UNIVERSITY OF

OXFORD

Notions of Bidirectional Computation

and Entangled State Monads

Faris Abou-Saleh, James Cheney, Jeremy Gibbons,
James McKinna, Perdita Stevens
SSBX, Oxford, July 2016

Entangled State Monads 2

1. Bidirectional transformations (BX)

e vView—-update problem in databases

view

<
Bl

update

e round-tripping laws for consistency

Entangled State Monads 3

1.1. Symmetrize

e vView—-update problem in databases

view view
Vv S VA
update update

e round-tripping laws for consistency
e symmetrize—neither data source definitive

e applications in interactive programs,
model-driven engineering. ..

Entangled State Monads 4

1.2. Overview of talk

e lenses for BX

e BX is inherently stateful

e consistency maintenance implies entangled state

e combining with other effects, eg exceptions, non-determinism, 1/0

e composing BX

2. Lenses for BX (Foster, Pierce, et al.)

An asymmetric lens | : A ~~ B from source A to view B is captured by

data Lens Lens fview
update ::

¢
Round-tripping: say that | :: Lens A B is well-behaved if

l:view l:updatesv \Y;
l:update s |:view s S

and very well-behaved (rather a strong condition) if

l:update l:updatesv Vv’ l:update s v’

2.1. Symmetric lenses (Hofmann, Pierce, Wagner)

More generally, neither data source need determine the other.
A symmetric lens s: A &c B between A and B, with complements of type C,

IS captured by

SLens fputlr ;. D

data SLens
putrl ;. ; ;0

Say that s :: SLens A B C is well-behaved if
a; c’

b:c® D s:putrl b;c’
b;c’

s:putlr a;c
a;c’) s:putlr a;c’

s:putrl b;c

and in addition, very well-behaved (‘strong’) if
s:putlr a’;c

s:putlr a;c b;c? D s:putlr a’;c’
s:putrl b’%c

s:putrl b;c a;c’) s:putrl b’ c’

Entangled State Monads

3. BX Is effectful

Lenses involve ‘reading’ and ‘writing’: impure, with computational effects.

So let’s look at the state monad;

data State State frunState :: 1 ;g

iInstance Monad State where
returna State s Y a;s
X = k State s ¥ let a;s’ runStatexs
in runState ka s’

with two additional operations, to read and write the state:

get : State
get State s ¥ s;s
set ¥ State

sets’ State s ¥ - g0

3.1. Equational theory of state

The get and set operations of the state monad satisfy four laws:

dofs get;s® get;return s;s° g dofs get;return s;s g

do fset s;getg do fset s; return sg
do fs get;set sg do freturn ¢
do fset s;set s'g do fset s’g

Indeed, the state monad is the initial model of this equational theory.

Entangled State Monads

3.2. State with multiple components

One can generalise to several components; say, ‘left’ and ‘right’:

get, ::State ;
gety :: State
setg ;: ¥ State ;
setg ;: 1 State ;

3.2. State with multiple components

One can generalise to several components; say, ‘left’ and ‘right’. ..

The corresponding equational theory has four state laws on left:

dofs get;s’ get;return s;s® g dofs get ;return s;s g

do fset; s;get, g do fset, s;return sg
do fs get ;set. sg do freturn ¢
do fset; s;set, s’g do fset, s'g

another four on right:

dofs gety;s’ gety;return s;s° g dofs gety;return s;s g

do fsetr s;gety g do fsetg s; return sg
do fs gety;setrg sg do freturn ¢
do fsetgr s; setg s'g do fsetg s’g

and. ..

3.2. State with multiple components

One can generalise to several components; say, ‘left’ and ‘right’. ..

The corresponding equational theory has four state laws on left:

dofs get;s’ get;return s;s® g dofs get ;return s;s g

do fset; s;get, g do fset, s;return sg
do fs get ;set. sg do freturn ¢
do fset; s;set, s’g do fset, s'g

another four on right, and four stating that left and right are independent:

dofa get ;b gety;return a;b g
dofb gety;a get ;return a;b g
do fsetg a;b getgz;returnbg dofb (gety;set a;return bg
do fsetr b;a get ;returnag dofa (get ;setg b;returnag
do fset, a;setg bg do fsetg b;set. ag

3.3. Equational theory of entangled state

Those pair-state laws are too strong for interesting BX:
e set—set laws on either side imply very well-behavedness
e left-right independence precludes any interaction

We want a weaker theory. Say that BX is well-behaved if

dofa get;a’ get;return a;a’ g dofa get ;return a;a g

do fset. a;a’ get ;return a’g do fset, a;return ag

do fa (get ;set ag do freturn ¢

do fb gety; b’ gety;return b;b’ g dofb gety;return b;b g
do fsetr b; b’ gety; return b’g do fsetg b; return bg

do fb gety;setg bg do freturn ¢

dofa get ;b gety;return a;b g dofb gety;a get ;return a;b g

(and very well-behaved if in addition set-set holds on each side).

3.4. Entanglement

Having introduced the state effect, it is natural to generalise, to allow
other effects too.

We define a BX A >t B in monad T between A and B by

data BX BX fget, : :
gety, :: ;
sety .: ¥ :
setr .: 1 g

Say that BX is well-behaved if it satisfies the seven laws above.

Our earlier definitions were a special case, with T State ;

Entangled State Monads

3.5. Really a generalization

Asymmetric lenses as entangled state:

lens2bx :: Lens ¥ BX State
lens2bx | BX get get, set sety where
gety, do fs get;return l:views g

sety v dofs get;set l:updatesv® g

Symmetric lenses as entangled state:

slens2bx :: SLens I BX State ; ;
slens2bx | BX get, gety set, setg where
get, dof a;b;c get; return ag
gety dof a;b;c get; return bg
sety a° dof a;b;c get;let b%c® Iputlr a’c ;set a’;b%c’ g

setg b dof a;b;c get;let a%c’® [l:putrl b%c ;set a’;b%c’ g

4. Combining effects

Now BX can use other effects in addition to state:
newtype StateT StateT frunStateT :: ¥ ;g

instance Monad) Monad StateT where

returna StateT s ¥ return a;s
m=>=> k StateT s ¥ dof a;s’ runStateT ms;runStateT ka s’g

This too provides get and set operations (satisfying the same four laws):

get :: Monad) StateT
get StateT s ¥ return s;s

set::Monad) ¥ StateT

sets? StateT s ¥ return ;s

but also supports lifting computations from the underlying monad:

lift :: Monad) I StateT
lift m StateT s ¥ dofa m;return a;s g

Entangled State Monads

4.1. Example: environment

BX may be parametrised by some configuration data (eg Voigtlander’s bias).

switch :: I BX State ¥ BX StateT Reader
switch bx BX gl gr sl sr where
gl do fc lift ask;inject bxc :get g

gr do fc lift ask;inject bxc :get; g
sla dofc lift ask;inject bxc set . a g
srb dofc liftask;inject bxc setgb g

where

Inject :: Monad) State I StateT
iInject m StateT s ¥ return runState ms

4.2. Example: nondeterminism

When setting a new a°, if it’s not already consistent with existing b then
nondeterministically select a new b’ amongst those consistent with a°.

nondetBX :: | ¥ Bool ¥ | | | |
BX StateT
nondetBX ok bs as BX gets fst getssnd set, setgr where
sety 8 dof a;b get;
if ok a’ b thenset a’; b else
do fb? lift bsa’ ;set a’: b’ gg
setg b dof a;b get;
if ok a b’ thenset a;b’ else
do fa’ lift asb’ ;set a’;b’ gg
where
gets::Monad) L ¥ StateT
getsf dofs get;return fs g

4.3. Example: interaction—“transformation by example”

Maintain a collection of known ways to restore consistency. Use these
when you can; when you can’t, ask, and remember the answer.

dynamicBX :: Eq ;Eq ;Monad)
_ LI | _
BX StateT o C o D
dynamicBX f g BX gets fst fst3 gets snd fst3 set. setg where
sety @ dof a:b :fs:bs get;
ifa a’thenreturn elsecase lookup a;a’;b fs of
Just b ¥ set a’%b® ;fs;bs
Nothing ¥ do fb® lift faa’b ;
set a’pb’; a;a’;b ;b :fs;bs gg

setg b 1 -- dual

Eg ask the user (|O), or search exhaustively ().

5. Necessarily StateT ?

All those examples instantiate the monad to StateT ST for some S, T.

It’s no (great) loss of generality to stick to StateT S T rather than some
more general T.

Here’s why — and why ‘great’.

5.1. Consistency and stability

Evidently a bx ::BX T A B storesan A;B pair.

But not just any such pair: a consistent pair, ie one returnable via
do fa bx:get ;b bx:geti;return a;b g

This set of pairs is the consistency relation AxB maintained by bx.
Note that this is not the same as a stable pair, an a;b such that

do fbx:set, a;bx:setg b;bx:get g do fbx:set, a;bx:setg b;return ag
do fbx:setg b;bx:set, a;bx:getrg do fbx:setr b;bx:set. a;return bg

Stable pairs are consistent (for a well-behaved BX),
but consistent pairs are not necessarily stable.

Call a BX stable if all its consistent pairs are stable.

5.2. Data refinement

For stable bx, we have get and set operations on AxB pairs:

get do fa bx:get ;b bx:geti;return a;b g
setig a%; b’ do fbx:set, a’ bx:setg b'g

(but this is only well-behaved on AxB!).

From these, we can construct a data refinement T v StateT AxB T:
absm dofab gety; c;ab’ runStateT m ab;set g ab’; return cg
So let’s abbreviate

type StateTBX BX StateT

6. Composition

It’s crucial that BX should compose.

They do; but it’s more delicate than you might expect—in particular, the
interaction between well-behavedness and other effects.

We can’t expect to compose arbitrary BX, because we can’t compose
arbitrary monads. So we consider only StateTBX T S, for different S but

the same T.

6.1. Transparency

For many StateTBX T S A B, the get functions incur no additional effects:
get, is of the form gets r for some r ::S ¥ A (and similarly for gety).

Call such a function T-pure.
(Not just ‘pure’: although it has no T-effects, it depends on the state.)

Call a BX transparent if its get, and get; are T-pure.

(Note that the switch example is not transparent, because the gets are not
Reader -pure.)

Entangled State Monads

6.2. Embeddings of stateful computations

A lens between state spaces induces a monad morphism:

embed :: Monad) Lens ¥ StateT ¥ StateT
embed Im dofa get;letb Il:view a; c;b’ lift runStateT mb
leta’ l:update a b’ set a’; return cg

In particular, we can run stateful computations on compound states:

left :: Monad) StateT ; ¥ StateT 1; »
left embed Lens view_ updatg where
VIEW, S1:S» S1

update S1;S> S3 S9;S2
right :: Monad) StateT » ¥ StateT 1; -
right embed Lens viewr updatey where

VieWR S1,S2 S2

update; S1;S2 So S1;So

22

6.3. Chaining together

Using left and right, we can define composition by:

¢ =Monad)
StateTBX 1 I StateTBX 2 I StateTBX 1,
xgsy BX gl gr sl sr where
gl do fleft get x ¢
gr do fright getyy ¢
sla dofleft sety xa ;b left gety x ;right settyb ¢
src dofright setryc ;b right get y ;left setkxb ¢

The set operations carry the middle value across the gap:

set, gety set, gety
A 1 B BxrC
getL | | SetR getl_ | | SetR

The compound state consists only of the consistent pairs si;S> .

6.4. Equivalence

Here’s an identity BX:

identity :: Monad) StateTBX
iIdentity BX get get set set

One might expect that identity $x x X ¢identity for any x. But these
don’t even have the same types! We have to resort to equality ‘up to’.

We say that x :: BX Ty ABand y ::BX T, A B are equivalent (and write
X y) if there exists an isomorphism * ::T; ¥ T, that preserves the
operations (ie = get, x get, y etc).

When T, StateT S; T and T, StateT S, T, we can construct = from an
Isomorphism between S; and S».

6.5. Composition is monoidal

Composition of transparent BX is associative, with identity as unit,
modulo

identity $x X X g identity
X9 YsZ XY 572

But note that transparency is important (or the underlying monad has to
be commutative).

Note also that equivalence of state spaces is rather strong;
bisimulation-based equivalences may be more appropriate.

7. Conclusions

e BX is inherently stateful

e INn fact, that state is entangled

e having introduced state, we might as well introduce other effects too
e cleanly incorporates partiality, nondeterminism, I/0, ...

e but the conditions for preserving well-behavedness are subtle

e supported by EPSRC grant A Theory of Least Change for BX
e scaffolding for a unified study

e joint work with Faris Abou-Saleh, James Cheney, James McKinna,
Perdita Stevens

