| A “l.' pifed
| .]F wELll ua“‘ Bz

Engineering BX

Richard Paige

Dept of Computer Science, University of York

Background In Mbdel Den |
Engineering of BX

Richard Paige

Dept of Computer Science, University of York

Overview

My lectures will focus on approaches for
engineering bidirectional transformations.

— With some consideration of engineering
transformations in general.

— Emphasis on approaches with tools.

* Touch on parts of the engineering lifecycle:

— Requirements, architecture, design, implementation,
verification.

* With a focus on Model-Driven Engineering
concepts, languages, tools and technologies.

Overview

e Three lectures:

1. Introduction to background on MDE for BX:
foundations and concepts; languages and tools
(state of the art); open challenges.

2. Requirements engineering for BX: concepts,
processes, MDE languages for RE for BX.

3. Architecture, design and a little bit of verification
for BX: languages, patterns, tools.

Context

* | build tools for model management.

— E.g., model transformation, validation, merging,
migration.

* And do applied research in MDE.

— Four current projects on applied model
management: scalability; “BX” for assurance;
technical obsolescence; incremental querying for
data analytics.

Context

Comparison Merging Refactoring Unit Testing
Language (ECL) Language (EML) Language (EWL) (EUnit)
T
Validation Transformation Code Generation Model Migration

Language (EVL) Language (ETL) Language (EGL) Language (Flock)

Epsilon Object Language (EOL)

Epsilon Model Connectivity (EMC)

—

Today’s Lecture

* Foundations of MDE for BX:

— Terminology: model, metamodel, types of
transformations, traceability.

— Typical applications of BX in MDE.

e State of the art: MDE languages & tools for BX
(not just BX!)

* Challenges and open questions.

Foundations of MIDE for BX

* A structured description of phenomena of
Interest.

— Captures static or dynamic characteristics.
— Processed by automated tools.

e Structure can be defined in a number of ways:

— Schema (explicit or implicit), typing rules, constraints,
metamodel...

— Many approaches to defining structure in MDE are
based on graphs (distinction from grammarware).

— There are accepted de facto standards (Ecore)
— Don’t restrict ourselves to ‘just’ Ecore.

Metamodel

* A metamodelis a specification of the abstract
syntax and (parts of the) static semantics of a

language.

* The relationship between model and metamodel
is called conformance.
— Namely, a model conforms to a metamodel.

* Technologies for metamodelling:

— Ecore (EMF), MOF, XM, typed graphs, MetaDepth, ...
(DSLs for metamodelling)

— NB: metamodel '= grammar

Example: TED Conference

Management

* Develop a customised editor for domain
experts (conference managers).

* Lets domain experts build conference models
that take into account important conference

timetabling concepts.
 Use EMF/Ecore

Example: Metamodel

* Key domain concepts:

— Tracks, consisting of a number of slots in which
talks can be scheduled.

— Talks have participants (who may have to give
several talks, so we must avoid clashes)

— Lunch

* |n defining a metamodel we identify recurring
concepts, including naming and timing
(abstract these).

Example: Metamodel

E ConferenceElement|

FB TimedElement

‘ P hour : Eint

B NamedElement

5 name

EString

i e

B Participant
7 country

EString

presenter

_gfon‘crr nce

5 minute : Eint
_0..’
elements —— -—é}_
E Lunch
B Slot
slots |" O..*

Constraints

* Metamodels capture some static semantic rules
(like multiplicity).
* Richer constraints may be needed to prevent

undesirable/illegitimate models from being
created.

* |f multiple models/metamodels are being used,
inter-model constraints may be used to establish

consistency.
— e.g., EVL, xlinkit, OCL (with a union metamodel)
— e.g., QVT-R checkonly mode

Operations

* Given metamodels and conforming models,
we may want to apply operations to them.

— Match/compare

— Merge

— Check (constraint, critique)

— Generate (text, concrete syntax)

— Migrate

— Transform (update, source-to-target, bx, ...)

Comment

* Question on Monday: “How do we actually
define the relations between models?”

* One way: operations on models!
— E.g., comparison
— E.g., transformation

— E.g., constraint evaluation across models

* Can also populate relations by example.

Transformations

Unidirectional: from a source model to a target model.

— Defined in terms of metamodels, usually languages are
“linguistically similar”.

Update-in-place: modifications made to one source/target

model; normally unidirectional.

Bidirectional: source and target models are established to

be consistent at well-defined points in time.

— e.g., after repository check-in; after check-then-enforce has run
in QVT-R

— Could be defined as part of language semantics, or in external
processes.

Model-to-text/grammar: output is no longer a model but
either free-form text or text conforming to grammar

Traceability

* All operations on models have side-effects: they
generate trace-links.
* Trace-links relate model elements (not just models).

— Different types of trace-links (e.g., contains, regenerates, -
see Aizenbud-Reshef’s work)

 Many MDE tools (Epsilon, ATL) generate such trace-
links and allow them to be persisted.

* Basis for validation and verification of operations on
models.

— Loss of trace-links is one reason why tool builders may be
worried about “history-ignorant” BX.

Trace Models

1
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
4

mm = mmmm——— - -

1Model A (by Facebook) Model B (by HR)

>

~hameJohn name=Mary

nickname=Mary| /| nickname=Jo
salary=§K\ \ salary=2K

I
|
I
I
f2:Friend f1:Friend ‘/—\I*elemployee e2:Employee | 1
I
I
age=20 age=30 / / :

| SR

_____ Fm————— e e e —— -
Friend & & ‘:/:% EmpIOVeg//

—a K .
hame:string
—»
salary:int

I
|
| |
I nickname:string«— :
; age:int l
I I
: I
|

! Metamodel M

Example from Zinovy Diskin

Delta lenses

* Atheory for trace models

* Algebraic structures comprising

— Basic operations over models and model
deltas: delta composition, delta reversal, delta
propagation, tile composition

— Basic laws these operations and their
composition should satisfy

* Product line: sync scenario ---> delta lens
« ...are active research topics

Today’s Lecture

o State of the art:

— BX scenarios in MDE
— MDE languages & tools for BX (not just BXI!)

» Challenges and open questions.

MDE BX Scenarios

Round-trip engineering (models to code to models)
— E.g., obsolescence work in MONDO project

Supporting multiple stakeholders editing the same models
— Collaborative modelling (cf MONDO project)

Synchronising documentation and code

— E.g., assurance cases and design artefacts (what if not all changes can
be back-propagated?)

Reflecting analysis results in models
— E.g., MARTE model->UPPAAL/TRIO->MARTE

— This scenario implemented using generated transformations (more
later) and also using traceability/merge.

Languages and Tools

* Numerous languages and tools to support BX,
building on MDE technologies and concepts.

* The “big beast”: the OMG’s Query, Views and
Transformations (QVT).

— Standardised early.
— Standardised too early?
— Standardised at the wrong time?

QVT

e OMG standard for model transformation

* RFP issued by OMG on MOF Query/Views/
Transformations

* Source and target models conform to MOF
metamodels.

| Relations
0 ti | RelationsToCore
pera !ona Transformation
Mappings 1 C
| , Core

QVT

Overview

* Core
— Pattern matching over a flat set of variables
— Defined using ‘minimal’ extensions to EMOF and OCL
— Fine grained (one mapped identity per rule)
— “Simple” transformation language

* Relations
— Object pattern matching and object template creation

— Coarse grained (many mapped identities per rule)
— Specification of relations over model elements

e Operational
— Procedural definition of transformations
— Extends Relations language with imperative constructs

Core vs Relations

« Core is a small extension of EMOF classes and OCL
expressions

— manipulates trace models explicitly

* Relations adds
— extended pattern syntax
— implicit trace models

» Both languages are meant to have a similar evaluation
semantics
— multi-direction execution
— incremental update / change propagation semantics
— implicit object creation and deletion

» Relations is mapped (reduced) to Core to provide its full
semantics

Relations- Abstract

+rootVanable
l 1
Element Variable Rule Domain
(from EMOF) {from EssentialOCL) {from QVTBase) (from QVTBase)
/_;"-.‘. / \‘\ N = 1',’\“‘ ',r\ll
L Lo) R
+varable T +relationDamain
- - 0..1
RelationDomain
+relaton ’ b
. lationDomain
— Key +whan Owner +where tre
tley |, ‘0"’ _ 0..1 0.1
Relation o> Pattemn
/ isTopLewl : Boolean gp———— | fom QVTBa=)
0.1 0..1 0.1
+relatign +whereQwner rahen [
Class +patien 1
from EMOF) +operationalimpl - VY
+part * DomainPattern
1.." R R
ar Relatlonlmplementatlon
1
Pro - . +d oma’ﬁaﬁem
fom EMon +elationimplementation *relationmplementation
+inDirecfionCf *templateExpression
+impl
me vy \/o1 \ /0"1
Operation TypedModel TemplateExp
(from EMCF) (from QVTBass) (from QVTTenplate)

Concrete Syntax

 Relation

— Transformation between candidate models is specified as a set of relations that
must hold

transformation umlRdbms (uml
SimpleUML, rdbms : SimpleRDBMS) {..}

— Arelation declares constraints that must be satisfied by the elements of
candidate models

* Domain
* When Pattern
* Where Pattern

Concrete Syntax -

Domain

Distinguished typed variable that can be matched in
a model

* A domain has patterns

— Set of variables and a set of constraints that model
elements bound to those variables must satisfy to qualify
as a valid binding of the pattern

relation PackageToSchema /* map each package to a schema *

{
domain uml p:Package {name=pn}
domain rdbms s:Schema {name=pn}

/

When & Where

Clauses

* When
— specifies the conditions under which the relationship
needs to hold (preconditions according to Eclipse QVT)
 Where

— specifies the condition that must be satisfied by all model
elements participating in the relation (postconditions
according to Eclipse QVT)

* The when and where clauses may contain any arbitrary OCL
expressions in addition to the relation expressions.

relation ClassToTable /® map each persistent class to a table */

domain uml c:Class {
namespace = p:Package {},
kind='Persistent’,
name=cn

domain rdbms t:Table {

schema = s:Schema {},

nhame=cn,

column = cl:Column {
name=cn+'_tid’,
type='NUMBER"},

primaryKey = k:PrimaryKey {

name=cn+'_pk’,
column=cl}

when {
PackageToSchema(p, s);

where {
AttributeToColumn(c, t);

}
}

QVT Core

« Meant to be a “normal form” for QVT transformations

« AQVT Core transformation consists of a number of
Mapping Rules.

« Each Mapping Rule consists of a collection of Patterns
« Patterns consist of variables and OCL expressions.

« Abinding of a pattern is a unique set of values for all of
its variables, for which all the OCL expressions hold

QVT Core —

Abstract Syntax

Rule Domain Pattern
from Q\TBase) (from Q\VTBase) (from Q\VTBase)
, +domain ,hl /\
LA 1 +rule - LA [
| Area |1 —“
—l) O iarea
’ CorePattemn
1" “'.1
CoreDomain aree ‘ .
1
. +guardPattern
Mapping
+local * < GuardPattemn
r +gpegification
0..1, |
+conte xt * +refinement +bottomPatem| BottomPattemn

1

QVT Core

 Domain

— Has an associated model type of the transformation (model candidates)
 Area

— Consists of two patterns
« Pattern

— Set of variables, predicates and assignments
— Can be matched or enforced
— Can depend on each other
* Guard Pattern
— Narrow the selection of model elements to be considered for the mapping
— Only used for defined a context
« Bottom Pattern
— Defines the derivations
— Can have realized variables, assignments and black-box operation
 Mapping
— One are for the trace and one for each model type
— Defines a relation between bottom patterns

Mapping Rule

Example

Domain L Middle Area Domain R
- — ™~ e — —~ e — Y
UML UML/Rel Relational

c2t : ClassTable | ‘
Class to Table c : Class <t— c2ttable=t; —P t: Table > Guard

c2t.class =c;

»
1 1 1

[. [. L

a2c : AttrColumn |
. a : Attribute 2c. = C2t; c : Column
Attribute to Column | lg 1] a2cowner:=c2t; | ¢ | > Bottom
a.class :=c; a2c.attr := a; c.table :=t;
a2c.column :=g¢;)

Bottom pattern is evaluated using the variable values of the valid
' binding of the guard pattern.

Tools

* Medini @
— Claims to be a reasonably complete, but

currently unsupported, implementation of
QVT-R.

— Claims to implement the QVT standard but
diverges from semantics in a number of ways
* (e.g., deletion of elements, no checkonly mode)

— Open source (EPL)

Tools

 ModelMorf:

— From TCS, claims to be an implementation of
QVT-R circa 2007.

— Pre-Beta is available to researchers; a
proprietary version is available to commercial
users (internal to TCS only).

— Perdita’s research shows it more faithfully
Implements the QVT standard than Medini,
but it’s still not QVT.

Tools

* JQVT (QVT-like)
— A QVT-like engine that is defined on the Java type

system instead of EMF (uses Xbase language
instead of OCL)

— Generates native Java code from jQVT scripts.
— Bidirectional

 Echo:

— Uses QVT-R for inter-model consistency and
model repair.

— Alloy model finder used to generate models.
— Bidirectional.

jQVT

& Resource - IFC2GDL/src/transform/Ifc2Pset
Fle Edit Navigate Search Project Run Window Help

=181 x|

| Nt [%-0-%-|® | v- | K5y oo | 4 [<= Plugin Devel... %5 Debug |[- Resource
12 Package Explorer 53 S5 & 7 T OB tfepsetsavt 23\ fup IicObject.cass | [3) MapPropertySetsijava | fb ropertySetDefType.cass |
B3 IFC26DL Al
E-5% src }

-4 transform
- [J) ArchicadTranformator.java
(- {J] EMFIQVTEngine.java
B-4) GDLMain.java

[J) GDLMainBeamConc.java

1J] GDLMainCompositeWall.java

[J) GpLMainDoorss.java

ifc2gd.qut
ifc2gdi2d.qut
IfcoPsets.javt
|| IfcPsets.jqut
-} transform.jet
(= META-INF
B-5% src-gen
-2 RE System Library
(-2 Plug-in Dependendies
& buid
demo-examples
{32 META-INF
(= other-examples
B2 target
- templates
iib build.properties
= Door55-xformed.ad!
Outiine £3
qut.bim.ui.ifc2psets

o

IFC23.*

org.ediipse.emf.ecore. *

bim. =
org.edipse.emf.ecore. uti. EcoreUti
Ifc2Psets

MapPropertySetsByProperties
MapPropertySetsByType
CopylIfcPropertySingleValue
CopylfcPropertyEnumeratedvalue
MapPropertySet
getStringFromlfcValue

relation CopyIfcPropertyEnumeratedvalue {

enforce domain source prop :
EnumerationValues =

enforce domain target def : PropertyDef {
ValueDef = valueDef : ValueDefType {
DefaultValue = DefaultValue : DefaultValueType {
Value = getStringFromIfcValue(nominalvalue)
}

IfcPropertyEnumeratedvalue {
nominalvalue : Ifcvalue { }

relation [TTIRTT RSN |

enforce domain source pset : IfcPropertySet {

name = psetiame
HasProperties = prop : IfcSimpleProperty {
name = attName

}
enforce domain source artifact : Artifact { }
enforce domain target aPset : PropertySetDefType { }

enforce domain target artifact : Artifact {

contents = aPset : PropertySetDefType {
name = psetlame:String {}
PropertyDefs = propertyDefsType : PropertyDefsType {
PropertyDef def : PropertyDef {
name = attName :String {}
}
}
}
}
where
propertyDefsType = aPset?.propertyDefs;
def = propertyDefsType?.propertyDef?. findFirst(x|x.name.contains (attName));
if (def.definition.isEmpty &8 prop.description!=null) def.definition.add(prop.description);
if (aPset.definition==null & pset.description!=null) aPset.definition = pset.description;
if (!CopyIfcPropertyEnumeratedValue(prop,def) & !CopyIfcPropertySingleValue(prop,def)) throw new RuntimeException("could
}

not match “+prop.eClass.name);

q
o/

' search | (1] History| 55 Prwesﬂ) properties |

Tools

o JTL:

— The Janus Transformation Language.

— Bidirectional transformations: changes in one
model propagated to the other model.

— If a change makes the other model inconsistent,
an approximation (“closest match”) is computed.

— Based on answer set programming: as such,
there can be several solutions to a transformation
(results may need to be constrained).

Tools

— QVT-0 is well T

* Eclipse QVT | l

active (Eclipse T
V2 L_QVTm | composition

.............. e
— QVT-R and QVT- = l e
&

——————————
-

defined and iyt UL l
Viatra2 s

. - fUML ;....:. : rescue
Core —work in ..
progress (Ed i 1

WI”II’\I(, York) | iocLvm |

Tools

e XRound

— Template-based bidirectional (asymmetric) language
for XML-based models.

* XSugar
— BX between two syntaxes for the same language;
bijective.
e Epsilon (EWL+EVL) event-driven approach

— Two update-in-place transformations (on source,
target) executed when inter-model consistency rules
are violated — later this week.

Tools

* Bidirectionalisation approaches:

— ATL-Inversion: a HOT that generates an ATL
backward transformation given a forward one

(prototype).
— Semantic bidirectionalisation, e.g., Voigtlander

(based on collecting extensional behaviour) — see
POPL'09 paper.

— GRoundTram, based on a bidirectional
interpretation of a graph query language (see
ICMT’11 paper)

Hot Off the Press

 Excellent feature model-based classification of
BX approaches in July 2016 issue of SOSYM.

* Main points of variation: technical space,
correspondence, changes, execution.

BidirectionalApproach

— S

TechnicalSpace Correspondence Changes Execution

Challenges

 MDE for BX does possess some clear theory and
pragmatic tools

— rather siloed (TGG+delta lens work is best example)

— tools that evidently implement the theory?

— all manage trace-links in a systematic way [delta
lenses]

* The importance of metamodelling for
understanding BX (typing is important).
— Do we yet have a good “type theory” for MDE and

metamodelling? (see, e.g., work by Steel and
Jezequel, plus others)

Challenges

 How can theory from other communities be applied
in understanding, improving and simplifying standard
languages for BX in SE

— QVT is still too complex (now we’re in a world where we
must distinguish Eclipse QVT and OMG QVT)

 More scenarios for bidirectionality:

— When do we really need it?

— In my industry projects, | have only had one precise
requirement for a “BX” (reflect analysis results).

— BX requirements sometimes emerge (discussion with
Anthony on Monday)

Challenges

* MDE practitioners tend to use operational
transformations a lot
— and model-to-concrete-syntax transformations

— and model-to-text transformations
* How do these fit into the BX space?

* We use metamodels but PL community seems to
do fine with grammars.
— Lessons to be learned? Value added?

* We have a diverse set of modeling languages that
need to be supported.

Challenges

 How do we combine/unify:

— {Delta lens, ...} theory

— MDE languages that support BX (QVT-R, OCL,
Ecore) that both exist and are used.

— Support for traceability (trace-links as a side effect
of running model management operations)

* both as a pragmatic tool and as a theoretical basis.

* Requirements engineering for BX:
— How do we gather requirements for a BX

— Are standard requirements engineering processes
applicable? (preview: yes!)
— How do we specify requirements for BX?
* transML.

— Challenges for RE for BX.

