirement»
0O02DB Transformation

15

Lo

The objective is, given a class diagram to create a DB schema
able to store the information of instances of the class diagram

L

3/

transML Example Model

0.1 «requirement»

No Redefined Attributes

==
-,

02 (requirementy 3
Classes

Redefined attributes in the class
diagrams are not allowed

into tables

Classes are transformed

«requirement» %
Features

to columns

Features are transformed

=
L/

[0-3-T¢requirement» 3t
Inherited Attributes ™}

0.3.2 requirementy 3
Single-Val-Attributes™

0-3.3¢requirement» i}
Multi-Val-Attributes ¥

[0-3-4requirement» 34
References

Inherited attributes are
copied to the table

Single valued attributes
are transformed into
columns

R

-
-

-~
-
-

A <<derivessx>

-
-

Multi-valued attributes arg
transformed into a table,
with a foreign key and a
column for their values

-
.....
————

References are
transformed into
foreign keys

transML Example Model

«requirement»002DB Transformation

Given a class diagram or a DB schema ensure that their instances are consistent.

wrefines»

erequirementsNo Redefined Attributes urequirementsClasses «requirement »Features

Redefined attributes in class diagram are not permitted [[Classes must be cons;'rg[:ﬁe"s';‘h tables | [Features must be consistent with columns

arequirements
Single-Val-Attributes

SVA are consistent with columns
™ «derivedn |

|
'. ___________
srequirement»Multi-Val-Attributes

arequirementsinherited Attributes arequirement»References

Inhented attributes must be copied to table

I
I
| References are consistent with foreign keys
I
I

MVA are consistent with a table containing a foreign key and column for values

uderivedn

transML Scenarios

» Saw scenarios earlier: how concrete examples of source/
target models are transformed.

* transML supports a dedicated transformation case
language:
— How examples are to be related.
— Applicable to models or model fragments.

* Used to reason about what a transformation should do.

* Used as input to transformation-by-example approaches.
— BX research gap here?

— Fitness functions based on consistency relations? Need to be
made measurable?

transML Example Case

Class with Multi-Valued Attribute

/ fragment —
00 DB
coi:Column co2:Column
name = "Bookld” name = "authorld”
c:Class
name = “Book” t1:Table child
name = "Book”
e fk:ForeignKey
a:Attribute t2-Table
name = “author’ -
isMany = true name = “author” parent
co3:Column co4:Column
name = “value” name =" id”

fransML Requirement
Specification

* Visual formal language to describe what a
transformation has to do

— specify correctness properties; specify restrictions on
source/target models.

* Uses declarative patterns to express allowed and
forbidden relations.

e Patterns have a graphical part
(ConstraintTripleGraph) and can include

conditions on attribute values and constraints
(using EOL).

transML Requirements

S

analysis

necification Metamodel

+ patterns

Pattern

+ constraint ConstraintTripleGraph

1.7

-name:String
-when:String[*]
-where:String[*]

-name:String

+ positivePrecondition _ | -attributeConditions:String [*]

0..1

+ negativePreconditions

%

NegativePattern

PositivePattern

¢

Specification

-name:String

-sourceMetamodel:String
-correspondenceMetamodel:String
-targetMetamodel:String

*

Attribute
-variable:String

+correspondenceGraph \|; 0.1 +sourceGraph +targetGraph value:String
CorrespondenceGraph — Graph 47

* i +mappings * i +objects Feature

- | - +features -name:String

Mapping + source Object e -
-identifier:String 4
+target | -type:String +refersTo * Reference

transML Example Patterns

N(NoRedefinedAttrs) P(InheritedAttrs)
(00 :DB| (0O ‘DB)
p:Class [a:Attribute p: Class a: Attribute t1:Table || t2:Table
name=X | name=X i | name=C1|| name=C2
, : | [|
c:Class | ar:Attribute [: ci: Class | | c2: Class |i |d:Column||e:Column
name=X : name=C1 name=C2 name=X || name=X

| c.general.includes(p)

c1.general.includes(p) and c2.general.includes(p)

J

* Architecture and design
— Relevant architectural styles and patterns for BX.
* transML support for high level design (e.g.,
mappings) and low level design (e.g., rule
structure diagrams)
* Verification and validation:
— Generating unidirectional transformations
— Verification with Hoare logic

