
1 

Requirements Engineering for BX 

Richard Paige 
Dept of Computer Science, University of York 

@richpaige 



2 Contents 

•  Why	consider	requirements	for	
transforma3ons	and	BX?	

•  What	are	requirements	for	BX?	
•  Requirements	engineering	processes	for	BX.	
•  Requirements	specifica3on	languages	for	BX.	



3 Motivation 
•  A	number	of	BX	languages	and	tools	have	been	
proposed	(see	last	lecture).	
–  Each	tool	has	its	own	characteris3cs,	strengths,	
weaknesses,	etc.	

•  In	a	number	of	transforma3on	applica3ons,	the	
requirements	for	BX	are	“discovered”	late.	
–  Some3mes	requiring	substan3al	rework!	

•  A	beKer	understanding	of	requirements	
engineering	for	BX	can	help	mapping	tools/
approaches	to	problems,	and	mapping	problems	
to	BX.	



4 Selected 
Literature 

R.	Eramo	et	al,	“Represen3ng	uncertainty	in	bidirec3onal	
transforma3ons”	
R.	Eramo	et	al,	“Towards	a	taxonomy	for	bidirec3onal	
transforma3ons”	
N.	Macedo	et	al,	“Least-change	bidirec3onal	model	
transforma3ons	with	QVT-R	and	ATL”	
S.	Hidaka	et	al,	“Feature-based	classifica3on	of	
bidirec3onal	transforma3on	approaches”	
E.	Guerra	et	al,	“Engineering	model	transforma3ons	with	
transML”	
S.	Tehrani	et	al,	“Requirements	engineering	in	model	
transforma3on	development”	
	
	



5 

Requirements	and	BX	



6 General Questions 
•  What	are	some	general	ques3ons	to	be	
addressed	when	we	engineer	a	BX?	
1.  What	needs	to	be	transformed	into	what?	
2.  What	mechanisms	can	be	used	for	building	the	BX?	

(includes	theory,	tools,	techniques)	
3.  What	are	the	applica3on	domains	for	the	BX?	
4.  What	are	the	specific	characteris3cs	of	the	BX	(e.g,	

what	paKerns	are	appropriate	to	use)?	
5.  What	are	the	quality	requirements	(eg.,	

performance)	for	the	BX?	
6.  What	are	the	success	criteria	for	the	BX?	



7 General Properties for BX 
•  Size:	is	the	BX	small	(e.g.,	a	single	reversible	
refactoring)	or	large	(e.g.,	a	reversible	
codegen)?		

•  Level	of	automa3on:	fully	automated,	human-
in-the-loop?	

•  Visualisa3on:	how	is	the	BX,	its	results,	and	its	
input	presented	to	users?	

•  Level	of	industry	applica3on	
•  Maturity	level:	is	there	a	tool,	is	it	theore3cal?	



8 Functional Requirements 
•  Define	what	a	BX	must,	should	or	could	provide.	
•  Some	examples.	
•  Correctness:		

– when	the	BX	is	run	in	the	forward	direc3on,	the	target	
model	must	be	well	formed		

– when	the	BX	is	run	in	the	reverse,	the	source	model	
must	be	well	formed	

–  (well	formedness	usually	defined	in	terms	of	
conformance	to	metamodel/constraints	evaluate	to	
true).	



9 Functional Requirements 
•  Inconsistency	tolerance:	

–  Should	be	able	to	support	incomplete	or	inconsistent	
artefacts	(e.g.,	temporarily	inconsistent	models)	

•  Modularity:	should	provide	the	ability	to	
compose	transforma3ons	into	new	ones.	

•  Traceability:	should	support	genera3on	of	links	
(correspondence	model)	between	source	and	
target	models		
–  as	well	as	between	the	steps	of	a	transforma3on	
process	(chaining)	



10 Functional Requirements 
•  Change	propaga3on:	should	provide	support	
for	propaga3ng	changes	in	a	model	from	one	
direc3on	to	another.	

•  Incrementality:	should	support	the	ability	to	
update	target	models	based	on	only	the	
changes	made	in	the	source	models.	

•  Uniqueness:	could	support	the	ability	to	
generate	a	unique	solu3on	to	a	BX	problem	(cf	
JTL).	



11 Functional Requirements 

•  Termina3on:	should	support	the	defini3on	of	
termina3ng	transforma3on	execu3ons.	

•  Mechanisms/styles:	must	support	a	
transforma3on	style,	i.e.,	declara3ve,	
opera3onal	or	hybrid.	
– Will	vary	in	terms	of	what	they	make	implicit,	e.g.,	
naviga3on	of	source	model,	crea3on	of	target	
model,	order	of	rule	execu3on,	etc	



12 Non-Functional 
Requirements 

•  Specifies	criteria	with	which	we	can	judge	the	
quality	of	a	BX.	

•  Examples.	
–  Extensibility	and	modifiability	
– Usability	(tricky!)	
–  Robustness:	can	the	BX	manage	invalid	models	and	
deal	with	corresponding	errors?	

–  Conciseness	
–  Interoperability:	connec3on	with	other	(especially	
non-MDE)	tools	

–  Verifiability	and	validity.	



13 

Requirements	Engineering	Processes	
for	BX	



14 Key Concepts 

•  What	are	the	typical	stages	of	a	RE	process	for	
BX?	

•  What	are	the	key	artefacts	that	are	involved?	
•  Who	are	the	stakeholders?	
•  What	problems	may	arise?	
•  What	techniques	can	be	applied?	



15 Typical RE Stages 

•  Domain	analysis	and	elicita3on:	
– Who	are	your	stakeholders?	
– Gather	informa3on	from	users,	customers,	etc	on	
the	system	domain	and	system	requirements.	

•  Evalua3on	and	nego3a3on:	
–  Iden3fy	imprecision,	conflicts,	omissions	and	
redundancies	in	these	“informal”	requirements	

– Resolve	these	(if	possible	and	appropriate)	via	
nego3a3on	and	consulta3on	



16 Typical RE Stages 

•  Specifica3on:	
– Document	the	formal	requirements	in	a	
specifica3on	(more	later)	

– Ohen	the	basis	for	a	contract	between	developers	
and	customers	

•  Valida3on	&	Verifica3on:	
– Check	the	specifica3on	for	consistency,	
completeness	and	acceptability	to	stakeholders	



17 RE Processes for BX 

•  From	Tehrani	et	al,	ICMT	2016	



18 RE Processes for BX 
•  Previous	diagram:	a	typical	RE	process.	
•  Points	of	note:	

– Use	of	BX	scenarios	as	a	concrete	mechanism	for	
driving	the	development	of	a	specifica3on.	

– Dis3nc3on	between	local	and	global	requirements.	
–  Local	requirements:	mapping,	rewri3ng,	defining	
correspondences	

– Global	requirements:	proper3es	of	an	en3re	model,	
e.g.,	a	measure	of	complexity	is	reduced	by	running	a	
BX,	performance	obliga3ons,	informa3on	hiding.	



19 BX Elicitation 
•  Observa3on/ethnographic	methods:	observe	
current	(possibly)	manual	BX	process.	
–  E.g.,	consistency	between	an	Excel	spreadsheet	and	a	
SysML	requirements	diagram.	

•  Unstructured	interviews:	ask	open-ended	
ques3ons	about	domain,	current	BX	process.	
– Useful	for	transforma3on	goals,	e.g.,	“ensure	
refactorings	are	applied	to	both	source	and	target	
within	10ms”,	“preserve	performance	proper3es	of	
models”	



20 BX Elicitation 
•  Ques3ons	for	unstructured	interviews?	

–  Size	range	of	source/target	models?	(what	kind	of	
infrastructure	should	be	supported?	–	led	us	to	use	
NoSQL	for	a	couple	of	projects)	

–  Formats	for	encodings	of	models	and	BX?	(explored	
binary	encodings	instead	of	text/XMI)	

– Assump3ons	about	source/target	models?	(e.g.,	
always	available,	being	incrementally	updated)	

•  Who	checks	that	assump3ons	are	met?	
–  Read,	write,	read-write?	
–  Confiden3ality	restric3ons?	



21 BX Elicitation 

•  Structured	interviews:	
– Preloaded	ques3ons	about	the	domain	and	BX.	
– Can	focus	on	a	checklist	based	around	a	
requirements	paKern	catalogue.	

– Examples:		
•  Global	func3onal	requirements:	hippocra3cness,	
synchronisa3on,	seman3c	preserva3on,	completeness	
(i.e.,	are	all	en33es	and	language	features	covered?)	

•  Local	non-func3onal	requirements:	specific	rule	
sa3sfies	a	3me	bound	



22 BX Elicitation 
•  Scenario-based	analysis:	

– Scenarios	used	to	capture	different	required	
transforma3on	processing	cases.	

– Can	use	a	concrete	scenario	language	(e.g.,	CNL)	
with	sketches	of	sample	models.	

– Example:	refactor	object-oriented	design	
•  define	a	success	measure	to	improve	OO	structure,	
e.g.,	increase	cohesion.	

•  then	decompose	the	scenario	into	specific	cases	
addressing	individual	examples	of	poor	structure,	
where	specific	update	transforma3ons	can	be	applied	



23 Another BX Elicitation Example 

Na3onal	Zoo	

Fan	
Sarah	

Fan	
Angela	

Fan	Lily	

Elephant	
Babar	

Lion	
Simba	

Tiger	
Hobbes	 Doctor	

Doom	

Na3onal	
Zoo	

Fan	
Sarah	

Fan	
Angela	

Fan	
Lily	

Elephant	
Babar	

Lion	
Simba	

Tiger	
Hobbes	

Doctor	
Doom	

Doctor	
Ninja	



24 BX Evaluation 

•  Techniques:	
– Prototyping	(how	easy	is	this	with	our	current	BX	
tools?)	

– Goal-oriented	analysis	(link	between	goal-based	
approaches	and	BX???)	

– Further	scenarios	(tes3ng)	for	specific	poorly	
understood	corner	cases	



25 BX Requirements 
Specification 

•  Wide	range	of	techniques,	including	use	of	
controlled	natural	language,	UML,	OCL.	

•  We	will	explore	the	transML	family	of	
languages	shortly.	
– Also	worth	looking	at	DSL-Maps,	see	paper	by	
Pescador	at	ASE’16.	

•  Supplemen3ng	with	natural	language	can	be	
very	useful.	



26 BX Requirements V&V 
•  More	details	later,	but	general	techniques	
include:	
–  BX	requirements	inspec3on	
–  Tes3ng	
–  Checklists	
–  Sta3c	analysis	
–  Proof/model	checking	

•  Example:	a	requirement	for	seman3c	property	
preserva3on		
–  can	be	refined	into	a	set	of	checks	that	individual	BX	
rules	maintain	an	invariant.	



27 BX Requirements Problems 

•  What	problems	might	we	encounter	in	RE	for	BX?	
– Unrealis3c	requirements:	address	this	by	frequent	
short	itera3ons	

–  Changing	requirements:	check	requirements	at	the	
start	of	each	itera3on;	proper	contrac3ng.	

–  Conflicts:	capture	trade-offs	and	nego3ate	
– Uncertainty:	iden3fy,	resolve,	refine,	nego3ate	

•  Anything	new	under	the	sun?	(Ecclesiastes	1.9)	



28 transML 

•  A	family	of	languages	to	support	the	lifecycle	
of	transforma3on	development.	
– Not	just	BX.	

•  Can	be	used	with	any	transforma3on	
implementa3on	language.	
– Experience	of	QVTo,	EOL,	ETL,	ATL.	

•  Here	we	focus	on	the	requirements	support,	
later	on	architecture,	design	and	tes3ng.	



29 transML 



30 transML Requirements 

•  Can	use	any	of	the	aforemen3oned	RE	
techniques	for	elicita3on	and	nego3a3on.	

•  transML	includes	a	diagram	representa3on	of	
(BX)	requirements.	
– To	support	forward	traceability.	
– Based	on	SysML	requirement	diagrams.	



31 transML Requirements 
Metamodel 



32 transML Requirements 
Metamodel 

•  Explicitly	supports	hierarchical	decomposi3on,	
classifica3on,	refinement	and	traceability.	
– Classifica3on	is	dual:	are	they	func3onal/not?	Are	
they	requirements	of	{input	model,	output	model,	
transforma3on	itself}.	

– Not	all	valid	input	instances	need	to	be	processed	
or	regenerated.	

– Not	all	valid	output	instances	need	to	be	
generated	or	in	scope.	



33 transML Example Model 



34 transML Example Model 



35 transML Scenarios 
•  Saw	scenarios	earlier:	how	concrete	examples	of	source/

target	models	are	transformed.	
•  transML	supports	a	dedicated	transforma1on	case	

language:	
–  How	examples	are	to	be	related.	
–  Applicable	to	models	or	model	fragments.	

•  Used	to	reason	about	what	a	transforma3on	should	do.	
•  Used	as	input	to	transforma3on-by-example	approaches.	

–  BX	research	gap	here?	
–  Fitness	func3ons	based	on	consistency	rela3ons?	Need	to	be	
made	measurable?	



36 transML Example Case 



37 transML Requirement 
Specification 

•  Visual	formal	language	to	describe	what	a	
transforma3on	has	to	do	
–  specify	correctness	proper3es;	specify	restric3ons	on	
source/target	models.	

•  Uses	declara3ve	paKerns	to	express	allowed	and	
forbidden	rela3ons.	

•  PaKerns	have	a	graphical	part	
(ConstraintTripleGraph)	and	can	include	
condi3ons	on	aKribute	values	and	constraints	
(using	EOL).	



38 transML Requirements 
Specification Metamodel 



39 transML Example Patterns 



40 Continuing 

•  Architecture	and	design	
– Relevant	architectural	styles	and	paKerns	for	BX.	

•  transML	support	for	high	level	design	(e.g.,	
mappings)	and	low	level	design	(e.g.,	rule	
structure	diagrams)	

•  Verifica3on	and	valida3on:	
– Genera3ng	unidirec3onal	transforma3ons	
– Verifica3on	with	Hoare	logic	


