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3 Overview 
•  My	lectures	will	focus	on	approaches	for	
engineering	bidirec5onal	transforma5ons.	
– With	some	considera5on	of	engineering	
transforma5ons	in	general.	

–  Emphasis	on	approaches	with	tools.	
•  Touch	on	parts	of	the	engineering	lifecycle:	

–  Requirements,	architecture,	design,	implementa5on,	
verifica5on.	

•  With	a	focus	on	Model-Driven	Engineering	
concepts,	languages,	tools	and	technologies.	



4 Overview 

•  Three	lectures:	
1.  Introduc5on	to	background	on	MDE	for	BX:	

founda5ons	and	concepts;	languages	and	tools	
(state	of	the	art);	open	challenges.	

2.  Requirements	engineering	for	BX:	concepts,	
processes,	MDE	languages	for	RE	for	BX.	

3.  Architecture,	design	and	a	liOle	bit	of	verifica5on	
for	BX:	languages,	paOerns,	tools.	



5 Context 

•  I	build	tools	for	model	management.	
– E.g.,	model	transforma5on,	valida5on,	merging,	
migra5on.	

•  And	do	applied	research	in	MDE.	
– Four	current	projects	on	applied	model	
management:	scalability;	“BX”	for	assurance;	
technical	obsolescence;	incremental	querying	for	
data	analy5cs.	



6 Context 

4.1 Epsilon

Epsilon [7] is a mature family of interoperable languages for model management.
Languages in Epsilon can be used to manage models of diverse metamodels and
technologies (detailed below). The core of Epsilon is the Epsilon Object Lan-
guage (EOL) [6], an OCL-based imperative language that provides additional
features including model modification, multiple model access, conventional pro-
gramming constructs (variables, loops, branches etc.), user interaction, profiling,
and support for transactions. EOL can and has been used as a general-purpose
model management language (e.g. for operational model transformation). It is
primarily intended to be reused in task-specific model management languages. A
number of task-specific languages have been implemented atop EOL, including:
model transformation (ETL), model comparison (ECL), model merging (EML),
model validation (EVL), model refactoring (EWL) and model-to-text transfor-
mation (EGL). These languages reuse EOL in di�erent ways, e.g. by acting as a
preprocessor, or by using EOL to define behaviour of rules.

Epsilon is designed to be technology agnostic - that is, the same Epsilon
program can be used to manage models from di�erent technologies: the concepts
and tasks of model management are independent of how models are represented
and stored. To support this, Epsilon provides the Epsilon Model Connectivity
(EMC) layer, which o�ers a uniform interface for interacting with models of
di�erent modelling technologies. New technologies are supported by adding a
driver to EMC. Currently, EMC drivers have been implemented to support
EMF [2] (XMI 2.x), MDR [8] (XMI 1.x), pure XML, and Z [9] specifications
in LaTeX using CZT [10] Also, to enable users to compose complex workflows
that involve a number of individual model management tasks, Epsilon provides
ANT [11] tasks and an inter-task communication framework discussed in detail
in [12].

The technical architecture of Epsilon is illustrated in Figure 3.

Epsilon Model Connectivity (EMC)

Epsilon Object Language (EOL)

Validation 
Language (EVL)

Transformation 
Language (ETL)

Code Generation 
Language (EGL)

EMF MDR

Model Migration 
Language (Flock)

XML SpreadsheetsMetaEdit+ Z

Comparison 
Language (ECL)

Merging 
Language (EML)

Refactoring 
Language (EWL)

Unit Testing 
(EUnit)

Fig. 3. Overview of the architecture of Epsilon

As mentioned earlier, EMC enables developers to implement drivers – es-
sentially classes that implement the IModel interface of Figure 4 – to support
diverse modelling technologies. The work in this section illustrates the design
and implementation of an additional driver (on top of the existing drivers for



7 Today’s Lecture 

•  Founda5ons	of	MDE	for	BX:		
– Terminology:	model,	metamodel,	types	of	
transforma5ons,	traceability.	

– Typical	applica5ons	of	BX	in	MDE.	

•  State	of	the	art:	MDE	languages	&	tools	for	BX	
(not	just	BX!)	

•  Challenges	and	open	ques5ons.	
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Founda5ons	of	MDE	for	BX	



9 Model 
•  A	structured	descrip5on	of	phenomena	of	
interest.	
–  Captures	sta5c	or	dynamic	characteris5cs.	
–  Processed	by	automated	tools.	

•  Structure	can	be	defined	in	a	number	of	ways:	
–  Schema	(explicit	or	implicit),	typing	rules,	constraints,	
metamodel…	

– Many	approaches	to	defining	structure	in	MDE	are	
based	on	graphs	(dis5nc5on	from	grammarware).	

–  There	are	accepted	de	facto	standards	(Ecore)	
– Don’t	restrict	ourselves	to	‘just’	Ecore.	

 



10 Metamodel 
•  A	metamodel	is	a	specifica5on	of	the	abstract	
syntax	and	(parts	of	the)	sta5c	seman5cs	of	a	
language.	

•  The	rela5onship	between	model	and	metamodel	
is	called	conformance.	
– Namely,	a	model	conforms	to	a	metamodel.	

•  Technologies	for	metamodelling:		
–  Ecore	(EMF),	MOF,	XMI,	typed	graphs,	MetaDepth,	…	
(DSLs	for	metamodelling)	

– NB:	metamodel	!=	grammar	



11 Example: TED Conference 
Management 

•  Develop	a	customised	editor	for	domain	
experts	(conference	managers).	

•  Lets	domain	experts	build	conference	models	
that	take	into	account	important	conference	
5metabling	concepts.	

•  Use	EMF/Ecore	



12 Example: Metamodel 
•  Key	domain	concepts:	

– Tracks,	consis5ng	of	a	number	of	slots	in	which	
talks	can	be	scheduled.	

– Talks	have	par5cipants	(who	may	have	to	give	
several	talks,	so	we	must	avoid	clashes)	

– Lunch	
•  In	defining	a	metamodel	we	iden5fy	recurring	
concepts,	including	naming	and	5ming	
(abstract	these).	



13 Example: Metamodel 



14 Constraints 

•  Metamodels	capture	some	sta5c	seman5c	rules	
(like	mul5plicity).	

•  Richer	constraints	may	be	needed	to	prevent	
undesirable/illegi5mate	models	from	being	
created.	

•  If	mul5ple	models/metamodels	are	being	used,	
inter-model	constraints	may	be	used	to	establish	
consistency.	
–  e.g.,	EVL,	xlinkit,	OCL	(with	a	union	metamodel)	
–  e.g.,	QVT-R	checkonly	mode	



15 Operations 

•  Given	metamodels	and	conforming	models,	
we	may	want	to	apply	opera5ons	to	them.	
– Match/compare	
– Merge	
– Check	(constraint,	cri5que)	
– Generate	(text,	concrete	syntax)	
– Migrate	
– Transform	(update,	source-to-target,	bx,	…)	
– ….	



16 Comment 

•  Ques5on	on	Monday:	“How	do	we	actually	
define	the	rela5ons	between	models?”	

•  One	way:	opera5ons	on	models!	
– E.g.,	comparison	
– E.g.,	transforma5on	
– E.g.,	constraint	evalua5on	across	models	

•  Can	also	populate	rela5ons	by	example.	



17 Transformations 

•  Unidirec3onal:	from	a	source	model	to	a	target	model.	
–  Defined	in	terms	of	metamodels,	usually	languages	are	
“linguis5cally	similar”.	

•  Update-in-place:	modifica5ons	made	to	one	source/target	
model;	normally	unidirec5onal.	

•  Bidirec3onal:	source	and	target	models	are	established	to	
be	consistent	at	well-defined	points	in	5me.	
–  e.g.,	aier	repository	check-in;	aier	check-then-enforce	has	run	
in	QVT-R	

–  Could	be	defined	as	part	of	language	seman5cs,	or	in	external	
processes.	

•  Model-to-text/grammar:	output	is	no	longer	a	model	but	
either	free-form	text	or	text	conforming	to	grammar	



18 Traceability 
•  All	opera5ons	on	models	have	side-effects:	they	
generate	trace-links.	

•  Trace-links	relate	model	elements	(not	just	models).	
–  Different	types	of	trace-links	(e.g.,	contains,	regenerates,	-	
see	Aizenbud-Reshef’s	work)	

•  Many	MDE	tools	(Epsilon,	ATL)	generate	such	trace-
links	and	allow	them	to	be	persisted.	

•  Basis	for	valida5on	and	verifica5on	of	opera5ons	on	
models.	
–  Loss	of	trace-links	is	one	reason	why	tool	builders	may	be	
worried	about	“history-ignorant”	BX.	



19 Trace Models 

f2:Friend	

		nickname=Mary	
		age=20	

f1:Friend	

		nickname=Jon	
		age=30	

e1:Employee	

		name=John	
		salary=3K	

e2:Employee	

		name=Mary	
		salary=2K	

Friend	
		nickname:string	
		age:int	

Employee	

			name:string	
			salary:int	

Metamodel	M		 Metamodel	N		

[=]	
[=]	
[!=]	

Model	B	(by	HR)	Model	A	(by	Facebook)	

Example	from	Zinovy	Diskin	



20 Delta lenses 

•  A theory for trace models 
•  Algebraic structures comprising  

– Basic operations over models and model 
deltas: delta composition, delta reversal, delta 
propagation, tile composition 

– Basic laws these operations and their 
composition should satisfy 

•  Product line: sync scenario ---> delta lens   
•  …are active research topics 



21 Today’s Lecture 

•  Foundations of MDE for BX:  
– Terminology: model, metamodel, types of 

transformations, traceability. 
– Typical applications of BX in MDE. 

•  State of the art:  
– BX scenarios in MDE 
– MDE languages & tools for BX (not just BX!) 

•  Challenges and open questions. 
 



22 MDE BX Scenarios 

•  Round-trip	engineering	(models	to	code	to	models)	
–  E.g.,	obsolescence	work	in	MONDO	project	
	

•  Suppor5ng	mul5ple	stakeholders	edi5ng	the	same	models	
–  Collabora5ve	modelling	(cf	MONDO	project)	
	

•  Synchronising	documenta5on	and	code	
–  E.g.,	assurance	cases	and	design	artefacts	(what	if	not	all	changes	can	

be	back-propagated?)	
	

•  Reflec5ng	analysis	results	in	models	
–  E.g.,	MARTE	model->UPPAAL/TRIO->MARTE	
–  This	scenario	implemented	using	generated	transforma5ons	(more	

later)	and	also	using	traceability/merge.	



23 Languages and Tools 

•  Numerous	languages	and	tools	to	support	BX,	
building	on	MDE	technologies	and	concepts.	

•  The	“big	beast”:	the	OMG’s	Query,	Views	and	
Transforma5ons	(QVT).	
– Standardised	early.	
– Standardised	too	early?	
– Standardised	at	the	wrong	5me?	



24 
•  OMG	standard	for	model	transforma5on	
•  RFP	issued	by	OMG	on	MOF	Query/Views/
Transforma5ons	

•  Source	and	target	models	conform	to	MOF	
metamodels.	
– Transforma5on	program	is	also	a	model	

Languages- 
QVT 



25 
•  Core	

–  PaOern	matching	over	a	flat	set	of	variables	
–  Defined	using	‘minimal’	extensions	to	EMOF	and	OCL	
–  Fine	grained	(one	mapped	iden5ty	per	rule)	
–  “Simple”	transforma5on	language	

•  Rela5ons	
–  Object	paOern	matching	and	object	template	crea5on	
–  Coarse	grained	(many	mapped	iden55es	per	rule)	
–  Specifica5on	of	rela5ons	over	model	elements		

•  Opera5onal	
–  Procedural	defini5on	of	transforma5ons	
–  Extends	Rela5ons	language	with	impera5ve	constructs	

QVT 
Overview 



26 
•  Core is a small extension of EMOF classes and OCL 

expressions  
–  manipulates trace models explicitly 
 

•  Relations adds  
–  extended pattern syntax  
–  implicit trace models 
 

•  Both languages are meant to have a similar evaluation 
semantics 
–  multi-direction execution 
–  incremental update / change propagation semantics  
–  implicit object creation and deletion 
 

•  Relations is mapped (reduced) to Core to provide its full 
semantics 

Core vs Relations 



27 Relations- Abstract 
Syntax 
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•  Relation 

–  Transformation between candidate models is specified as a set of relations that 
must hold 

 
transformation umlRdbms (uml : 
SimpleUML, rdbms : SimpleRDBMS) {..} 

 
–  A relation declares constraints that must be satisfied by the elements of 

candidate models 

•  Domain 
•  When Pattern 
•  Where Pattern 

Concrete Syntax 



29 
•  Dis5nguished	typed	variable	that	can	be	matched	in	
a	model		

•  A	domain	has	paOerns	
–  Set	of	variables	and	a	set	of	constraints	that	model	
elements	bound	to	those	variables	must	sa5sfy	to	qualify	
as	a	valid	binding	of	the	paOern	
	
rela3on	PackageToSchema	/*	map	each	package	to	a	schema	*	
{		
	domain	uml	p:Package	{name=pn}	
	domain	rdbms	s:Schema	{name=pn}		

}	

Concrete Syntax - 
Domain 



30 
•  When	

–  specifies	the	condi5ons	under	which	the	rela5onship	
needs	to	hold	(precondi5ons	according	to	Eclipse	QVT)	

•  Where	
–  specifies	the	condi5on	that	must	be	sa5sfied	by	all	model	
elements	par5cipa5ng	in	the	rela5on	(postcondi5ons	
according	to	Eclipse	QVT)	

•  The	when	and	where	clauses	may	contain	any	arbitrary	OCL	
expressions	in	addi5on	to	the	rela5on	expressions.		

When & Where 
Clauses 



31 Example 



32 
•  Meant to be a “normal form” for QVT transformations 
•  A QVT Core transformation consists of a number of 

Mapping Rules. 
•  Each Mapping Rule consists of a collection of Patterns 
•  Patterns consist of variables and OCL expressions. 
•  A binding of a pattern is a unique set of values for all of 

its variables, for which all the OCL expressions hold 

QVT Core 



33 QVT Core – 
Abstract Syntax 



34 
•  Domain 

–  Has an associated model type of the transformation (model candidates) 
•  Area 

–  Consists of two patterns 
•  Pattern 

–  Set of variables, predicates and assignments 
–  Can be matched or enforced 
–  Can depend on each other 

•  Guard Pattern 
–  Narrow the selection of model elements to be considered for the mapping 
–  Only used for defined a context 

•  Bottom Pattern 
–  Defines the derivations 
–  Can have realized variables, assignments and black-box operation 

•  Mapping 
–  One are for the trace and one for each model type 
–  Defines a relation between bottom patterns 

QVT Core 
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c	:	Class	

a	:	AOribute	|	
a.class	:=	c;	

c2t	:	ClassTable	|	
c2t.table	=	t;	
c2t.class	=	c;	

t	:	Table	

a2c	:	AOrColumn	|	
a2c.owner	:=	c2t;	
a2c.aOr	:=	a;	

a2c.column	:=	c;	

c	:	Column	|	
c.table	:=	t;	

* * * 

1 1 1 1 

1 1 1 

Class to Table 

Attribute to Column 

UML Relational UML/Rel 

Bottom pattern is evaluated using the variable values of the valid 
binding of the guard pattern.  

Mapping Rule 
Example 



36 Tools 

•  Medini QVT 
– Claims to be a reasonably complete, but 

currently unsupported, implementation of 
QVT-R. 

– Claims to implement the QVT standard but 
diverges from semantics in a number of ways  

•  (e.g., deletion of elements, no checkonly mode) 

– Open source (EPL) 



37 Tools 

•  ModelMorf: 
– From TCS, claims to be an implementation of 

QVT-R circa 2007. 
– Pre-Beta is available to researchers; a 

proprietary version is available to commercial 
users (internal to TCS only). 

– Perdita’s research shows it more faithfully 
implements the QVT standard than Medini, 
but it’s still not QVT. 



38 Tools 
•  jQVT (QVT-like) 

– A QVT-like engine that is defined on the Java type 
system instead of EMF (uses Xbase language 
instead of OCL) 

– Generates native Java code from jQVT scripts. 
– Bidirectional 

•  Echo: 
– Uses QVT-R for inter-model consistency and 

model repair. 
– Alloy model finder used to generate models. 
– Bidirectional. 



39 jQVT 



40 Tools 
•  JTL: 

– The Janus Transformation Language. 
– Bidirectional transformations: changes in one 

model propagated to the other model. 
–  If a change makes the other model inconsistent, 

an approximation (“closest match”) is computed. 
– Based on answer set programming: as such, 

there can be several solutions to a transformation 
(results may need to be constrained). 



41 Tools 

•  Eclipse	QVT	
– QVT-O	is	well	
defined	and	
ac5ve	(Eclipse	
M2M)	

– QVT-R	and	QVT-
Core	–	work	in	
progress	(Ed	
Willink,	York)	



42 Tools 
•  XRound	

–  Template-based	bidirec5onal	(asymmetric)	language	
for	XML-based	models.			

•  XSugar	
–  BX	between	two	syntaxes	for	the	same	language;	
bijec5ve.	

•  Epsilon	(EWL+EVL)	event-driven	approach	
–  Two	update-in-place	transforma5ons	(on	source,	
target)	executed	when	inter-model	consistency	rules	
are	violated	–	later	this	week.	



43 Tools 
•  Bidirec5onalisa5on	approaches:	

– ATL-Inversion:	a	HOT	that	generates	an	ATL	
backward	transforma5on	given	a	forward	one	
(prototype).	

– Seman5c	bidirec5onalisa5on,	e.g.,	Voigtlander	
(based	on	collec5ng	extensional	behaviour)	–	see	
POPL’09	paper.	

– GRoundTram,	based	on	a	bidirec5onal	
interpreta5on	of	a	graph	query	language	(see	
ICMT’11	paper)	



44 Hot Off the Press 

•  Excellent	feature	model-based	classifica5on	of	
BX	approaches	in	July	2016	issue	of	SOSYM.	

•  Main	points	of	varia5on:	technical	space,	
correspondence,	changes,	execu5on.	



45 Challenges 
•  MDE	for	BX	does	possess	some	clear	theory	and	
pragma5c	tools		
–  rather	siloed	(TGG+delta	lens	work	is	best	example)	
–  tools	that	evidently	implement	the	theory?	
–  all	manage	trace-links	in	a	systema5c	way	[delta	
lenses]	

•  The	importance	of	metamodelling	for	
understanding	BX	(typing	is	important).		
– Do	we	yet	have	a	good	“type	theory”	for	MDE	and	
metamodelling?	(see,	e.g.,	work	by	Steel	and	
Jezequel,	plus	others)	



46 Challenges 
•  How	can	theory	from	other	communi5es	be	applied	
in	understanding,	improving	and	simplifying	standard	
languages	for	BX	in	SE	
–  QVT	is	s5ll	too	complex	(now	we’re	in	a	world	where	we	
must	dis5nguish	Eclipse	QVT	and	OMG	QVT)	

•  More	scenarios	for	bidirec5onality:	
– When	do	we	really	need	it?	
–  In	my	industry	projects,	I	have	only	had	one	precise	
requirement	for	a	“BX”	(reflect	analysis	results).	

–  BX	requirements	some5mes	emerge	(discussion	with	
Anthony	on	Monday)	



47 Challenges 
•  MDE	prac55oners	tend	to	use	opera5onal	
transforma5ons	a	lot	
–  and	model-to-concrete-syntax	transforma5ons		
–  and	model-to-text	transforma5ons	

•  How	do	these	fit	into	the	BX	space?	
•  We	use	metamodels	but	PL	community	seems	to	
do	fine	with	grammars.	
–  Lessons	to	be	learned?	Value	added?	

•  We	have	a	diverse	set	of	modeling	languages	that	
need	to	be	supported.	



48 Challenges 

•  How	do	we	combine/unify:	
–  {Delta	lens,	…}	theory	
– MDE	languages	that	support	BX	(QVT-R,	OCL,	
Ecore)	that	both	exist	and	are	used.	

– Support	for	traceability	(trace-links	as	a	side	effect	
of	running	model	management	opera5ons)	

•  both	as	a	pragma5c	tool	and	as	a	theore5cal	basis.	



49 Next time! 

•  Requirements	engineering	for	BX:	
– How	do	we	gather	requirements	for	a	BX	
– Are	standard	requirements	engineering	processes	
applicable?	(preview:	yes!)	

– How	do	we	specify	requirements	for	BX?	
•  transML.	

– Challenges	for	RE	for	BX.	


