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1. Bidirectional transformations (BX)

e vView—-update problem in databases

view

<
Bl

update

e round-tripping laws for consistency
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1.1. Symmetrize

e vView—-update problem in databases

view view
Vv S VA
update update

e round-tripping laws for consistency
e symmetrize—neither data source definitive

e applications in interactive programs,
model-driven engineering. ..
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1.2. Overview of talk

e lenses for BX

e BX is inherently stateful

e consistency maintenance implies entangled state

e combining with other effects, eg exceptions, non-determinism, 1/0

e composing BX




2. Lenses for BX (Foster, Pierce, et al.)

An asymmetric lens | : A ~~ B from source A to view B is captured by

data Lens Lens fview
update ::

¢
Round-tripping: say that | :: Lens A B is well-behaved if

l:view l:updatesv \Y;
l:update s |:view s S

and very well-behaved (rather a strong condition) if

l:update l:updatesv Vv’ l:update s v’



2.1. Symmetric lenses (Hofmann, Pierce, Wagner)

More generally, neither data source need determine the other.
A symmetric lens s: A &c B between A and B, with complements of type C,

IS captured by

SLens fputlr ;. D

data SLens
putrl ;. ; ;0

Say that s :: SLens A B C is well-behaved if
a; c’

b:c® D s:putrl b;c’
b;c’

s:putlr a;c
a;c’ ) s:putlr a;c’

s:putrl b;c

and in addition, very well-behaved (‘strong’) if
s:putlr a’;c

s:putlr a;c b;c? D s:putlr a’;c’
s:putrl b’%c

s:putrl b;c a;c’ ) s:putrl b’ c’
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3. BX Is effectful

Lenses involve ‘reading’ and ‘writing’: impure, with computational effects.

So let’s look at the state monad;

data State State frunState :: 1 ;g

iInstance Monad State  where
returna State s Y a;s
X = k State s ¥ let a;s’ runStatexs
in runState ka s’

with two additional operations, to read and write the state:

get : State
get State s ¥ s;s
set ¥ State

sets’ State s ¥ - g0



3.1. Equational theory of state

The get and set operations of the state monad satisfy four laws:

dofs get;s® get;return s;s° g dofs get;return s;s g

do fset s;getg do fset s; return sg
do fs get;set sg do freturn ¢
do fset s;set s'g do fset s’g

Indeed, the state monad is the initial model of this equational theory.
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3.2. State with multiple components

One can generalise to several components; say, ‘left’ and ‘right’:

get, ::State ;
gety :: State
setg ;: ¥ State ;
setg ;: 1 State ;



3.2. State with multiple components

One can generalise to several components; say, ‘left’ and ‘right’. ..

The corresponding equational theory has four state laws on left:

dofs get;s’ get;return s;s® g dofs get ;return s;s g

do fset; s;get, g do fset, s;return sg
do fs get ;set. sg do freturn ¢
do fset; s;set, s’g do fset, s'g

another four on right:

dofs gety;s’ gety;return s;s° g dofs gety;return s;s g

do fsetr s;gety g do fsetg s; return sg
do fs gety;setrg sg do freturn ¢
do fsetgr s; setg s'g do fsetg s’g

and. ..



3.2. State with multiple components

One can generalise to several components; say, ‘left’ and ‘right’. ..

The corresponding equational theory has four state laws on left:

dofs get;s’ get;return s;s® g dofs get ;return s;s g

do fset; s;get, g do fset, s;return sg
do fs get ;set. sg do freturn ¢
do fset; s;set, s’g do fset, s'g

another four on right, and four stating that left and right are independent:

dofa get ;b gety;return a;b g
dofb gety;a get ;return a;b g
do fsetg a;b getgz;returnbg dofb (gety;set a;return bg
do fsetr b;a get ;returnag dofa (get ;setg b;returnag
do fset, a;setg bg do fsetg b;set. ag



3.3. Equational theory of entangled state

Those pair-state laws are too strong for interesting BX:
e set—set laws on either side imply very well-behavedness
e left-right independence precludes any interaction

We want a weaker theory. Say that BX is well-behaved if

dofa get;a’ get;return a;a’ g dofa get ;return a;a g

do fset. a;a’ get ;return a’g do fset, a;return ag

do fa (get ;set ag do freturn ¢

do fb gety; b’ gety;return b;b’ g dofb gety;return b;b g
do fsetr b; b’ gety; return b’g do fsetg b; return bg

do fb gety;setg bg do freturn ¢

dofa get ;b gety;return a;b g dofb gety;a get ;return a;b g

(and very well-behaved if in addition set-set holds on each side).



3.4. Entanglement

Having introduced the state effect, it is natural to generalise, to allow
other effects too.

We define a BX A >t B in monad T between A and B by

data BX BX fget, : :
gety, :: ;
sety .: ¥ :
setr .: 1 g

Say that BX is well-behaved if it satisfies the seven laws above.

Our earlier definitions were a special case, with T  State ;
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3.5. Really a generalization

Asymmetric lenses as entangled state:

lens2bx :: Lens ¥ BX State
lens2bx | BX get get, set sety where
gety, do fs get;return l:views g

sety v dofs get;set l:updatesv® g

Symmetric lenses as entangled state:

slens2bx :: SLens I BX State ; ;
slens2bx | BX get, gety set, setg where
get, dof a;b;c get; return ag
gety dof a;b;c get; return bg
sety a° dof a;b;c get;let b%c® Iputlr a’c ;set a’;b%c’ g

setg b dof a;b;c  get;let a%c’® [l:putrl b%c ;set a’;b%c’ g



4. Combining effects

Now BX can use other effects in addition to state:
newtype StateT StateT frunStateT :: ¥ ;g

instance Monad ) Monad StateT where

returna StateT s ¥ return a;s
m=>=> k StateT s ¥ dof a;s’ runStateT ms;runStateT ka s’g

This too provides get and set operations (satisfying the same four laws):

get :: Monad ) StateT
get StateT s ¥ return s;s

set::Monad ) ¥ StateT

sets? StateT s ¥ return ;s

but also supports lifting computations from the underlying monad:

lift :: Monad ) I StateT
lift m StateT s ¥ dofa m;return a;s g
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4.1. Example: environment

BX may be parametrised by some configuration data (eg Voigtlander’s bias).

switch :: I BX State ¥ BX StateT Reader
switch bx  BX gl gr sl sr where
gl do fc lift ask;inject bxc :get g

gr do fc lift ask;inject bxc :get; g
sla dofc lift ask;inject bxc set . a g
srb dofc liftask;inject bxc setgb g

where

Inject :: Monad ) State I StateT
iInject m StateT s ¥ return runState ms



4.2. Example: nondeterminism

When setting a new a°, if it’s not already consistent with existing b then
nondeterministically select a new b’ amongst those consistent with a°.

nondetBX :: | ¥ Bool ¥ | | | |
BX StateT
nondetBX ok bs as BX gets fst getssnd set, setgr where
sety 8 dof a;b  get;
if ok a’ b thenset a’; b else
do fb? lift bsa’ ;set a’: b’ gg
setg b dof a;b  get;
if ok a b’ thenset a;b’ else
do fa’ lift asb’ ;set a’;b’ gg
where
gets::Monad ) L ¥ StateT
getsf dofs get;return fs g



4.3. Example: interaction—“transformation by example”

Maintain a collection of known ways to restore consistency. Use these
when you can; when you can’t, ask, and remember the answer.

dynamicBX :: Eq ;Eq ;Monad )
_ LI | _
BX StateT o C o D
dynamicBX f g BX gets fst fst3 gets snd fst3 set. setg where
sety @ dof a:b :fs:bs get;
ifa a’thenreturn elsecase lookup a;a’;b fs of
Just b ¥ set a’%b® ;fs;bs
Nothing ¥ do fb® lift faa’b ;
set a’pb’; a;a’;b ;b :fs;bs gg

setg b 1 -- dual

Eg ask the user ( |O), or search exhaustively ( ).



5. Necessarily StateT ?

All those examples instantiate the monad to StateT ST for some S, T.

It’s no (great) loss of generality to stick to StateT S T rather than some
more general T.

Here’s why — and why ‘great’.



5.1. Consistency and stability

Evidently a bx ::BX T A B storesan A;B pair.

But not just any such pair: a consistent pair, ie one returnable via
do fa bx:get ;b bx:geti;return a;b g

This set of pairs is the consistency relation AxB maintained by bx.
Note that this is not the same as a stable pair, an a;b such that

do fbx:set, a;bx:setg b;bx:get g do fbx:set, a;bx:setg b;return ag
do fbx:setg b;bx:set, a;bx:getrg do fbx:setr b;bx:set. a;return bg

Stable pairs are consistent (for a well-behaved BX),
but consistent pairs are not necessarily stable.

Call a BX stable if all its consistent pairs are stable.



5.2. Data refinement

For stable bx, we have get and set operations on AxB pairs:

get do fa bx:get ;b bx:geti;return a;b g
setig a%; b’ do fbx:set, a’ bx:setg b'g

(but this is only well-behaved on AxB!).

From these, we can construct a data refinement T v StateT AxB T:
absm dofab gety; c;ab’ runStateT m ab;set g ab’; return cg
So let’s abbreviate

type StateTBX BX StateT



6. Composition

It’s crucial that BX should compose.

They do; but it’s more delicate than you might expect—in particular, the
interaction between well-behavedness and other effects.

We can’t expect to compose arbitrary BX, because we can’t compose
arbitrary monads. So we consider only StateTBX T S, for different S but

the same T.



6.1. Transparency

For many StateTBX T S A B, the get functions incur no additional effects:
get, is of the form gets r for some r ::S ¥ A (and similarly for gety).

Call such a function T-pure.
(Not just ‘pure’: although it has no T-effects, it depends on the state.)

Call a BX transparent if its get, and get; are T-pure.

(Note that the switch example is not transparent, because the gets are not
Reader -pure.)
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6.2. Embeddings of stateful computations

A lens between state spaces induces a monad morphism:

embed :: Monad ) Lens ¥ StateT ¥ StateT
embed Im dofa get;letb Il:view a; c;b’ lift runStateT mb
leta’ l:update a b’ set a’; return cg

In particular, we can run stateful computations on compound states:

left :: Monad ) StateT ; ¥ StateT 1; »
left embed Lens view_ updatg where
VIEW, S1:S» S1

update S1;S> S3  S9;S2
right :: Monad ) StateT » ¥ StateT 1; -
right embed Lens viewr updatey where

VieWR S1,S2 S2

update; S1;S2 So  S1;So

22



6.3. Chaining together

Using left and right, we can define composition by:

¢ =Monad )
StateTBX 1 I StateTBX 2 I StateTBX 1,
xgsy BX gl gr sl sr where
gl do fleft get x ¢
gr do fright getyy ¢
sla dofleft sety xa ;b left gety x ;right settyb ¢
src dofright setryc ;b right get y ;left setkxb ¢

The set operations carry the middle value across the gap:

set, gety set, gety
A 1 B BxrC
getL | | SetR getl_ | | SetR

The compound state consists only of the consistent pairs si;S> .



6.4. Equivalence

Here’s an identity BX:

identity :: Monad ) StateTBX
iIdentity BX get get set set

One might expect that identity $x x X ¢identity for any x. But these
don’t even have the same types! We have to resort to equality ‘up to’.

We say that x :: BX Ty ABand y ::BX T, A B are equivalent (and write
X y) if there exists an isomorphism * ::T; ¥ T, that preserves the
operations (ie = get, x get, y etc).

When T, StateT S; T and T, StateT S, T, we can construct = from an
Isomorphism between S; and S».



6.5. Composition is monoidal

Composition of transparent BX is associative, with identity as unit,
modulo

identity $x X X g identity
X9 YsZ XY 572

But note that transparency is important (or the underlying monad has to
be commutative).

Note also that equivalence of state spaces is rather strong;
bisimulation-based equivalences may be more appropriate.



7. Conclusions

e BX is inherently stateful

e INn fact, that state is entangled

e having introduced state, we might as well introduce other effects too
e cleanly incorporates partiality, nondeterminism, I/0, ...

e but the conditions for preserving well-behavedness are subtle

e supported by EPSRC grant A Theory of Least Change for BX
e scaffolding for a unified study

e joint work with Faris Abou-Saleh, James Cheney, James McKinna,
Perdita Stevens



