
Bidirectional Transformations

Jeremy Gibbons

SSBX, Oxford, July 2016

SSBX intro 2

1. Scenarios

Bidirectional transformations (‘BX’) maintain

different representations of shared data.

They restore consistency when either copy changes.

For engineering reasons, prefer one bidirectional specification rather than
two unidirectional ones.

(I’m only going to address the binary case.)

SSBX intro 3

Data conversions

BEGIN:VCARD
VERSION:3.0
N:Gibbons;Jeremy;;;
FN:Jeremy Gibbons
ORG:University of Oxford;
EMAIL;type=INTERNET;type...
TEL;type=WORK;type=pref:...
TEL;type=CELL:07779 7972...
item1.ADR;type=WORK;type...
item1.X-ABADR:gb
PHOTO;BASE64:

/9j/4AAQSkZJRgABAQAAAQ...
X-ABUID:6EEE2835-745D-4F...
END:VCARD

a

A bijective relationship is a special (and degenerate) case.

SSBX intro 4

View–update in databases

Staff

Name Room Salary

Sam 314 £30k

Pat 159 £25k

Max 265 £25k

Projects

Code Person Role

Plum Sam Lead

Plum Pat Test

Pear Pat Lead

SELECT
Name, Room, Role

FROM
Staff, Projects

WHERE
Name=Person

AND
Project="Plum"

�)

View

Name Room Role

Sam 314 Lead

Pat 159 Test

SSBX intro 5

MDD

Object-relational mapping:

• classes, single inheritance,
ordered attributes

• tables, ordered columns
• one table per hierarchy

Class

Attr

0..1 super
0..�
sub

0..1

next

0..1prev

Table

Column
0..1

next

0..1prev

A
a

B
b

C

c1, c2

D
d

a
A

a

b

c1

c2

D d

SSBX intro 6

Composers

State spaces

M � fName�Dates �Nationalityg
N � �Name�Nationality �

where m : M is consistent with n : N if they have
the same set of Name�Nationality pairs:

m � f (“Jean Sibelius”, 1865–1957, Finnish),

(“Aaron Copland”, 1910–1990, American),

(“Benjamin Britten”, 1913–1976, English) }

n � [(“Benjamin Britten”, English),

(“Aaron Copland”, American),

(“Jean Sibelius”, Finnish)]

Various ways of restoring consistency: ordering, dates. . .

(BX repository, http://bx-community.wikidot.com/examples:composers)

SSBX intro 7

2. Approaches

A bestiary for the week’s fauna:

relational: see eg Stevens’
• “Equivalences Induced on Model Sets by BX” (BX 2012)
• “Bidirectional Model Transformations in QVT” (SoSyM 2010)

lenses: see eg
• Foster et al.’s “Combinators for BX” (POPL 2005)
• Hofmann et al.’s “Symmetric Lenses” (POPL 2011)

ordered, delta-based, categorical: see eg
• Hegner’s “An Order-Based Theory of Updates” (AMAI 2003)
• Diskin et al.’s “From State- to Delta-Based BX” (JOT 2011)
• Johnson et al.’s “Lens Put-Put Laws” (BX 2012)

triple-graph grammars: see eg
• Schürr’s “Specification of Graph Translators with TGGs” (WG 1994)
• Anjorin et al.’s “20 Years of TGGs” (GCM 2015)

SSBX intro 8

Relational

A BX �R;�!R ; �R� : M ���� N between model spaces (sets) M ;N consists of

• a consistency relation R � M �N
• a forwards consistency restorer

�!
R : M �N ! N

• a backwards consistency restorer
 �
R : M �N ! M

The idea is that given inconsistent models m0;n, forwards consistency
restoration yields n0 � �!R �m0;n� such that R�m0;n0� holds. And vice versa.

The BX is correct if consistency is indeed restored:

8m0;n: R �m0;�!R �m0;n�� 8m;n0: R � �R�m;n0�;n0�

and hippocratic if restoration does nothing for consistent models:

8m;n: R�m;n�) �!R �m;n� � n 8m;n: R�m;n�) �R�m;n� �m

and history-ignorant if

8m;m0;n: �!R �m0;�!R �m;n�� � �!R �m0;n� -- and vice versa

SSBX intro 9

Lenses

A lens �get;put� : S ���� V from source S to view V consists of two functions

get : S ! V
put : S � V ! S

The idea is that get s projects a view from source s,
and put s v0 restores a modified view v0 into existing source s.

The lens is well-behaved if it satisfies

8s;v: put �s;get s� � s �GetPut�
8s;v: get �put �s;v�� � v �PutGet�

It is very well-behaved (rather strong) if in addition it satisfies

8s;v;v0: put �put �s;v�;v0� � put s v0 �PutPut�

Then S ’ V � C for some complement type C—“constant complement”.

Note asymmetry: source S is primary, and completely determines view V .

SSBX intro 10

History-ignorance, very well-behavedness

A parable about me and my shoes.

SSBX intro 11

Symmetric lenses

A symmetric lens �putr;putl� : A ����C B consists of a pair of functions

putr : A� C ! B � C
putl : B � C ! A� C

satisfying two round-tripping laws:

8a;b; c; c0: putr �a; c� � �b; c0�) putl �b; c0� � �a; c0� �PutRL�
8a;b; c; c0: putl �b; c� � �a; c0�) putr �a; c0� � �b; c0� �PutLR�

Induces consistent states �a; c;b� such that putr �a; c� � �b; c� and
putl �b; c� � �a; c�.
Again, ‘put–put’ laws

8a;a0;b; c; c0: putr �a; c� � �b; c0�) putr �a0; c0� � putr �a0; c�
8a;b;b0; c; c0: putl �b; c� � �a; c0�) putl �b0; c0� � putl �b0; c�

are rather strong.

SSBX intro 12

Ordered

‘Put–put’ laws are about composition of updates.

The unwanted strength of put–put arises from the unreasonable
expectation that arbitrary updates can be combined into one. Two
‘simple’ updates do not necessarily make another ‘simple’ update.

What if we relax that constraint? Only require composition of ‘compatible’
updates, whatever that means.

In particular, consider the case in which ‘states’ are sets of elements, and
the simple updates are to insert some elements, or to delete some
elements—but not both.

The state space is ordered (here, by inclusion), and the simple updates are
monotonic wrt that ordering.

Now, the composition of two similar simple updates (both inserts, or both
deletions) is again a simple update. For simple updates, ‘put–put’ is not
overly strong.

SSBX intro 13

Delta-based

Alternative perspective on put–put problem: it arises from taking a
state-based approach to BX: the input to a put operation is a new state.

Then the put operation has two tasks:

alignment: find out what has changed

propagation: translate that change

A delta-based approach separates those two tasks. In particular, the input
to consistency restoration is not just a new state a0, the result of an
update, but the update � : a , a0 itself (so alignment is no longer needed).

a_

�A

��

oo c // b_

�B

��
a0 oo

c0
// b0

Forwards propagation takes
correspondence c and update �A to
update �B and corr c0.
Backwards propagation takes c; �B to �A; c0.

This approach has rather nicer properties.

SSBX intro 14

Another parable

SSBX intro 15

Categorical

The ordered and delta-based approaches can be unified and generalized
categorically.

Represent a state space A and its transitions � : a ! a0 as a category A
(think “directed graph”). A lens �G;P� : A ���� B is a pair where

• G : A! B is a functor

• P : jG=Bj ! jA2j is a function, taking a pair �a; �B : G�a�, b0� to a
transition �A : a , a0

satisfying certain properties analogous to �PutGet�, �GetPut�, �PutPut�.

Recover the set-based approach via the codiscrete category, which has
precisely one arrow between any pair of objects.

Recover the ordered approach by considering the poset as a category.

SSBX intro 16

Triple graph grammars

Arising from work in graph rewriting, 1980s–:

• grammar specifies allowable graphs

• correspondence structure relating two graphs

Class

Attr

0..1 super
0..�
sub

0..1

next

0..1prev

Table

Column
0..1

next

0..1prev

CT

AC

(from Andy Schürr’s “15 Years of TGGs”)

• forward/backward transformations,
from graph to partner plus correspondence

For example. . .

SSBX intro 17

