
Delta Bx Revisited:
a Rational Reconstruction of Set-based Bx

Complements, Proof-Relevance, Dependent Types,
Alignment, Bisimulations, Bicategories and more!

James McKinna

TLCBX@LFCS, Edinburgh

SSBX@LMH, Oxford
2016-07-27

Outline

i) complements witness consistency
0) proof-relevance, dependent types

ii) deltas as relations, as dependent types
iii) delta propagation as proof-relevant (bi-)simulation
iv) composing bx: fun with tuples (and some

bicategories)
v) align, restore, project: reconciling set-based bx
vi) hippocraticness and PutPut
vii) why go to all this trouble?

i) complements witness
consistency

what’s a complement, anyway?
A lens (get g, put p) induces equivalence relation on sources:

s ∼ t =def ∀v .p s v = p t v

Accordingly, let C =def S/ ∼. Then we have S ' V × C.
Consider:

I φ : s 7→ (g s, [s]∼)

I ψ : (v , c) 7→ p s v , where c =def [s]∼ for some s
Then, by the defn of ∼,

I ψ(φs) = s, by PutGet
I φ(ψ(v , c)) = (v , c), by GetPut, provided the lens is

very-well-behaved

Call C the lens complement: it’s (the set of)

what’s needed to reconstruct s from v =def g s

consistency for lenses

Consistency relation:

R(s, v) =def v = g s

I Idea: let T (s, v) =def {[s]∼ | R(s, v)}, a subset of C.
I Then: c =def [s]∼ ∈ T (s, v) if and only if R(s, v) holds.
I And: that c, in the very-well-behaved case, is unique.

So:
the existence of the complement element c ∈ T (s, v)
is a witness to the proposition R(s, v)

0) digression:
proof-relevance

an old idea

Idea (older than Gödel’s incompleteness, or Turing’s
computable numbers, or Church’s λ-calculus), due to Brouwer,
Kolmogorov and others:

a proof is a procedure which transforms (evidence
for) premises into (evidence for) conclusion

So: instead of a proposition being true, consider the set of its
possible proofs (evidence for why it holds)

What’s evidence?
A justification of why something is the case.

dependent type theory

So, reorganise set theory along the lines suggested by this
intuition:

I sets (data types) correspond to propositions (logical
formulas);

I elements to proofs;
I predicates (propositions depending on an argument)

become sets (types) depending on a parameter

Distinguished type formers:
I (Π): implication and universal quantification correspond to

dependent function space (values are functions)
I (Σ): conjunction and existential quantification correspond

to dependent sums (tagged disjoint unions: values are
tuples)

relations as dependent types
a (binary) relation is now: a family of types with two parameters

inclusion of relations (proof-relevance again):

R ⊆p S =def p : Πa:AΠb:B a R b → a S b

with:
R ⊆p S ⊆q T =def R ⊆q◦p T

relational composition:

a (R ⊗ S) c =def Σb:B a R b × b C c

elements of a (R ⊗ S) c are thus triples (b, r , s):
I an element b : B
I a proof r : a R b
I a proof s : b S c

i) complements witness
consistency, redux

back to complements

from now on:
I the consistency relation is a dependent type family
I corresponding to a fine-grained notion of generalised lens

complement
I elements of the complement witness the corresponding

proposition of consistency

omitted: this accounts for the role of lens complement in
I symmetric lenses, edit lenses (consistent triples)
I delta lenses (correspondences)

ii) deltas as dependent
types

as you might expect; as you might not expect

what’s a delta?
I (Martin) a thing in the wild, that acts partially on states:
δ : ∂X , with δ • x = x ′ possibly undefined;

I (Mike) a fully-specified thing, self-describing its action:
δ : ∂X (x , x ′) means that δ transforms x 7→ x ′

I (Cai et al.; Hancock et al.) a half-way house: for every x ,
we have a dependent type ∂X

x of the allowable deltas
available at x , with a total action • : Πx :X ∂X

x → X

modulo technicalities, these are equivalent: for our (relational)
purposes, we take the (MJ) notion

I Tony’s consistent deltas: a derivation in the grammar is the
witness

iii) delta propagation as
proof-relevant
(bi-)simulation

fpg and bpg as proof-relevant witnesses

square filling à la Tony:
I take a span from the top-left (fpg) or top-right (bpg) corner
I construct a new co-span in the opposite corner

where a span is:
I an element of a relational composition

and a co-span is
I an element of a relational composition

thus we (might) see fpg, bpg, as dependently-typed functions
I (∂A)

op ⊗ T ⊆fpg T ⊗ (∂B)
op

I T ⊗ (∂B)
op ⊆bpg (∂A)

op ⊗ T

which witness that T is a bisimulation between ∂A and ∂B

iv) composing bx: fun with
triples

some notation

Given model spaces A, B, and a relation T between A and B,
write

T =def (T , .T , /T) : A−�−�T B

Given two such, S : A−�−�SB, T : B−�−�T C, how do we construct

S⊗ T : A−�−�UC

Well. . .
I Take U =def S ⊗ T
I Forward propagation: .U =def .S ⊗ .T where

(.S ⊗ .T)(a′, δa, (b, s, t)) = (c′, (b′, s′, t ′), δc)

where (b′, s′, δb) =def .S (a′, δa, s), (c′, t ′, δc) =def .T (b′, δb, t)

pause: bx are proof
relevant bisimulations

they form a bicategory

with a forgetful mapping
back to the bicategory Rel

v) align, restore, project:
reconciling set-based bx

alignment

Given a : A, b : B, how do we fit them into an fpg square?

That is: how do we construct an element of a ((∂A)
op ⊗ T) b?

This is the alignment problem; a solution will be:
I another dependently-typed function;
I taking something simple (a pair) to something complicated

(a triple);
I ⊗ is defined in terms of Σ-types: so the result type

corresponds to an existential proposition;
I this is why alignment usually gets solved by a (heuristic)

search procedure: matching, . . .

alignment examples
Zhenjiang: surjectivity of put

I state-based update: deltas are trivial (one-point sets)
I get-based consistency: consistency relation has trivial

inhabitants
I surjectivity: witness the existential quantifier

Martin: alignment from the initial state
I given (x , y) need a c so that (x , c) is fit for processing by

putl (or (y , c) by putr);
I use default init elements: (x0, c0), (y0, c0) are guaranteed

to be aligned; then build up inductively by edit sequences
Tony: alignment via constructing derivations

I delta arises by constructing a derivation in the
model-space grammar

I consistency witness by constructing derivation in the triple
space TGG: matching required

align, restore, project
A (rationally-reconstructed) set-based consistency restorer:

I takes an (a′,b) pair as input (arbitrary!);
I (align) computes an alignment a′ ((∂A)

op ⊗ T) b, that is a
triple (a, δa, t);

I (restore) applies forward restorer .T , yielding another
triple (b′, t ′, δb);

I (project) returns b′

Remarks:
I vanilla set-based bx don’t obviously compose, but now

these bx do (we filled in the missing data)
I correctness is automatic! enforced by the type
I alignment is important! (restore) step expects ‘good’ input
I traceability is important! don’t (project): it throws

information away

vi) hippocraticness and
PutPut

hippocraticness: how to do nothing
Enrich model space A =def (A, ∂A) with no-op deltas

ι : Πa:A ∂
A(a,a)

Then A becomes a reflexive graph

What is hippocraticness for T =def (T , .T , /T) : A−�−�T B?

Demand: for all a : A,b : B, t : a T b,

.T (a, ιAa , t) = (b, t , ιBb)

Remark: this is a very strong, intensional, definition:
I the resulting value is b itself (classical hippocraticness)
I the resulting delta ιBb is itself a no-op
I the resulting consistency witness t is preserved

on-the-nose: t is for ‘trace’

Lemma: Hippocratic bx are closed under composition

hippocraticness and alignment

If
I a,b are already consistent
I should be able to compute a witness t

then
I alignment should return the identity delta ιa
I restoration preserves that identity, and the witness t

Role for checkonly mode:
I compute checkonly : Πa:AΠb:B Maybe(T (a,b))

I a better boolean: if consistent, return a witness; otherwise
return a dummy token

PutPut

Suppose that deltas compose: that is, the model spaces A, B
are categories

Natural to demand that ‘restoration respect composition of
deltas’:

I if

.T (a′, δa, t) = (b′, t ′, δb) and .T (a′′, δa′ , t ′) = (b′′, t ′′, δb′)

I then
.T (a′′, (δa ⊗ δa′), t) = (b′′, t ′′, (δb ⊗ δb′))

Remark: this is not history ignorance

Lemma: PutPut bx are closed under composition

monadicity: is PutPut innocent?

Categories are monadic over graphs. . .

Question:
can every bx between general model spaces (graphs)
be understood as a PutPut bx between the associated
freely-generated categories?

vii) why go to all this
trouble?

dependent types

Pros:
I no missing information! logical aspects reified as data
I type-checking is proof-checking: correctness enforced by

typing
I compositionality via. . . composition of dependently-typed

functions
I functions which operate on triples, and. . . shuffle their

components
I type-theory is implementable as a programming language:

Agda, Idris, . . .

Cons: apparently none!

bx as proof-relevant bisimulation

Bisimulation:
I well-studied in theory: process algebra, games,

concurrency
I well-implemented in practice: model-checking, games for

model-checking
I proof-relevant versions have not been well-studied
I but: revisit Edinburgh Concurrency Workbench

Bx:
I zoo of competing formalisms
I try to reconcile, unify, explain in well-known terms
I bx as ‘bisimulations with traceability’ book-keeping
I fruitful interplay? relate existing bisim tools for concurrency

with bx tools

type theory and (enriched) category theory
Type theory is:

I ‘pre-categorical’: no commitment to model spaces as
categories, but no restriction either

I interpretable in a wide variety of (bi-)categories with
suitable, well-behaved structure; we take care to express
constructions so as to support this

I analysis in terms of ‘types-as-sets’: not a necesary
restriction

Enriched category theory:
I hom objects (deltas!) need not be sets
I suffices to have a ⊗ structure on homs. . . plus a bit more

(!): (symmetric) monoidal category V
I develop category theory relative to structure in V
I consider model spaces as V-categories: metric spaces

(Lawvere), non-determinism (folklore), probabilistic
non-determinism (?)

I consistency is now ‘V-valued’

Spans

Rel is (morally) the bicategory of spans in Set

Question: does Bisim, Bx arise as a bicategory of spans?

Consistency as a surface

The alignment structure

a′ (∂Aop ⊗ T) b =def Σa:A ∂A(a, a′)× T (a, b)

is something like

the weighted sum (integral) over all possible local
changes in a of the ‘values’ of the consistency relation

Consider: T valued not logically, but numerically

A differential geometry of software development. . .

Questions?

