Datatypes of Datatypes

Conor McBride

July 4, 2015
Introduction

If you have never met a metaprogram in a dependently typed programming language like Agda [Norell, 2008], then prepare to be underwhelmed. Once we have types which can depend computationally upon first class values, metaprograms just become ordinary programs manipulating and interpreting data which happen to stand for types and operations.

This course, originally developed in the summer of 2013, explores methods of metaprogramming in the dependently typed setting. I happen to be using Agda to deliver this material, but the ideas transfer to any setting with enough dependent types. It would certainly be worth trying to repeat these experiments in Idris, or in Coq, or in Haskell, or in your own dependently typed language, or maybe one day in mine.
Chapter 1
Vectors and Normal Functors

It might be easy to mistake this chapter for a bland introduction to dependently
typed programming based on the yawning-already example of lists indexed by
their length, known to their friends as vectors, but in fact, vectors offer us a way to
start analysing data structures into 'shape and contents'. Indeed, the typical moti-
vation for introducing vectors is exactly to allow types to express shape invariants.

1.1 Zipping Lists of Compatible Shape

Let us remind ourselves of the situation with ordinary lists, which we may define
in Agda as follows:

\begin{verbatim}
data List (X : Set) : Set where
 ⟨⟩ : List X
 _ _ : X → List X → List X
infixr 4 _ _
\end{verbatim}

The classic operation which morally involves a shape invariant is zip, taking
two lists, one of Ss, the other of Ts, and yielding a list of pairs in the product
\(S \times T \) formed from elements in corresponding positions. The trouble, of course, is
ensuring that positions correspond.

\begin{verbatim}
zip : \{ S T : Set \} → List S → List T → List (S × T)
zip ⟨⟩ ⟨⟩ = ⟨⟩
zip (s, ss) (t, ts) = (s, t), zip ss ts
zip _ _ = ⟨⟩ -- a dummy value, for cases we should not reach
\end{verbatim}

Overloading Constructors Note that I have used ‘,’ both for tuple pairing and as
list ‘cons’. Agda permits the overloading of constructors, using type information
to disambiguate them. Of course, just because overloading is permitted, that does
not make it compulsory, so you may deduce that I have overloaded deliberately.
As data structures in the memory of a computer, I think of pairing and consing
as the same, and I do not expect data to tell me what they mean. I see types as
an external rationalisation imposed upon the raw stuff of computation, to help us
check that it makes sense (for multiple possible notions of sense) and indeed to
infer details (in accordance with notions of sense). Those of you who have grown
used to thinking of type annotations as glorified comments will need to retrain
your minds to pay attention to them.

Agda has a very simple lexer and very few special characters. To a first approximation,
⟨⟩{}; stand alone and everything else must be delimited with whitespace.

The braces indicate that S and T are implicit arguments. Agda will try to in-
fer them unless we override manually.
Our zip function imposes a ‘garbage in? garbage out!’ deal, but logically, we might want to ensure the obverse: if we supply meaningful input, we want to be sure of meaningful output. But what is meaningful input? Lists the same length! Locally, we have a relative notion of meaningfulness. What is meaningful output? We could say that if the inputs were the same length, we expect output of that length. How shall we express this property? We could externalise it in some suitable program logic, first explaining what ‘length’ is.

The number of c’s in suc is a long standing area of open warfare.
Agda users tend to use lowercase-vs-uppercase to distinguish things in Sets from things which are or manipulate Sets.
The pragmas let you use Arabic numerals.

Informally,¹ we might state and prove something like

$$\forall ss, ts. \text{length } ss = \text{length } ts \Rightarrow \text{length } (\text{zip } ss ts) = \text{length } ss$$

by structural induction [Burstall, 1969] on ss, say. Of course, we could just as well have concluded that $\text{length } (\text{zip } ss ts) = \text{length } ts$, and if we carry on zipping, we shall accumulate a multitude of expressions known to denote the same number.

Matters get worse if we try to work with matrices as lists of lists (a matrix is a column of rows, say). How do we express rectangularity? Can we define a function to compute the dimensions of a matrix? Do we want to? What happens in degenerate cases? Given m, n, we might at least say that the outer list has length m and that all the inner lists have length n. Talking about matrices gets easier if we imagine that the dimensions are prescribed—to be checked, not measured.

1.2 Vectors

Dependent types allow us to internalize length invariants in lists, yielding vectors. The index describes the shape of the list, thus offers no real choice of constructors.

```
|data Vec (X : Set) : N → Set where
|  ⟨⟩ : Vec X zero
|  _+_ : {n : N} → X → Vec X n → Vec X (suc n)
```

Parameters and indices. In the above definition, the element type is abstracted uniformly as X across the whole thing. The definition could be instantiated to any particular set X and still make sense, so we say that X is a parameter of the definition. Meanwhile, Vec’s second argument varies in each of the three places it is instantiated, so that we are really making a mutually inductive definition of the vectors at every possible length, so we say that the length is an index. In an Agda data declaration head, arguments left of : (X here) scope over all constructor declarations and must be used uniformly in constructor return types, so it is sensible to put parameters left of :. However, as we shall see, such arguments may be freely instantiated in recursive positions, so we should not presume that they are necessarily parameters.

¹by which I mean, not to a computer
Let us now develop \texttt{zip} for vectors, stating the length invariant in the type.

\[
\texttt{zip : } \forall \{ n S T \} \to \text{Vec } S n \to \text{Vec } T n \to \text{Vec } (S \times T) n
\]

\[
\texttt{zip } ss \ ts = ?
\]

The length argument and the two element types are marked implicit by default, as indicated by the \{.\} after the \texttt{forall}. We write a left-hand-side naming the explicit inputs, which we declare equal to an unknown \texttt{?}. Loading the file with \[C - c C - l]\, we find that Agda checks the unfinished program, turning the \texttt{?} into labelled braces,

\[
\texttt{zip : } \forall \{ n S T \} \to \text{Vec } S n \to \text{Vec } T n \to \text{Vec } (S \times T) n
\]

\[
\texttt{zip } ss \ ts = \{ \}_0
\]

and tells us, in the information window,

\[
?0 : \text{Vec } (S \times T).n
\]

that the type of the 'hole' corresponds to the return type we wrote. The dots before \(S, T\), and \(n\) indicate that these variables exist behind the scenes, but have not been brought into scope by anything in the program text: Agda can refer to them, but we cannot.

If we click between the braces to select that hole, and issue keystroke \[C - c C - c\], we will gain more information about the goal:

\[
\text{Goal : Vec } (\Sigma. S \lambda _. T)) .n
\]

revealing the definition of \(\times\) used in the goal, about which more shortly, but also telling us about the types and visibility of variables in the context.

Our next move is to \texttt{split} one of the inputs into cases. We can see from the type information \(ss : \text{Vec } .S .n\) that we do not know the length of \(ss\), so it might be given by either constructor. To see if Agda agrees, we type \texttt{ss} in the hole and issue the 'case-split' command \([C - c C - c]\).

\[
\texttt{zip : } \forall \{ n S T \} \to \text{Vec } S n \to \text{Vec } T n \to \text{Vec } (S \times T) n
\]

\[
\texttt{zip } ss \ ts = \{ \}_0
\]

Agda responds by editing our source code, replacing the single line of definition by two more specific cases.

\[
\texttt{zip : } \forall \{ n S T \} \to \text{Vec } S n \to \text{Vec } T n \to \text{Vec } (S \times T) n
\]

\[
\texttt{zip } \langle \rangle \ ts = \{ \}_0
\]

\[
\texttt{zip } (x, ss) \ ts = \{ \}_1
\]

Moreover, we gain the refined type information

\[
?0 : \text{Vec } (\times S \times T).0
\]

\[
?1 : \text{Vec } (\times S \times T) (\text{succ } .n)
\]

which goes to show that the type system is now tracking what information is learned about the problem by inspecting \texttt{ss}. This capacity for \textit{learning by testing} is the paradigmatic characteristic of dependently typed programming.
Now, when we split ts in the 0 case, we get

$$\text{zip} : \forall \{n S T\} \to \text{Vec } S n \to \text{Vec } T n \to \text{Vec } (S \times T) n$$

$$\text{zip } \langle \rangle\langle \rangle = \{ \}$$

$$\text{zip } (x, ss) ts = \{ x \}$$

and in the suc case,

$$\text{zip} : \forall \{n S T\} \to \text{Vec } S n \to \text{Vec } T n \to \text{Vec } (S \times T) n$$

$$\text{zip } \langle \rangle\langle \rangle = \{ \}$$

$$\text{zip } (x, ss) (x1, ts) = \{ x, x1 \}, \text{zip } ss ts$$

It’s not even as clever as Epigram.

$\text{as the more specific type now determines the shape. Sadly, Agda is not very clever about choosing names, but let us persevere. We have now made sufficient analysis of the input to determine the output, and shape-indexing has helpfully ruled out shape mismatch. It is now so obvious what must be output that Agda can figure it out for itself. If we issue the keystroke } \left[C \!\!-\!-\! C \!\!-\!-\! a \right] \text{in each hole, a type-directed program search robot called ‘Agsy’ tries to find an expression which will fit in the hole, assembling it from the available information without further case analysis. We obtain a complete program.}$

$$\text{zip} : \forall \{n S T\} \to \text{Vec } S n \to \text{Vec } T n \to \text{Vec } (S \times T) n$$

$$\text{zip } \langle \rangle\langle \rangle = \{ \}$$

$$\text{zip } (s, ss) (t, ts) = \{ s, t \}, \text{zip } ss ts$$

I tend to α-convert and realign such programs manually, yielding

$$\text{zip} : \forall \{n S T\} \to \text{Vec } S n \to \text{Vec } T n \to \text{Vec } (S \times T) n$$

$$\text{zip } \langle \rangle\langle \rangle = \{ \}$$

$$\text{zip } (s, ss) (t, ts) = \{ s, t \}, \text{zip } ss ts$$

What just happened? We made Vec, a version of List, indexed by \mathbb{N}, and suddenly became able to work with ‘elements in corresponding positions’ with some degree of precision. That worked because \mathbb{N} describes the shape of lists: indeed $\mathbb{N} \cong \text{List One}$, instantiating the List element type to the type One with the single element $\langle \rangle$, so that the only information present is the shape. Once we fix the shape, we acquire a fixed notion of position.

Exercise 1.1 (vec) Complete the implementation of

$$\text{vec} : \forall \{n X\} \to X \to \text{Vec } X n$$

$$\text{vec } \{n\} x = ?$$

Why is there no specification?

using only control codes and arrow keys. (Note the brace notation, making the implicit n explicit. It is not unusual for arguments to be inferrable at usage sites from type information, but none the less computationally relevant.)

Exercise 1.2 (vector application) Complete the implementation of

$$\text{vapp} : \forall \{n S T\} \to \text{Vec } (S \to T) n \to \text{Vec } S n \to \text{Vec } T n$$

$$\text{vapp } fs ss = ?$$

using only control codes and arrow keys. The function should apply the functions from its first input vector to the arguments in corresponding positions from its second input vector, yielding values in corresponding positions in the output.
1.3. APPLICATIVE AND TRAVERSABLE STRUCTURE

Exercise 1.3 (vmap) Using vec and vapp, define the functorial ‘map’ operator for vectors, applying the given function to each element.

\[
\text{vmap} : \forall \{ n S T \} \rightarrow (S \rightarrow T) \rightarrow \text{Vec} S n \rightarrow \text{Vec} T n
\]

\[
vmap f ss = ?
\]

Note that you can make Agsy notice a defined function by writing its name as a hint in the relevant hole before you \([C - c C - a]\).

Exercise 1.4 (zip) Using vec and vapp, give an alternative definition of zip.

\[
\text{zip} : \forall \{ n S T \} \rightarrow \text{Vec} S n \rightarrow \text{Vec} T n \rightarrow \text{Vec} (S \times T) n
\]

\[
\text{zip} ss ts = ?
\]

Exercise 1.5 (Finite sets and projection from vectors) We may define a type of finite sets, suitable for indexing into vectors, as follows:

\[
\text{data Fin} : \mathbb{N} \rightarrow \text{Set} \where
\]

\[
\text{zero} : \{ n : \mathbb{N} \} \rightarrow \text{Fin} (\text{suc} n)
\]

\[
\text{suc} : \{ n : \mathbb{N} \} \rightarrow \text{Fin} n \rightarrow \text{Fin} (\text{suc} n)
\]

Implement projection:

\[
\text{proj} : \forall \{ n X \} \rightarrow \text{Vec} X n \rightarrow \text{Fin} n \rightarrow X
\]

\[
\text{proj} xs i = ?
\]

Implement, tabulation, the inverse of projection.

\[
\text{tabulate} : \forall \{ n X \} \rightarrow (\text{Fin} n \rightarrow X) \rightarrow \text{Vec} X n
\]

\[
\text{tabulate} \{ n \} f = ?
\]

Hint: think higher order.

1.3 Applicative and Traversable Structure

The vec and vapp operations from the previous section equip vectors with the structure of an applicative functor. Before we get to Applicative, let us first say what is an EndoFunctor:

\[
\text{record EndoFunctor} (F : \text{Set} \rightarrow \text{Set}) : \text{Set} \where
\]

\[
\text{field}
\]

\[
\text{map} : \forall \{ S T \} \rightarrow (S \rightarrow T) \rightarrow F S \rightarrow F T
\]

\[
\text{open EndoFunctor} \{ \{ \ldots \} \} \public
\]

The above record declaration creates new types EndoFunctor \(F \) and a new module, EndoFunctor, containing a function, EndoFunctor.map, which projects the map field from a record. The open declaration brings map into top level scope, and the \{ \{ \ldots \} \} syntax indicates that map’s record argument is an instance argument. Instance arguments are found by searching the context for something of the required type, succeeding if exactly one candidate is found.

Of course, we should ensure that such structures should obey the functor laws, with map preserving identity and composition. Dependent types allow us to state and prove these laws, as we shall see shortly.

First, however, let us refine EndoFunctor to Applicative.

For now, I shall just work in Set, but we should remember to break out and live, categorically, later. Why Set\(_1\)?
record Applicative (F : Set → Set) : Set₁ where
 infixl 2 ⊛
 field
 pure : forall {X} → X → F X
 ⊛ : forall {S T} → F (S → T) → F S → F T
applicativeEndoFunctor : EndoFunctor F
applicativeEndoFunctor = record { map = ⊛ ⊛ pure }
open Applicative { { ... } } public

The Applicative F structure decomposes F's map as the ability to make 'constant' F-structures and closure under application.

Given that instance arguments are collected from the context, let us seed the context with suitable candidates for Vec:

applicativeVec : forall {n} → Applicative λ X → Vec X n
applicativeVec = record { pure = vec; ⊛ = vapp }
endoFunctorVec : forall {n} → EndoFunctor λ X → Vec X n
endoFunctorVec = applicativeEndoFunctor

Indeed, the definition of endoFunctorVec already makes use of way itsEndoFunctor
searches the context and finds applicativeVec.

There are lots of applicative functors about the place. Here's another famous one:

applicativeFun : forall {S} → Applicative λ X → S → X
applicativeFun = record
 { pure = λ x s → x -- also known as K (drop environment)
 ; ⊛ = λ f a s → f s (a s) -- also known as S (share environment) }

Monadic structure induces applicative structure:

record Monad (F : Set → Set) : Set₁ where
 field
 return : forall {X} → X → F X
 >>/> = forall {S T} → F S → (S → F T) → F T
monadApplicative : Applicative F
monadApplicative = record
 { pure = return
 ; ⊛ = λ ff fs → ff >>/> λ f → fs >>/> λ s → return (f s) }
open Monad { { ... } } public

Exercise 1.6 (Vec monad) Construct a Monad satisfying the Monad laws

monadVec : {n : ℕ} → Monad λ X → Vec X n
monadVec = ?
such that monadApplicative agrees extensionally with applicativeVec.

Exercise 1.7 (Applicative identity and composition) Show by construction that the identity endofunctor is Applicative, and that the composition of Applicatives is Applicative.

applicativeId : Applicative id
applicativeId = ?

applicativeComp : forall {F G} → Applicative F → Applicative G → Applicative (F ◦ G)
applicativeComp aF aG = ?
1.3. APPLICATIVE AND TRAVERSABLE STRUCTURE

Exercise 1.8 (Monoid makes Applicative) Let us give the signature for a monoid thus:

```agda
record Monoid (X : Set) : Set where
  infixr 4 •
  field
  ε : X
  _•_ : X → X → X
  monoidApplicative : Applicative λ _ → X
  monoidApplicative = ?
open Monoid {{...}} public  -- it's not obvious that we'll avoid ambiguity

Complete the Applicative so that it behaves like the Monoid.
```

Exercise 1.9 (Applicative product) Show by construction that the pointwise product of Applicatives is Applicative.

```agda
record Traversable (F : Set → Set) : Set₁ where
  field
  traverse : forall {G S T} {AG : Applicative G} → (S → G T) → F S → G (F T)
  traversableEndoFunctor : EndoFunctor F
  traversableEndoFunctor = record {map = traverse}
open Traversable {{...}} public
```

The explicit \textit{aG} became needed after I introduced the \textit{applicativeId} exercise, making resolution ambiguous.

Exercise 1.10 (transpose) Implement matrix transposition in one line.

```agda
transpose : forall {m n X} → Vec (Vec X n) m → Vec (Vec X m) n
transpose = ?
```

We may define the \textit{crush} operation, accumulating values in a monoid stored in a \textit{Traversable} structure:

```agda
crush : forall {X Y} {TF : Traversable F} {M : Monoid Y} → (X → Y) → F X → Y

crush {M = M} = traverse {T = One} {AG = monoidApplicative {M}}
```

Amusingly, we must tell Agda which \textit{T} is intended when viewing \textit{X → Y} as \(X → (λ _ → Y) T\). In a Hindley-Milner language, such uninferred things are unimportant because they are in any case parametric. In the dependently typed setting, we cannot rely on quantification being parametric (although in the absence of typecase, quantification over types cannot help so being).

Exercise 1.11 (Traversable functors) Show that \textit{Traversable} is closed under identity and composition. What other structure does it preserve?
1.4 Σ-types and Other Equipment

Before we go any further, let us establish that the type $\Sigma (S : \text{Set}) (T : S \rightarrow \text{Set})$ has elements $(s : S), (t : T s)$, so that the type of the second component depends on the value of the first. From $p : \Sigma S T$, we may project $\text{fst} p : S$ and $\text{snd} p : T (\text{fst} p)$, but I also define v to be a low precedence uncurrying operator, so that $\text{v} \lambda s t \rightarrow \ldots$ gives access to the components.

On the one hand, we may take $S \times T = \Sigma S \lambda _ \rightarrow T$ and generalize the binary product to its dependent version. On the other hand, we can see $\Sigma S T$ as generalising the binary sum to an S-ary sum, which is why the type is called Σ in the first place.

We can recover the binary sum (coproduct) by defining a two element type:

```haskell
data Two : \text{Set} where \text{tt} \text{ff} : \text{Two}
```

It is useful to define a conditional operator, indulging my penchant for giving infix operators three arguments,

```haskell
\text{\texttt{if}} : \forall \{ \text{P} \} \{ \text{P} : \text{Two} \rightarrow \text{Set} \} \rightarrow \text{P} \text{tt} \rightarrow \text{P} \text{ff} \rightarrow (\text{b} : \text{Two}) \rightarrow \text{P} \text{b}
```

for we may then define:

```haskell
\text{\texttt{plus}} : \text{Set} \rightarrow \text{Set} \rightarrow \text{Set}
S + T = \Sigma \text{Two} (S \text{\texttt{if}}) T
```

Note that $\text{\texttt{if}}$ has been defined to work at all levels of the predicative hierarchy, so that we can use it to choose between Sets, as well as between ordinary values. Σ thus models both choice and pairing in data structures. That is, Σ generalizes binary product to the dependent case, and binary sum to arbitrary arity. I advise calling a Σ-type neither a ‘dependent sum’ nor a ‘dependent product’ (for a dependent function type is a something-adic product), but rather a ‘dependent pair type’.

1.5 Arithmetic

I don’t know about you, but I find I do a lot more arithmetic with types than I do with numbers, which is why I have used \times and $+$ for Sets. However, we shall soon need a little arithmetic for the sizes of things.

Exercise 1.12 (unary arithmetic) Implement addition and multiplication for numbers.

```haskell
\text{\texttt{plus}} : \text{N} \rightarrow \text{N} \rightarrow \text{N}
x \text{\texttt{plus}} y = ?
\text{\texttt{times}} : \text{N} \rightarrow \text{N} \rightarrow \text{N}
x \text{\texttt{times}} y = ?
```

1.6 Normal Functors

A **normal** functor is given, up to isomorphism, by a set of **shapes** and a function which assigns to each shape a **size**. It is interpreted as the **dependent pair** of a shape, s, and a vector of elements whose length is the size of s.
1.6. NORMAL FUNCTORS

record Normal : Set₁ where
 constructor _/
 field
 Shape : Set
 size : Shape → ℕ
 []N : Set → Set
 []N X = \Σ Shape λ s → Vec X (size s)
open Normal public
infixr 0 /

Let us have two examples. Vectors are the normal functors with a unique shape.
Lists are the normal functors whose shape is their size.

VecN : ℕ → Normal
VecN n = One / pure n
ListN : Normal
ListN = ℕ / id

But let us not get ahead of ourselves. We can build a kit for normal functors corresponding to the type constructors that we often define, then build up composite structures. For example, let us have that constants and the identity are Normal.

KₜN : Set → Normal
KₜN A = A / λ _ → 0
IKₜN : Normal
IKₜN = VecN 1

Let us construct sums and products of normal functors.

+_ₜN : Normal → Normal → Normal
(_ShF / _szF) +ₜN (_ShG / _szG) = (_ShF + _ShG) / \forall szF szG (?)

×ₜN : Normal → Normal → Normal
(_ShF / _szF) ×ₜN (_ShG / _szG) = (_ShF × _ShG) / \forall f g → _szF f +ₜN _szG g

Of course, it is one thing to construct these binary operators on Normal, but quite another to show they are worthy of their names.

nlnj : forall {X G} (F G : Normal) → \prod F \prod G X → \prod F +ₜN G \prod X
nlnj F G (\tt, ShF, xs) = (\tt, ShF), xs
nlnj F G (\ff, ShG, xs) = (\ff, ShG), xs

Now, we could implement the other direction of the isomorphism, but an alternative is to define the inverse image.

data _⁻¹ {S T : Set} (f : S → T) : T → Set where
 from : (s : S) → f⁻¹ f s

Let us now show that nlnj is surjective.

nCase : forall {X} (F G : Normal) (s : \prod F +ₜN G \prod X) → nlnj F G⁻¹ s
nCase F G ((\tt, ShF), xs) = from (\tt, ShF, xs)
nCase F G ((\ff, ShG), xs) = from (\ff, ShG, xs)

That is, we have written more or less the other direction of the iso, but we have acquired some of the correctness proof for the cost of asking. We shall check that nlnj is injective shortly, once we have suitable equipment to say so.
The inverse of ‘nInj’ can be computed by nCase thus:

\[
\begin{align*}
nOut : \forall \{ X \} \ (F \ G : \text{Normal}) &\rightarrow \left[F +_N G \right]_N X \rightarrow \left[F \right]_N X + \left[G \right]_N X \\
nOut F G xs' \text{ with } nCase F G xs' &\text{ with } nOut F G xs \\
nOut F G \cdot (\text{nInj } F G xs) &\mid \text{from } xs = xs
\end{align*}
\]

The with notation allows us to compute some useful information and add it to the collection of things available for inspection in pattern matching. By matching the result of nCase F G xs’ as from xs, we discover that ipso facto, xs’ is nInj xs. It is in the nature of dependent types that inspecting one piece of data can refine our knowledge of the whole programming problem, hence McKinna and I designed with as a syntax for bringing new information to the problem. The usual Burstallian ‘case expression’ focuses on one scrutinee and shows us its refinements, but hides from us the refinement of the rest of the problem: in simply typed programming there is no such refinement, but here there is. Agda prefixes with a dot those parts of patterns, not necessarily linear constructor forms, which need not be checked dynamically because the corresponding value must be as indicated in any well typed usage.

Exercise 1.13 (normal pairing) Implement the constructor for normal functor pairs. It may help to define vector concatenation.

\[
\begin{align*}
\text{++ : } \forall \{ m \ n X \} \ &\rightarrow \text{Vec } X \ m \rightarrow \text{Vec } X \ n \rightarrow \text{Vec } X \ (m +_N n) \\
xs ++ ys &\rightarrow ? \\
nPair : \forall \{ X \} \ (F \ G : \text{Normal}) &\rightarrow \left[F \right]_N X \times \left[G \right]_N X \rightarrow \left[F \times_N G \right]_N X \\
nPair F G fxgx &\rightarrow ?
\end{align*}
\]

Show that your constructor is surjective.

Exercise 1.14 (ListN monoid) While you are in this general area, construct (from readily available components) the usual monoid structure for our normal presentation of lists.

\[
\begin{align*}
\text{listNMonoid} : \{ X : \text{Set} \} &\rightarrow \text{Monoid } (\left[\text{ListN } \right]_N X) \\
\text{listNMonoid} &\rightarrow ?
\end{align*}
\]

We have already seen that the identity functor VecN 1 is Normal, but can we define composition?

\[
\begin{align*}
\circ : \text{Normal} &\rightarrow \text{Normal} \rightarrow \text{Normal} \\
F \circ_N (\text{ShG } / \text{szG}) &\rightarrow ? / ?
\end{align*}
\]

To choose the shape for the composite, we need to know the outer shape, and then the inner shape at each element position. That is:

\[
\begin{align*}
\circ : \text{Normal} &\rightarrow \text{Normal} \rightarrow \text{Normal} \\
F \circ_N (\text{ShG } / \text{szG}) &\rightarrow \left[F \right]_N \text{ShG} / \{ !! \}
\end{align*}
\]

Now, the composite must have a place for each element of each inner structure, so the size of the whole is the sum of the sizes of its parts. That is to say, we must traverse the shape, summing the sizes of each inner shape therein. Indeed, we can use traverse, given that \N is a monoid for +N and that Normal functors are traversable because vectors are.

\[
\begin{align*}
\text{sumMonoid} : \text{Monoid } \N \\
\text{sumMonoid} &\rightarrow \text{record } \{ \varepsilon = 0; _ \cdot = _+_N \}
\end{align*}
\]
1.6. NORMAL FUNCTORS

\(\text{normalTraversable} : (F : \text{Normal}) \to \text{Traversable} [F]_N \)

\(\text{normalTraversable} F = \text{record} \)

\[\{ \text{traverse} = \lambda \{ \{ aG \} \} f \to \forall s \; \text{xs} \to \text{pure} \{ \{ aG \} \} (_ , s) \circ \text{traverse} f \text{xs} \} \]

Armed with this structure, we can implement the composite size operator as a crush.

\(\text{\(\odot _ _ _ _ _ N \)} : \text{Normal} \to \text{Normal} \to \text{Normal} \)

\(F \odot (\text{ShG} / \text{szG}) = [F]_N \odot \text{ShG} / \text{crush} \{ \{ \text{normalTraversable} F \} \} \odot \text{szG} \)

The fact that we needed only the \text{Traversable} interface to \(F \) is a bit of a clue to a connection between \text{Traversable} and \text{Normal} functors. \text{Traversable} structures have a notion of size induced by the \text{Monoid} structure for \(N \):

\(\text{sizeT} : \forall \{ F \} \{ \{ TF : \text{Traversable} F \} \} \{ X \} \to F X \to N \)

\(\text{sizeT} = \text{crush} (\lambda _ \to 1) \)

Hence, every \text{Traversable} functor has a \text{Normal} counterpart

\(\text{normalT} : \forall \{ F \} \{ \{ TF : \text{Traversable} F \} \} \to \text{Normal} \)

\(\text{normalT} F = F \; \text{One} \; / \; \text{sizeT} \)

where the shape is an \(F \) with placeholder elements and the size is the number of such places.

Can we put a \text{Traversable} structure into its \text{Normal} representation? We can certainly extract the shape:

\(\text{shapeT} : \forall \{ F \} \{ \{ TF : \text{Traversable} F \} \} \{ X \} \to F X \to F \; \text{One} \)

\(\text{shapeT} = \text{traverse} (\lambda _ \to _____) \)

We can also define the list of elements, which should have the same length as the size

\(\text{one} : \forall \{ X \} \to X \to [\text{ListN}]_N X \)

\(\text{one} = 1, (x, ____) \)

\(\text{contentsT} : \forall \{ F \} \{ \{ TF : \text{Traversable} F \} \} \{ X \} \to F X \to [\text{ListN}]_N X \)

\(\text{contentsT} = \text{crush} \; \text{one} \)

and then try

\(\text{toNormal} : \forall \{ F \} \{ \{ TF : \text{Traversable} F \} \} \{ X \} \to F X \to [\text{normalT} F]_N X \)

\(\text{toNormal} \; f \; s \; x \; s' = \text{BAD} (\text{shapeT} \; f \; s, \text{snd} (\text{contentsT} \; f \; s)) \)

but it fails to typecheck because the size of the shape of \(f \; s \) is not obviously the length of the contents of \(f \; s \). The trouble is that \text{Traversable} \(F \) is underspecified.

In due course, we shall discover that it means just that \(F \) is naturally isomorphic to \([\text{normalT} F]_N \). To see this, however, we shall need the capacity to reason \text{equationally}, which must wait until the next section.

Exercise 1.15 (normal morphisms) A \text{normal morphism} is given as follows

\(\to_N : \text{Normal} \	o \text{Normal} \	o \text{Set} \)

\(F \circ_N G = (s : \text{Shape F}) \to [G]_N (\text{Fin} (\text{size} F \; s)) \)

where any such thing determines a natural transformation from \(F \) to \(G \).

\(\text{nMorph} : \forall \{ F \} \{ F \to_N G \to \forall \{ X \} \to [F]_N X \to [G]_N X \)

\(\text{nMorph} \; f \; (s, x) \) with \(f \; s \)

\[... \quad | s' , is = s' , \text{map} (\text{proj} \; x) \; \text{is} \]
Show how to compute the normal morphism representing a given natural transformation.

\[
morphN : \forall \{ F \ G \} \to (\forall \{ X \} \to [F]_N X \to [G]_N X) \to F \to_N G
\]

Exercise 1.16 (Hancock’s tensor) Let

\[
\otimes : \text{Normal} \to \text{Normal} \to \text{Normal}
\]

\[
(ShF \ / szF) \otimes (ShG \ / szG) = (ShF \times ShG) / \forall \lambda f \ g \to szF f \times_N szG g
\]

Construct normal morphisms:

\[
\text{swap} : (F \ G : \text{Normal}) \to (F \otimes G) \to_N (G \otimes F)
\]

\[
\text{swap} F G x = ?
\]

\[
\text{drop} : (F \ G : \text{Normal}) \to (F \otimes G) \to_N (F \otimes G)
\]

\[
\text{drop} F G x = ?
\]

Hint: for \text{swap}, you may find you need to build some operations manipulating matrices.

Hint: for \text{drop}, it may help to prove a theorem about multiplication (see next section for details of equality), but you can get away without so doing.

1.7 Proving Equations

The best way to start a fight in a room full of type theorists is to bring up the topic of equality. There’s a huge design space, not least because we often have two notions of equality to work with, so we need to design both and their interaction.

On the one hand, we have \text{judgmental} equality. Suppose you have \(s : S \) and you want to put \(s \) where a value of type \(T \) is expected. Can you? You can if \(S \equiv T \).

Different systems specify \(\equiv \) differently. Before dependent types arrived, syntactic equality (perhaps up to \(\alpha \)-conversion) was often enough.

In dependently typed languages, it is quite convenient if \(\text{Vec} X (2 + 2) \) is the same type as \(\text{Vec} X 4 \), so we often consider types up to the \(\alpha \beta \)-conversion of the \(\lambda \)-calculus further extended by the defining equations of total functions. If we’ve been careful enough to keep the open-terms reduction of the language strongly normalizing, then \(\equiv \) is decidable, by normalize-and-compare in theory and by more carefully tuned heuristics in practice.

Agda takes things a little further by supporting \(\eta \)-conversion at some ‘negative’ types—specifically, function types and record types—where a type-directed and terminating \(\eta \)-expansion makes sense. Note that a \text{syntax-directed} ‘tit-for-tat’ approach, e.g. testing \(f \equiv \lambda x \to t \) by testing \(x \vdash f x \equiv t \) or \(\varphi \equiv (s, t) \) by \(\text{fst} \ p \equiv s \) and \(\text{snd} \ p \equiv t \), works fine because two non-canonical functions and pairs are equal if and only if their expansions are. But if you want the \(\eta \)-rule for \text{One}, you need a cue to notice that \(u \equiv v \) when both inhabit \text{One} and neither is \(\langle \rangle \).

It is always tempting (hence, dangerous) to try to extract more work from the computer by making judgmental equality admit more equations which we consider morally true, but it is clear that any \text{decidable} judgmental equality will always disappoint—extensional equality of functions is undecidable, for example. Correspondingly, the equational theory of open terms (conceived as functions from valuations of their variables) will always be to some extent beyond the ken of the computer.

The remedy for our inevitable disappointment with judgmental equality is to define a notion of \text{evidence} for equality. It is standard practice to establish decidable certificate-checking for undecidable problems, and we have a standard mechanism for so doing—checking types. Let us have types \(s \simeq t \) inhabited by proofs
that \(s \) and \(t \) are equal. We should ensure that \(t \simeq t \) for all \(t \), and that for all \(P \), \(s \simeq t \rightarrow P \) \(s \rightarrow P \), in accordance with the philosophy of Leibniz. On this much, we may agree. But after that, the fight starts.

The above story is largely by way of an apology for the following declaration.

\[
\text{data} \simeq \{ l \} \{ X : \text{Set} \} (x : X) : X \rightarrow \text{Set} \text{ where} \\
\text{refl} : x \simeq x \\
\text{infix} l \simeq
\]

We may certainly implement Leibniz’s rule.

\[
\text{sub} : \forall \{ k l \} \{ X : \text{Set} \} \{ s t : X \} \rightarrow \\
\quad s \simeq t \rightarrow (P : X \rightarrow \text{Set} l) \rightarrow P s \rightarrow P t \\
\text{sub} \text{ refl} P p = p
\]

The only canonical proof of \(s \simeq t \) is \text{refl}, available only if \(s \equiv t \), so we have declared that the equality predicate for \textit{closed} terms is whatever judgmental equality we happen to have chosen. We have sealed our disappointment in, but we have gained the ability to prove useful equations on \textit{open} terms. Moreover, the restriction to the judgmental equality is fundamental to the computational behaviour of our \text{sub} implementation: we take \(p : P s \) and we return it unaltered as \(p : P t \), so we need to ensure that \(P s \equiv P t \), and hence that \(s \equiv t \). If we want to make \(\simeq \) larger than \(\equiv \), we need a more invasive approach to transporting data between provably equal types. For now, let us acknowledge the problem and make do.

We may register equality with Agda, via the following pragmas,

\[
\{-\# \text{BUILTIN EQUALITY } _==_ \#-\} \\
\{-\# \text{BUILTIN REFL refl} \#-\}
\]

and thus gain access to Agda’s support for equational reasoning.

Now that we have some sort of equality, we can specify laws for our structures, e.g., for \textit{Monoid}.

\[
\text{record \ MonoidOK} \ X \{ \{ M : \text{Monoid} \ X \} \} : \text{Set} \text{ where} \\
\text{field} \\
\quad \text{absorbL} : (x : X) \rightarrow \varepsilon \cdot x \simeq x \\
\quad \text{absorbR} : (x : X) \rightarrow x \cdot \varepsilon \simeq x \\
\quad \text{assoc} : (x y z : X) \rightarrow (x \cdot y) \cdot z \simeq x \cdot (y \cdot z)
\]

Let’s check that \(+_N \) really gives a monoid.

\[
\text{natMonoidOK} : \text{MonoidOK} \ N \\
\text{natMonoidOK} = \text{record} \\
\quad \{ \text{absorbL} = \lambda _ \rightarrow \text{refl} \\
\quad ; \text{absorbR} = _ \cdot + \text{zero} \\
\quad ; \text{assoc} = \text{assoc+} \\
\quad \} \text{ where} \quad \text{see below}
\]

The \text{absorbL} law follows by computation, but the other two require inductive proof.

\[
\text{+zero} : \forall \{ x \rightarrow x +_N \text{ zero} \} \text{ zero} \simeq x \\
\text{zero } + \text{zero} = \text{refl} \\
\text{suc } n + \text{zero} \text{ rewrite } n + \text{zero} = \text{refl} \\
\text{assoc+} : \forall \{ x y z \rightarrow (x +_N y) +_N z \simeq x +_N (y +_N z) \} \\
\text{assoc+ zero } y z = \text{refl} \\
\text{assoc+ (suc } x) y z \text{ rewrite } \text{assoc+ x y z} = \text{refl}
\]
The usual inductive proofs become structurally recursive functions, pattern matching on the argument in which \(\mathbb{N} \) is strict, so that computation unfolds. Sadly, an Agda program, seen as a proof document does not show you the subgoal structure. However, we can see that the base case holds computationally and the step case becomes trivial once we have rewritten the goal by the inductive hypothesis (being the type of the structurally recursive call).

Exercise 1.17 (ListN monoid) This is a nasty little exercise. By all means warm up by proving that \(\text{List} \ X \) is a monoid with respect to concatenation, but I want you to have a crack at

\[
\text{listNMonoidOK} : \{ X : \text{Set} \} \rightarrow \text{MonoidOK} (\mathbb{N} \n \text{ListN} \ n \ X)
\]

Hint 1: use curried helper functions to ensure structural recursion. The inductive step cases are tricky because the hypotheses equate number-vector pairs, but the components of those pairs are scattered in the goal, so \text{rewrite} will not help. Hint 2: use \text{subst} with a predicate of form \(\lambda \ n \ x \ x' \rightarrow \ldots \), which will allow you to abstract over separated places with \(n \) and \(x s \).

Exercise 1.18 (a not inconsiderable problem) Find out what goes wrong when you try to state associativity of vector \(+ \), let alone prove it. What does it tell you about our \(\simeq \) setup?

A monoid homomorphism is a map between their carrier sets which respects the operations.

\[
\text{record} \ MonoidHom \{ X \} \{ \{ MX : \text{Monoid} \ X \} \{ Y \} \{ \{ MY : \text{Monoid} \ Y \} \} (f : X \rightarrow Y) : \text{Set} \ \text{where}
\]

field

\[
\begin{align*}
\text{resp} & : f \varepsilon \simeq \varepsilon \\
\text{resp} \bullet & : \text{forall} \ x \ x' \rightarrow f (x \bullet x') \simeq f x \bullet f x'
\end{align*}
\]

For example, taking the length of a list is, in the \text{Normal} representation, trivially a homomorphism.

\[
\text{fstHom} : \text{forall} \{ X \} \rightarrow \text{MonoidHom} (\mathbb{N} \n \text{ListN} \ n \ X) \{ \mathbb{N} \} \text{fst}
\]

\[
\text{fstHom} = \text{record} \{ \text{resp} = \text{refl}; \text{resp} \bullet = \lambda _ _ \rightarrow \text{refl} \}
\]

Moving along to functorial structures, let us explore laws about the transformation of functions. Equations at higher order mean trouble ahead!

\[
\text{record} \ \text{EndoFunctorOK} \ F \{ \{ FF : \text{EndoFunctor} \ F \} \} : \text{Set} \ \text{where}
\]

field

\[
\begin{align*}
\text{endoFunctorId} & : \text{forall} \{ X \} \rightarrow \\
\text{map} & \{ \{ FF \} \} \{ X \} \text{id} \simeq \text{id} \\
\text{endoFunctorCo} & : \text{forall} \{ R S T \} (f : S \rightarrow T) (g : R \rightarrow S) \rightarrow \\
\text{map} & \{ \{ FF \} \} f \circ \text{map} g \simeq \text{map} (f \circ g)
\end{align*}
\]

However, when we try to show,

\[
\text{vecEndoFunctorOK} : \text{forall} \{ n \} \rightarrow \text{EndoFunctorOK} \lambda X \rightarrow \text{Vec} X n
\]

\[
\text{vecEndoFunctorOK} = \text{record} \{ \text{endoFunctorId} = \{ \} 0; \text{endoFunctorCo} = \lambda f \ g \rightarrow \{ \} 1 \}
\]

we see concrete goals (up to some tidying):
This is a fool’s errand. The pattern matching definition of \(\text{vapp} \) will not allow these equations on functions to hold at the level of \(\equiv \). We could make them a little more concrete by doing induction on \(n \), but we will still not force enough computation. Our \(\simeq \) cannot be extensional for functions because it has canonical proofs for nothing more than \(\equiv \), and \(\equiv \) cannot incorporate extensionality and remain decidable.

We can define pointwise equality,

\[
\simeq_\ast : \forall \{ l \} \{ S : \text{Set} \} \{ T : S \to \text{Set} \} \quad \{ f g : (x : S) \to T x \} \to \text{Set} l \quad f \simeq g = \forall \quad x \to f x \simeq g x
\]

which is reflexive but not substitutive.

Now we can at least require:

atisfaction of \(\text{EndoFunctorOKP} \) for \(n \) → \(\text{EndoFunctorOKP} \) \(\lambda \) \(X \to \text{Vec} X n \)

\[\text{vecEndoFunctorOKP} = \, ?\]

1.8 Laws for Applicative and Traversable

Developing the laws for \text{Applicative} and \text{Traversable} requires more substantial chains of equational reasoning. Here are some operators which serve that purpose, inspired by work from Lennart Augustsson and Shin-Cheng Mu.

\[
\mathord{\equiv} = \forall \{ l \} \{ X : \text{Set} \} \{ y z \} \to x \equiv y \to y \equiv z \to x \equiv z
\]

\[\equiv \mathord{\mathbin{\equiv}} = \forall \{ k l \} \{ X : \text{Set} \} \{ y z \} \to x \equiv y \to y \equiv z \to x \equiv z\]

\[
\equiv \mathord{\equiv} = \forall \{ k l \} \{ X : \text{Set} \} \{ y z \} \to x \equiv y \to y \equiv z \to x \equiv z
\]

\[\equiv \mathord{\Delta} = \forall \{ l \} \{ X : \text{Set} \} \{ y z \} \to x \equiv y \to y \equiv z \to x \equiv z\]

\[\equiv \mathord{\mathbin{\equiv}} = \forall \{ k l \} \{ X : \text{Set} \} \{ y z \} \to x \equiv y \to y \equiv z \to x \equiv z\]

These three build right-nested chains of equations. Each requires an explicit statement of where to start. The first two step along an equation used left-to-right or right-to-left, respectively, then continue the chain. Then, \(x \mathord{\square} \) marks the end of the chain.

Meanwhile, we may need to rewrite in a context whilst building these proofs. In the expression syntax, we have nothing like \text{rewrite}.

\[
\text{cong} \mathord{\equiv} \{ k l \} \{ X : \text{Set} k \} \{ Y : \text{Set} l \} \quad \{ f g : X \to Y \} \to x \equiv y \to f x \equiv f y
\]

\[\text{cong} \mathord{\equiv} \{ f \mathord{\mathbin{\equiv}} \} = \refl\]
Thus armed, let us specify what makes an Applicative acceptable, then show that such a thing is certainly an EndoFunctor.

```haskell
record ApplicativeOKP F {{ AF : Applicative F }} : Set₁ where
  field
    lawId : { X } (x : FX) → pure { { AF } } id ⊗ x ≃ x
    lawCo : { X Y Z } (f : F (X → Y)) (g : F (Y → Z)) (r : FR) →
          pure { { AF } } (λ f g → f ∘ g) ⊗ f ⊗ g ⊗ r ≃ f ⊗ (g ⊗ r)
    lawHom : { X Y Z } (f : X → Y) (s : X) →
          pure { { AF } } f ⊗ pure s ≃ pure f s
    lawCom : { X Y Z } (f : X → Y) (s : X) →
          f ⊗ pure s ≃ pure f (f s) ⊗ f
applicativeEndoFunctorOKP : EndoFunctorOKP F {{ applicativeEndoFunctor }}
applicativeEndoFunctorOKPivre = record
  { endoFunctorId = lawId
  ; endoFunctorCo = λ f g r →
      pure { { AF } } f ⊗ (pure { { AF } } g ⊗ r)
      (lawCo (pure f) (pure g) r) ≃
      pure { { AF } } (λ f g → f ∘ g) ⊗ pure f ⊗ pure g ⊗ r
      ≃ cong (λ x → x ⊗ pure g ⊗ r) (lawHom (λ f g → f ∘ g) f)
      pure { { AF } } (o_f g) ⊗ pure g ⊗ r
      ≃ cong (λ x → x ⊗ o_r g) (lawHom _o_f g)
      pure { { AF } } (f ∘ g) ⊗ r
  □
}
```

Exercise 1.20 (ApplicativeOKP for Vec) Check that vectors are properly applicative. You can get away with rewrite for these proofs, but you might like to try the new tools.

```haskell
vecApplicativeOKP : { n : N } → ApplicativeOKP λ X → Vec X n
vecApplicativeOKP = ?
```

Given that traverse is parametric in an Applicative, we should expect to observe the corresponding naturality. We thus need a notion of **applicative homomorphism**, being a natural transformation which respects pure and ®. That is,

```haskell
_«_ : forall (F G : Set → Set) → Set₁
F « G = forall { X } → F X → GX
record AppHom { F } {{ AF : Applicative F }} { G } {{ AG : Applicative G }}
  (k : F → G) : Set₁ where
  field
    respPure : forall { X } (x : X) → k (pure x) ≃ pure x
    resp® : forall { X Y Z } (f : X → Y) (g : Y → Z) (s : X) →
           k (f ® s) ≃ k f ® k s
```

We may readily check that monoid homomorphisms lift to applicative homomorphisms.

```haskell
monoidApplicativeHom :
  forall { X } {{ MX : Monoid X }} { Y } {{ MY : Monoid Y }}
  (f : X → Y) { hf : MonoidHom f} →
  AppHom { monoidApplicative {{ MX }} } {{ monoidApplicative {{ MY }} } } f
monoidApplicativeHom f { { hf } } = record
```

I had to η-expand ◦ in lieu of subtyping.
Exercise 1.21 (homomorphism begets applicative) Show that a homomorphism from F to G induces applicative structure on their pointwise sum.

$$\text{homSum} : \forall \{ F \} \{ \{ AF : \text{Applicative} F \} \} \{ \{ AG : \text{Applicative} G \} \} \to \text{Applicative}(\lambda X \to F X + G X)$$

Check that your solution obeys the laws.

$$\text{homSumOKP} : \forall \{ F \} \{ \{ AF : \text{Applicative} F \} \} \to \text{TraversableOKP} F \to \text{TraversableOKP} F \to \text{AppHom} f \to \text{TraversableOKP} (\lambda X \to F X + G X)$$

Laws for Traversable functors are given thus:

$$\text{record} \quad \text{TraversableOKP} F \{ \{ TF : \text{Traversable} F \} \} : \text{Set}_1 \text{ where}$$

$$\text{field}$$

$$\text{lawId} : \forall \{ X \} \{ (xs : F X) \to \text{traverse id} \} \{ xs \simeq xs \}$$

$$\text{lawCo} : \forall \{ G \} \{ \{ AG : \text{Applicative} G \} \} \{ H \} \{ \{ AH : \text{Applicative} H \} \} \{ (RS T) \{ (g : S \to G T) \{ (h : R \to H S) \{ (rs : F R) \to \text{AppHom} h \to \text{traverse} (h \circ g) \to ss \to h (\text{traverse} g ss) \} \} \} \{ (ss : F S) \to \text{ContentsSizeShape tokF} \} \simeq \text{sizeT (shapeT fx)}$$

Let us now check the coherence property we needed earlier.

$$\text{lengthContentsSizeShape tokF} \simeq \text{sizeT (shapeT} \{ \text{TraversableOKP-lawId tokF (\{ monoidApplicative \}) \{ \{ monoidApplicative \} \} \to \text{shapeT} \{ \text{TraversableOKP-lawCo tokF (\{ monoidApplicative \}) \{ \{ applicativeId \} \} \to \text{sizeT (shapeT} \{ \text{TraversableOKP-lawCo tokF (\{ monoidApplicative \}) \{ \{ applicativeId \} \} \to \text{sizeT (shapeT} \} \} \} \}$$

We may now construct

$$\text{toNormal} : \forall \{ F \} \{ \{ TF : \text{Traversable} F \} \} \to \text{TraversableOKP} F \to \forall \{ X \} \to F X \to \text{normalT} f \parallel X$$
toNormal \(\text{tokf } fx \)
\[
\text{shapeT } fx, \quad \text{subst (lengthContentsSizeShape tokf fx) (Vec _ _) (snd (contentsT fx))}
\]

Exercise 1.22 Define \(\text{fromNormal} \), reversing the direction of toNormal. One way to do it is to define what it means to be able to build something from a batch of contents.

\[
\text{Batch } : \text{Set } \rightarrow \text{Set } \rightarrow \text{Set}
\]
\[
\text{Batch } X Y = \Sigma N \lambda n \rightarrow \text{Vec } X n \rightarrow Y
\]

Show Batch \(X \) is applicative. You can then use traverse on a shape to build a Batch job which reinserts the contents. As above, you will need to prove a coherence property to show that the contents vector in your hand has the required length. Warning: you may encounter a consequence of defining sizeT via crush with ignored target type One, and need to prove that you get the same answer if you ignore something else. Agda’s ‘Toggle display of hidden arguments’ menu option may help you detect that scenario.

Showing that toNormal and fromNormal are mutually inverse looks like a tall order, given that the programs have been glued together with coherence conditions. At time of writing, it remains undone. When I see a mess like that, I wonder whether replacing indexing by the measure of size might help.

1.9 Fixpoints of Normal Functors

The universal first order simple datatype is given by taking the least fixpoint of a normal functor.

\[
data \text{Tree } (N : \text{Normal}) : \text{Set where} \\
\langle _ \rangle : \llbracket N \rrbracket N (\text{Tree } N) \rightarrow \text{Tree } N
\]

We may, for example, define the natural numbers this way:

\[
\text{NatT } : \text{Normal}
\]
\[
\text{NatT } = \text{Two} / \text{Zero} \langle _ \rangle 1
\]
\[
\text{zeroT } : \text{Tree } \text{NatT}
\]
\[
\text{zeroT } = \langle \text{tt}, _ \rangle
\]
\[
\text{sucT } : \text{Tree } \text{NatT } \rightarrow \text{Tree } \text{NatT}
\]
\[
\text{sucT } n = \langle \text{ff}, n, _ \rangle
\]

Of course, to prove these are the natural numbers, we need the eliminator as well as the constructors.

Exercise 1.23 Prove the principle of induction for these numbers.

\[
\text{NatInd } : \text{forall } \{ l \} \{ P : \text{Tree } \text{NatT } \rightarrow \text{Set } l \} \rightarrow
\]
\[
\text{NatInd } P \text{ zeroT } \rightarrow
\]
\[
((n : \text{Tree } \text{NatT }) \rightarrow P n \rightarrow P (\text{sucT } n)) \rightarrow
\]
\[
(n : \text{Tree } \text{NatT }) \rightarrow P n
\]
\[
\text{NatInd } P \text{ zeroT } s n = ?
\]

Indeed, there’s a generic induction principle for the whole lot of these types. First, we need predicate transformer to generate the induction hypothesis.
1.9. FIXPOINTS OF NORMAL FUNCTORS

All : \(\forall \{ l \} \{ P : X \to \text{Set} \} \{ n \} \to \text{Vec} X n \to \text{Set} l \)

All \(P \langle \rangle \) = One

All \(P (x, xs) = P x \times \text{All} P xs \)

We then acquire

induction : \(\forall (N : \text{Normal}) \{ l \} \{ P : \text{Tree} N \to \text{Set} l \} \to \)

\(((s : \text{Shape} N) (ts : \text{Vec} (\text{Tree} N) (\text{size} N s)) \to \text{All} P ts \to P \langle s, ts \rangle) \to \)

\((t : \text{Tree} N) \to P t \)

 induction \(N P p \langle s, ts \rangle = p s ts \text{ (hyps } ts \text{) where} \)

hyps : \(\forall \{ n \} \{ ts : \text{Vec} (\text{Tree} N) n \to \text{All} P ts \)

hyps \(\langle \rangle = \langle \rangle \)

hyps \((t, ts) = \text{induction} N P p t, \text{hyps } ts \)

Exercise 1.24 (decidable equality) We say a property is decided if we know whether it is true or false, where falsity is indicated by function to Zero, an empty type.

Dec : Set \(\to \text{Set} \)

Dec \(X = X + (X \to \text{Zero}) \)

Show that if a normal functor has decidable equality for its shapes, then its fixpoint also has decidable equality.

eq? : \((N : \text{Normal}) (\text{sheq?} : (s s' : \text{Shape} N) \to \text{Dec} (s \simeq s')) \to \)

\((t t' : \text{Tree} N) \to \text{Dec} (t \simeq t') \)

eq? \(N \text{sheq? } t t' = ? \)
Chapter 2

Simply Typed λ-Calculus

I’ll probably skip this chapter in lectures, but it’s fun stuff, so I’ve left it in the notes.

This chapter contains some standard techniques for the representation of typed syntax and its semantics. The joy of typed syntax is the avoidance of junk in its interpretation. Everything fits, just so.

2.1 Syntax

Last century, I learned the following recipe for well typed terms of the simply typed λ-calculus from Altenkirch and Reus.

First, give a syntax for types. I shall start with a base type and close under function spaces.

```
data ⋆ : Set
  ⊥ : ⋆
  ⊴ : ⋆ → ⋆ → ⋆
infixr 5 ⊴
```

Next, build contexts as snoc-lists.

```
data Cx (X : Set) : Set
  ξ : Cx X
  –––– : Cx X → X → Cx X
infixl 4 ––––
```

Now, define typed de Bruijn indices to be context membership evidence.

```
data ∈ (τ : ⋆) : Cx ⋆ → Set where
  zero : forall {Γ} → τ ∈ Γ, τ
  suc  : forall {Γ σ} → τ ∈ Γ → τ ∈ Γ', σ
infix 3 ∈
```

That done, we can build well typed terms by writing syntax-directed rules for the typing judgment.

```
data ⊢ (Γ : Cx ⋆) : ⋆ → Set where
  var : forall {τ} → ∀ τ ∈ Γ → Γ ⊢ τ
```

23
2.2 Semantics

Writing an interpreter for such a calculus is an exercise also from last century, for which we should thank Augustsson and Carlsson. Start by defining the semantics of each type.

\[
\begin{align*}
\llbracket \cdot \rrbracket_\star & : \star \rightarrow \text{Set} \\
\llbracket \text{t} \rrbracket_\star & = \mathbb{N} \quad \text{by way of being nontrivial} \\
\llbracket \sigma \triangleright \tau \rrbracket_\star & = \llbracket \sigma \rrbracket_\star \times \llbracket \tau \rrbracket_\star
\end{align*}
\]

Next, define *environments* for contexts, with projection. We can reuse these definitions in the rest of the section if we abstract over the notion of value.

\[
\begin{align*}
\llbracket \text{Cx} \rrbracket_\star : \text{Cx} \star & \rightarrow (\star \rightarrow \text{Set}) \rightarrow \text{Set} \\
\llbracket \text{E} \rrbracket_\text{Cx} & \text{V} = \text{One} \\
\llbracket \Gamma, \sigma \rrbracket_\text{Cx} \text{V} & = \llbracket \Gamma \rrbracket_\text{Cx} \text{V} \times \text{V} \sigma \\
\llbracket \cdot \rrbracket_\varepsilon & : \text{forall} \{ \Gamma \tau \text{V} \} \rightarrow \tau \in \Gamma \rightarrow \llbracket \Gamma \rrbracket_\text{Cx} \text{V} \rightarrow \text{V} \tau \\
\llbracket \text{zero} \rrbracket_\varepsilon (\gamma, t) & = t \\
\llbracket \text{suc} i \rrbracket_\varepsilon (\gamma, s) & = \llbracket i \rrbracket_\varepsilon \in \gamma
\end{align*}
\]

Finally, define the meaning of terms.

\[
\begin{align*}
\llbracket \cdot \rrbracket_\varepsilon & : \text{forall} \{ \Gamma \tau \} \rightarrow \Gamma \vdash \tau \rightarrow \llbracket \Gamma \rrbracket_\text{Cx} \llbracket \cdot \rrbracket_\star \rightarrow \llbracket \tau \rrbracket_\star \\
\llbracket \text{var } t \rrbracket_\varepsilon & \gamma = \llbracket i \rrbracket_\varepsilon \in \gamma \\
\llbracket \text{lam } t \rrbracket_\varepsilon \gamma & = \lambda s \rightarrow \llbracket t \rrbracket_\varepsilon (\gamma, s) \\
\llbracket \text{app } f \text{ s} \rrbracket_\varepsilon \gamma & = \llbracket f \rrbracket_\varepsilon \gamma (\llbracket s \rrbracket_\varepsilon \gamma)
\end{align*}
\]

2.3 Substitution with a Friendly Fish

We may define the types of simultaneous renamings and substitutions as type-preserving maps from variables:

\[
\begin{align*}
\text{Ren Sub} & : \text{Cx} \star \rightarrow \text{Cx} \star \rightarrow \text{Set} \\
\text{Ren} \Gamma \Delta & = \text{forall} \{ \tau \} \rightarrow \tau \in \Gamma \rightarrow \tau \in \Delta \\
\text{Sub} \Gamma \Delta & = \text{forall} \{ \tau \} \rightarrow \tau \in \Gamma \rightarrow \Delta \vdash \tau
\end{align*}
\]

The trouble with defining the action of substitution for a de Bruijn representation is the need to shift indices when the context grows. Here is one way to address that situation. First, let me define context extension as concatenation with a cons-list, using the \(\llbracket \cdot \rrbracket_\text{fish}\) operator.

\[
\llbracket \cdot \rrbracket_\text{fish} : \text{forall} \{ X \} \rightarrow \text{Cx} \ X \rightarrow \text{List} \ X \rightarrow \text{Cx} \ X
\]

\[
x_2 \llbracket \cdot \rrbracket_\text{fish} \rangle = x_2
\]

\(\llbracket \cdot \rrbracket_\star\) is pronounced ‘fish,’ for historical reasons.
2.4. A MODERN CONVENIENCE

\[xz \lll (x, xs) = xz, x \lll xs \]

\text{infix l \lll}\]

We may then define the \textit{shiftable} simultaneous substitutions from \(\Gamma \) to \(\Delta \) as type-preserving mappings from the variables in any extension of \(\Gamma \) to terms in the same extension of \(\Delta \).

\[\text{Shub : Cx} \rightarrow \text{Cx} \rightarrow \text{Set} \]

\[\text{Shub } \Gamma \Delta = \text{forall } \Xi \rightarrow \text{Sub} (\Gamma \lll \Xi) (\Delta \lll \Xi) \]

By the computational behaviour of \(\lll \), a \text{Shub } \Gamma \Delta can be used as a \text{Shub} (\Gamma', \sigma) (\Delta', \sigma), so we can push substitutions under binders very easily.

\[
\begin{align*}
\theta/\lll \var i &= \var \circ \theta \langle i \rangle \\
\theta/\lll \lam t &= \lam ((\theta \circ \cdot \cdot) \lll t) \\
\theta/\lll \app f s &= \app (\theta \lll f) (\theta \lll s)
\end{align*}
\]

Of course, we shall need to construct some of these joyous substitutions. Let us first show that any simultaneous renaming can be made shiftable by iterative weakening.

\[
\begin{align*}
\text{wkr : forall } \{ \Gamma \Delta \sigma \} \rightarrow \text{Ren } \Gamma \Delta \rightarrow \text{Ren} (\Gamma, \sigma) (\Delta, \sigma) \\
wkr r \zero &= \zero \\
wkr r (\suc i) &= \suc (r i) \\
\text{ren : forall } \{ \Gamma \Delta \} \rightarrow \text{Ren } \Gamma \Delta \rightarrow \text{Shub } \Gamma \Delta \\
\text{ren } r \langle \rangle &= \var \circ \tau \\
\text{ren } r (\cdot , \Xi) &= \text{ren} (\text{wkr } r) \Xi
\end{align*}
\]

With renaming available, we can play the same game for substitutions.

\[
\begin{align*}
\text{wks : forall } \{ \Gamma \Delta \sigma \} \rightarrow \text{Sub } \Gamma \Delta \rightarrow \text{Sub} (\Gamma, \sigma) (\Delta, \sigma) \\
wks s \zero &= \var \zero \\
wks s (\suc i) &= \text{ren} \suc \lll s i \\
\text{sub : forall } \{ \Gamma \Delta \} \rightarrow \text{Sub } \Gamma \Delta \rightarrow \text{Shub } \Gamma \Delta \\
\text{sub } s \langle \rangle &= s \\
\text{sub } s (\cdot , \Xi) &= \text{sub} (\text{wks } s) \Xi
\end{align*}
\]

2.4 A Modern Convenience

Bob Atkey once remarked that ability to cope with de Bruijn indices was a good reverse Turing Test, suitable for detecting humaniform robotic infiltrators. Correspondingly, we might like to write terms which use real names. I had an idea about how to do that.

We can build the renaming which shifts past any context extension.

\[
\begin{align*}
\text{weak : forall } \{ \Gamma \} \Xi \rightarrow \text{Ren } \Gamma (\Gamma \lll \Xi) \\
\text{weak } \langle \rangle i &= i \\
\text{weak } (\cdot , \Xi) i &= \text{weak } \Xi (\suc i)
\end{align*}
\]

Then, we can observe that to build the body of a binder, it is enough to supply a function which will deliver the term representing the variable in any suitably extended context. The context extension is given implicitly, to be inferred from the usage site, and then the correct weakening is applied to the bound variable.
CHAPTER 2. SIMPLY TYPED λ-CALCULUS

\[
\text{lambda : } \forall \{ \Gamma \sigma \tau \} \rightarrow \\
(((\forall \{ \Xi \} \rightarrow \Gamma, \sigma \triangleleft \Xi \vdash \sigma) \rightarrow \Gamma, \sigma \triangleright \tau) \rightarrow \\
\Gamma \vdash \sigma \triangleright \tau) \\
\text{lambda } f = \text{ lam } (f \lambda \{ \Xi \} \rightarrow \text{ var } (\text{ weak } \Xi \text{ zero}))
\]

But sadly, the followinf does not typecheck

\[
\text{myTest : } E \vdash \iota \triangleright \iota \\
\text{myTest = lambda } \lambda x \rightarrow x
\]

because the following constraint is not solved:

\[
(E, \iota \triangleleft \iota _\text{Xi232} x) = (E, \iota) : Cx \star
\]

That is, constructor-based unification is insufficient to solve for the prefix of a context, given a common suffix.

By contrast, solving for a suffix is easy when the prefix is just a value: it requires only the stripping off of matching constructors. So, we can cajole Agda into solving the problem by working with its reversal, via the ‘chips’ operator:

\[
\begin{align*}
\n_{\triangleright \triangleright} : & \forall \{ X \} \rightarrow Cx X \rightarrow \text{List } X \rightarrow \text{List } X \\
E & _\triangleright \triangleright ys = ys \\
(xz, x) & _\triangleright \triangleright ys = xz _\triangleright \triangleright (x,ys)
\end{align*}
\]

Of course, one must prove that solving the reverse problem is good for solving the original.

Exercise 2.1 (reversing lemma) Show

\[
\begin{align*}
\text{lem : } & \forall \{ X \} (\Delta \Gamma : Cx X) \Xi \rightarrow \\
\Delta & \triangleright \triangleright () \simeq \Gamma \triangleright \triangleright \Xi \rightarrow \Gamma \triangleleft \Xi \simeq \Delta \\
\text{lem } \Delta \Gamma \Xi q & = ?
\end{align*}
\]

Now we can frame the constraint solve as an instance argument supplying a proof of the relevant equation on cons-lists: Agda will try to use \text{refl} to solve the instance argument, triggering the tractable version of the unification problem.

\[
\begin{align*}
\text{lambda : } & \forall \{ \Gamma \sigma \tau \} \rightarrow \\
(((\forall \{ \Delta \Xi \} \{ _ : \Delta \triangleright \triangleright () \simeq \Gamma \triangleright \triangleright (\sigma, \Xi) \}) \rightarrow \Delta \vdash \sigma) \rightarrow \\
\Gamma \vdash \sigma \triangleright \tau) \rightarrow \\
\text{lambda } \{ \Gamma \} f = \\
\text{lam } (f \lambda \{ \Delta \Xi \} \{ q \}) \rightarrow \\
\text{subt } (\text{lem } \Delta \Gamma (_ , \Xi) q) (\lambda \Gamma \rightarrow \Gamma \vdash _) (\text{ var } (\text{ weak } \Xi \text{ zero})))
\end{align*}
\]

\[
\begin{align*}
\text{myTest : } & E \vdash (\iota \triangleright \iota) \triangleright (\iota \triangleright \iota) \\
\text{myTest = lambda } \lambda f \rightarrow \text{ lambda } \lambda x \rightarrow \text{ app } f (\text{ app } f x)
\end{align*}
\]

2.5 Hereditary Substitution

This section is a structured series of exercises, delivering a $\beta\eta$-long normalization algorithm for our λ-calculus by the method of \textit{hereditary substitution}.

The target type for the algorithm is the following right-nested spine representation of β-normal η-long forms.

2.5. HEREDITARY SUBSTITUTION

mutual
data ⊨_ (Γ : Cx *) : ∗ → Set where
lam : forall {σ τ} → Γ, σ ⊨ τ → Γ ⊨ σ → τ
_ : forall {τ} → τ ∈ Γ → Γ ⊨* τ → Γ ⊨ τ

data ⊨*_ (Γ : Cx *) : ∗ → Set where
{} : Γ ⊨* ⊤
_ : forall {σ τ} → Γ ⊨ σ → Γ ⊨* τ → Γ ⊨* σ → τ
infix ∗ ⊨ _ ∗
infix ∗ _ ∗

That is Γ ⊨ τ is the type of normal forms in τ, and Γ ⊨* τ is the type of spines for a τ, delivering ⊤.

The operation of hereditary substitution replaces one variable with a normal form and immediately performs all the resulting computation (i.e., more substitution), returning a normal form. You will need some equipment for talking about individual variables.

Exercise 2.2 (thinning) Define the function →x which removes a designated entry from a context, then implement the thinning operator, being the renaming which maps the embed the smaller context back into the larger.

_ : forall (Γ : Cx *) {τ} (x : τ ∈ Γ) → Cx *
Γ →x x = ?
infix 4 _ →
_ : forall {Γ σ} (x : σ ∈ Γ) → Ren (Γ → x) Γ
x ≠ y = ?

This much will let us frame the problem. We have a candidate value for x which does not depend on x, so we should be able to eliminate x from any term by substituting out. If we try, we find this situation:

(→x) : forall {Γ σ τ} → (x : σ ∈ Γ) → Γ → x ⊨ σ → Γ ⊨ τ → Γ → x ⊨ τ
{x → s} lam t = lam ((‘suc x → ?) t)
{x → s} y $ ts = ?
infix 2 (_→_)

Let us now address the challenges we face.

In the application case, we shall need to test whether or not y is the x for which we must substitute, so we need some sort of equality test. A Boolean equality test does not generate enough useful information—if y is x, we need to know that ts is a suitable spine for s; if y is not x, we need to know its representation in Γ → x. Hence, let us rather prove that any variable is either the one we are looking for or another. We may express this discriminability property as a predicate on variables.

data Veq? {Γ σ} (x : σ ∈ Γ) : forall {τ} → τ ∈ Γ → Set where
same : Veq? x x
diff : forall {τ} (y : τ ∈ Γ → x) → Veq? x (x ≠ y)

Exercise 2.3 (variable equality testing) Show that every y is discriminable with respect to a given x.

veq? : forall {Γ σ τ} (x : σ ∈ Γ) (y : τ ∈ Γ) → Veq? x y
veq? x y = ?

Hint: it will help to use with in the recursive case.
Meanwhile, in the \texttt{lam} case, we may easily shift x to account for the new variable in t, but we shall also need to shift s.

Exercise 2.4 (closure under renaming) Show how to propagate a renaming through a normal form.

\[
\text{mutual}
\]

\[
\begin{align*}
\text{renNm} & : \text{forall } \{ \Gamma \Delta \tau \} \rightarrow \text{Ren } \Gamma \Delta \rightarrow \Gamma \vdash \tau \rightarrow \Delta \vdash \tau \\
\text{renN} & \quad \text{r } t = ? \\
\text{renSp} & : \text{forall } \{ \Gamma \Delta \tau \} \rightarrow \text{Ren } \Gamma \Delta \rightarrow \Gamma \vdash* \tau \rightarrow \Delta \vdash* \tau \\
\text{renSp} & \quad \text{r } ss = ?
\end{align*}
\]

Now we have everything we need to implement hereditary substitution.

Exercise 2.5 (hereditary substitution) Implement hereditary substitution for normal forms and spines, defined mutually with application of a normal form to a spine, performing β-reduction.

\[
\text{mutual}
\]

\[
\begin{align*}
\langle _ \rightarrow _ \rangle & : \text{forall } \{ \Gamma \sigma \tau \} \rightarrow (x : \sigma \in \Gamma) \rightarrow \Gamma - x \vdash \sigma \rightarrow \\
\langle x \rightarrow s _ \rangle t & = ? \\
\langle _ \rightarrow _ _ _ \rangle & : \text{forall } \{ \Gamma \sigma \tau \} \rightarrow (x : \sigma \in \Gamma) \rightarrow \Gamma - x \vdash \sigma \rightarrow \\
\langle x \rightarrow* s _ _ _ \rangle ts & = ? \\
\mathcal{A}__ & : \text{forall } \{ \Gamma \tau \} \rightarrow \\
f \not* ss & = ? \\
\text{infix } 3 \mathcal{A}__ \\
\text{infix } 2 \langle _ \rightarrow _ \rangle \\
\end{align*}
\]

Do you think these functions are mutually structurally recursive?

With hereditary substitution, it should be a breeze to implement normalization, but there is one little tricky part remaining.

Exercise 2.6 (\(\eta\)-expansion for normalize) If we start implementing \texttt{normalize}, it is easy to get this far:

\[
\text{normalize} : \text{forall } \{ \Gamma \tau \} \rightarrow \Gamma \vdash \tau \rightarrow \Gamma \vdash \tau \\
\text{normalize } (\text{var } x) & = ? \\
\text{normalize } (\text{lam } t) & = \text{lam } (\text{normalize } t) \\
\text{normalize } (\text{app } f s) & \text{ with } \text{normalize } f \mid \text{normalize } s \\
\text{normalize } (\text{app } f s) & \text{ | lam } t \mid s' = (\text{zero } \rightarrow s') t
\]

We can easily push under \texttt{lam} and implement \texttt{app} by hereditary substitution. However, if we encounter a variable, x, we must deliver it in η-long form. You will need to figure out how to expand x in a type-directed manner, which is not a trivial thing to do. Hint: if you need to represent the prefix of a spine, it suffices to consider functions from suffices.

Here are a couple of test examples for you to try. You may need to translate them into de Bruijn terms manually if you have not yet proven the ‘reversing lemma’.
2.6 Normalization by Evaluation

Let’s cook normalization a different way, extracting more leverage from Agda’s computation machinery. The idea is to model values as either ‘going’ (capable of computation if applied) or ‘stopping’ (incapable of computation, but not η-long). The latter terms look like left-nested applications of a variable.

```
data Stop (Γ : Cx *) (τ : *) : Set where
  var : τ ∈ Γ → Stop Γ τ
  ⊥ : forall {σ} → Stop Γ (σ ⊸ τ) → Γ ⊳ σ → Stop Γ τ
```

Exercise 2.7 (Stop equipment) Show that Stop terms are closed under renaming, and that you can apply them to a spine to get a normal form.

- `renSt : forall {Γ Δ} τ → Ren Γ Δ → Stop Γ τ → Stop Δ τ`
- `renSt τ u = ?`
- `stopSp : forall {Γ τ} → Stop Γ τ → Γ ⊳* τ → Γ ⊳ τ`
- `stopSp u ss = ?`

Let us now give a contextualized semantics to each type. Values either Go or Stop. Ground values cannot go: Zero is a datatype with no constructors. Functional values have a Kripke semantics. Wherever their context is meaningful, they take values to values.

```
mutual
  Val : Cx * → * → Set
  Val Γ τ = Go Γ τ + Stop Γ τ
  Go : Cx * → * → Set
  Go Γ τ = Zero
  Go Γ (σ ⊸ τ) = forall {Δ} → Ren Γ Δ → Val Δ σ → Val Δ τ
```

Exercise 2.8 (renaming values and environments) Show that values admit renaming.

Extend renaming to environments storing values. Construct the identity environment, mapping each variable to itself.

- `renVal : forall {Γ Δ} τ → Ren Γ Δ → Val Γ τ → Val Δ τ`
- `renVal τ v = ?`
- `renVals : forall Γ Δ → Ren Γ Δ → [Γ]Cx (Val Γ) → [Γ]Cx (Val Δ)`
- `renVals θ r θ = ?`
- `idEnv : forall Γ → [Γ]Cx (Val Γ)`
- `idEnv Γ = ?`
Exercise 2.9 (application and quotation) Implement application for values. In order to apply a stopped function, you will need to be able to extract a normal form for the argument, so you will also need to be able to ‘quote’ values as normal forms.

\[
\text{apply : } \forall \{ \Gamma \sigma \tau \} \rightarrow \text{Val} \Gamma (\sigma \triangleright \tau) \rightarrow \text{Val} \Gamma \sigma \rightarrow \text{Val} \Gamma \tau
\]

\[
\text{quo : } \forall \{ \Gamma \} \tau \rightarrow \text{Val} \Gamma \tau \rightarrow \Gamma \models \tau
\]

For the last step, we need to compute values from terms.

Exercise 2.10 (evaluation) Show that every well typed term can be given a value in any context where its free variables have values.

\[
\text{eval : } \forall \{ \Gamma \Delta \tau \} \rightarrow \Gamma \vdash \tau \rightarrow [\| \Gamma \|]_{\text{Ctx}} (\text{Val} \Delta) \rightarrow \text{Val} \Delta \tau
\]

\[
\text{eval } t \gamma = ?
\]

With all the pieces in place, we get

\[
\text{normByEval : } \forall \{ \Gamma \tau \} \rightarrow \Gamma \vdash \tau \rightarrow \Gamma \models \tau
\]

\[
\text{normByEval } \{ \Gamma \} \{ \tau \} t = \text{quo } \tau (\text{eval } t (\text{idEnv } \Gamma))
\]

Exercise 2.11 (numbers and primitive recursion) Consider extending the term language with constructors for numbers and a primitive recursion operator.

\[
\text{zero : } \Gamma \vdash \iota
\]

\[
\text{suc : } \Gamma \vdash \iota \rightarrow \Gamma \vdash \iota
\]

\[
\text{rec : } \forall \{ \tau \} \rightarrow \Gamma \vdash \tau \rightarrow \Gamma \vdash (\iota \triangleright \tau \triangleright \tau) \rightarrow \Gamma \vdash \iota \rightarrow \Gamma \vdash \tau
\]

How should the normal forms change? How should the values change? Can you extend the implementation of normalization?

Exercise 2.12 (adding adding) Consider making the further extension with a hardwired addition operator.

\[
\text{suc : } \Gamma \vdash \iota \rightarrow \Gamma \vdash \iota \rightarrow \Gamma \vdash \iota
\]

Can you engineer the notion of value and the evaluator so that \text{normByEval} identifies

\[
\begin{align*}
\text{add zero } t & \quad \text{with } t \\
\text{add } s \text{ zero } & \quad \text{with } s \\
\text{add } (\text{suc } s) \ t & \quad \text{with } \text{suc } (\text{add } s \ t) \\
\text{add } s \ (\text{suc } t) & \quad \text{with } \text{suc } (\text{add } s \ t) \\
\text{add } (\text{add } r \ s) \ t & \quad \text{with } \text{add } r \ (\text{add } s \ t) \\
\text{add } s \ t & \quad \text{with } \text{add } t \ s
\end{align*}
\]

and thus yields a stronger decision procedure for equality of expressions involving adding? (This is not an easy exercise, especially if you want the last equation to hold. I must confess I have not worked out the details.)
Chapter 3

Containers and W-types

Containers are the infinitary generalization of normal functors.

```plaintext
record Con : Set₁ where
  constructor ◁
  field
  Sh : Set -- a set of shapes
  Po : Sh → Set -- a family of positions
  J : Set → Set
  K : A → Con
  I : Con
  + : Con → Con → Con
  × : Con → Con → Con
  ◦ : Con → Con → Con

open Con public
infixr 1 ◁
```

Instead of having a size and a vector of contents, we represent the positions for each shape as a set, and the contents as a function from positions.

3.1 Closure Properties

We may readily check that the polynomials are all containers.

\[K_A : \text{Set} \to \text{Con} \]
\[K_A A = A \triangleleft \lambda _- \to \text{Zero} \]
\[I_A : \text{Con} \]
\[I_A = \text{One} \triangleleft \lambda _- \to \text{One} \]
\[_+ : \text{Con} \to \text{Con} \to \text{Con} \]
\[(S \triangleleft P) +_a (S' \triangleleft P') = (S + S') \triangleleft P \triangleleft P' \]
\[_\times : \text{Con} \to \text{Con} \to \text{Con} \]
\[(S \triangleleft P) \times_a (S' \triangleleft P') = (S \times S') \triangleleft \lambda s s' \to P s + P' s' \]

Moreover, we may readily close containers under dependent pairs and functions, a fact which immediately tells us how to compose containers.

\[_\Sigma : (A : \text{Set}) (C : A \to \text{Con}) \to \text{Con} \]
\[_\Sigma A C = (\Sigma A \lambda a \to Sh (C a)) \triangleleft \lambda s P \triangleleft \Sigma A \lambda a \to Po (C a) s \]
\[_\Pi : (A : \text{Set}) (C : A \to \text{Con}) \to \text{Con} \]
\[_\Pi A C = ((a : A) \to Sh (C a)) \triangleleft \lambda f \to \Sigma A \lambda a \to Po (C a) (f a) \]
\[_\circ : \text{Con} \to \text{Con} \to \text{Con} \]
\[(S \triangleleft P) \circ_a C = _\Sigma S \lambda s \to _\Pi (P s) \lambda p \to C \]
Exercise 3.1 (containers are endofunctors) Check that containers yield endofunctors which obey the laws.

\[
\text{conEndoFunctor} : \{ C : \text{Con} \} \rightarrow \text{EndoFunctor} \ \{ C \} \]
\[
\text{conEndoFunctorOKP} : \{ C : \text{Con} \} \rightarrow \text{EndoFunctorOKP} \ \{ C \} \]

Exercise 3.2 (closure properties) Check that the meanings of the operations on containers are justified by their interpretations as functors.

3.2 Container Morphisms

A container morphism describes a *natural transformation* between the functors given by containers. As the element type is abstract, there is nowhere that the elements of the output can come from except somewhere in the input. Correspondingly, a container morphism is given by a pair of functions, the first mapping input shapes to output shapes, and the second mapping output positions back to the input positions from which they fetch elements.

\[
\rightarrow \triangleleft : \text{Con} \rightarrow \text{Con} \rightarrow \text{Set}
\]
\[
(S \triangleleft P) \rightarrow (S' \triangleleft P') = \Sigma (S \rightarrow S') \lambda f \rightarrow (s : S) \rightarrow P' (f s) \rightarrow P s
\]

The action of a container morphism is thus

\[
f / \triangleleft : \forall \{ C C' \} \rightarrow C \rightarrow (S \triangleleft P) \rightarrow C' \rightarrow (S' \triangleleft P') \rightarrow \forall X \rightarrow \{ C \} \cdot X \rightarrow \{ C' \} \cdot X
\]
\[
(\text{to, fro}) / \triangleleft (s, k) = \text{to } s, k \circ \text{fro } s
\]

Interactive Interpretation Peter Hancock encourages us to think of \(S \triangleleft P \) as the description of a *command-response* protocol, where \(S \) is a set of commands we may invoke and \(P \) tells us which responses may be returned for each command. The type \(\{ S \triangleleft P \} \cdot X \) is thus a *strategy* for obtaining an \(X \) by one run of the protocol. Meanwhile, a container morphism is thus a kind of ‘device driver’, translating commands one way, then responses the other.

Exercise 3.3 (representing natural transformations) Check that you can represent any natural transformation between containers as a container morphism.

\[
\text{morph}_{\triangleleft} : \forall \{ C C' \} \rightarrow (\forall X \rightarrow \{ C \} \cdot X \rightarrow \{ C' \} \cdot X) \rightarrow C \rightarrow C'
\]

Container-of-positions presentation The above exercise might suggest an equivalent presentation of container morphisms, namely

\[
(S \triangleleft P) \rightarrow C = (s : S) \rightarrow \{ C \} \cdot (P s)
\]

but the to-and-fro presentation is usually slightly easier to work with. You win some, you lose some.

Exercise 3.4 (identity and composition) Check that you can define identity and composition for container morphisms.

\[
\text{id}_{\triangleleft} : \forall \{ C \} \rightarrow C \rightarrow C
\]
\[
\text{id}_{\triangleleft} = ?
\]

\[
\text{e}_{\triangleleft} : \forall \{ C D E \} \rightarrow (D \rightarrow E) \rightarrow (C \rightarrow D) \rightarrow (C \rightarrow E)
\]
\[
e_{\triangleleft} = ?
\]
3.3 W-TYPES

The least fixpoint of a container is a W-type—W for ‘well founded’.

\[
\text{data } W \ (C : \text{Con}) : \text{Set} \ \text{where}
\]
\[
\langle _ \rangle : \llbracket C \rrbracket_a (W \ C) \rightarrow W \ C
\]

In an extensional setting, W can be used to represent a great many datatypes, but intensional systems have some difficulties achieving faithful representations of first order data via W-types.

Exercise 3.5 (natural numbers) Define natural numbers as a W-type. Implement the constructors. Hint: magic: Zero \rightarrow \{ A : \text{Set} \} \rightarrow A. Implement primitive recursion and use it to implement addition.

\[
\begin{align*}
\text{NatW} : & \text{Set} \\
\text{NatW} &= W \ ? \\
\text{zeroW} : & \text{NatW} \\
\text{zeroW} &= (\ ?) \\
\text{sucW} : & \text{NatW} \rightarrow \text{NatW} \\
\text{sucW} \ n &= (\ ?) \\
\text{precW} : & \forall \{ l \} \{ T : \text{Set} l \} \rightarrow T \rightarrow (\text{NatW} \rightarrow T \rightarrow T) \rightarrow \text{NatW} \rightarrow T \\
\text{precW} \ z \ s \ n &= \ ? \\
\text{addW} : & \text{NatW} \rightarrow \text{NatW} \rightarrow \text{NatW} \\
\text{addW} \ x \ y &= \text{precW} \ ? ? x
\end{align*}
\]

How many different implementations of zeroW can you find? Meanwhile, discover for yourself why an attempt to establish the induction principle is a fool’s errand.

\[
\begin{align*}
\text{indW} : & \forall \{ l \} \{ P : \text{NatW} \rightarrow \text{Set} l \} \rightarrow \\
& \quad P \ \text{zeroW} \rightarrow \\
& \quad (\ (n : \text{NatW}) \rightarrow P \ n \rightarrow P \ (\text{sucW} \ n)) \rightarrow \\
& \quad (n : \text{NatW}) \rightarrow P \ n \\
\text{indW} \ P \ z \ s \ n &= \ ?
\end{align*}
\]

A useful deployment of the W-type is to define the free monad for a container.

\[
\ast : \text{Con} \rightarrow \text{Set} \rightarrow \text{Set} \\
C \ast X = W (K_a X + C)
\]

Exercise 3.6 (free monad) Construct the components for

\[
\begin{align*}
\text{freeMonad} : & (C : \text{Con}) \rightarrow \text{Monad} (\ast C) \\
\text{freeMonad} \ C &= \ ?
\end{align*}
\]

Exercise 3.7 (free monad closure) Define an operator

\[
\ast^\circ : \text{Con} \rightarrow \text{Con} \\
\ast^\circ \ C &= \ ?
\]

and exhibit an isomorphism \[C \ast X \cong \llbracket C \ast^\circ \rrbracket_a X \]
CHAPTER 3. CONTAINERS AND W-TYPES

Exercise 3.8 (general recursion) Define the monadic computation which performs one command-response interaction:

\[
\text{call} : \forall \{ C \} \to (s : \text{Sh} C) \to C * \text{Po} C s
\]

We can model the general recursive function space as the means to perform finite, on demand expansion of call trees.

\[
\Pi_\bot : (S : \text{Set}) (T : S \to \text{Set}) \to \text{Set}
\]

\[
\Pi_\bot S T = (s : S) \to (S \triangle T) * T s
\]

Give the ‘gasoline-driven’ interpreter for this function space, delivering a result provided the call tree does not expand more times than a given number.

\[
\text{gas} : \forall \{ S T \} \to \mathbb{N} \to \Pi_\bot S T \to (s : S) \to T s + \text{One}
\]

Feel free to implement reduction for the untyped \(\lambda\)-calculus, or some other model of computation, as a recursive function in this way.

Turing completeness To say that Agda fails to be Turing complete is manifest nonsense. It does not stop you writing general recursive programs. It does not stop you feeding them to a client who is willing to risk running them. It does stop you giving a general recursive program a type which claims it is guaranteed to terminate, nor can you persuade Agda to execute such a program unboundedly in the course of checking a type. It is not unusual for typecheckers to refuse to run general recursive type-level programs. So the situation is not that we give up power for totality. Totality buys us a degree of honesty which partial languages just discard.

3.4 Derivatives of Containers

We have

\[
\llbracket S \triangle P \rrbracket_d X = \Sigma S \lambda s \to P s \to X
\]

but we could translate the right-hand side into a more mathematical notation and observe that a container is something a bit like a power series:

\[
\llbracket S \triangle P \rrbracket_d X = \sum_{s : S} X(P s)
\]

We might imagine computing a formal derivative of such a series, ‘multiplying down by each index, then subtracting one’, but we are not merely counting data— they have individual existences. Let us define a kind of ‘dependent decrement’, subtracting a particular element from a type.

\[
\text{−} : (X : \text{Set}) (x : X) \to \text{Set}
\]

\[
X - x = \Sigma X \lambda x' \to x' \simeq x \to \text{Zero}
\]

That is, an element of \(X - x\) is some element for \(X\) which is known to be other than \(x\).

We may now define the formal derivative of a container.

\[
\partial : \text{Con} \to \text{Con}
\]

\[
\partial (S \triangle P) = \Sigma S P \triangle \forall \lambda s p \to P s - p
\]

The shape of the derivative is the pair of a shape with one position, which we call the ‘hole’, and the positions in the derivative are ‘everywhere but the hole’.
Exercise 3.9 (plug) Exhibit a container morphism which witnesses the ability to fill the hole, provided equality on positions is decidable.

\[
\text{plug : } \forall \{ C \} \rightarrow ((s: \text{Sh } C) (p p': \text{Po } C s) \rightarrow \text{Dec } (p \simeq p')) \rightarrow \\
(\partial C \times_C I_\alpha) \rightarrow_C C
\]

Exercise 3.10 (laws of calculus) Check that the following laws hold at the level of mutually inverse container morphisms.

\[
\begin{align*}
\partial (K_\alpha A) & \equiv K_\alpha \text{ Zero} \\
\partial I & \equiv K_\alpha \text{ One} \\
\partial (C +_\alpha D) & \equiv \partial C +_\alpha \partial D \\
\partial (C \times_\alpha D) & \equiv (\partial C \times_\alpha D) +_\alpha (C \times_\alpha \partial D) \\
\partial (C \circ_\alpha D) & \equiv (\partial C \circ_\alpha D) \times_\alpha \partial D
\end{align*}
\]

What is \(\partial (C \bowtie)\) ?

3.5 Denormalized Containers

These may appear later.
Chapter 4

Indexed Containers (Levitated)

There are lots of ways to present indexed containers, giving ample opportunities for exercises, but I shall use the Hancock presentation, as it has become my preferred version, too.

The idea is to describe functors between indexed families of sets.

\[
\text{record } \triangledown (I J : \text{Set}) : \text{Set} \quad \text{where}
\]
\[
\text{constructor } \llcorner \quad \text{field}
\]
\[
\quad \text{ShIx : } J \rightarrow \text{Set}
\quad \text{Polx : } (j : J) \rightarrow \text{ShIx } j \rightarrow \text{Set}
\quad \text{rilx : } (j : J) (s : \text{ShIx } j) (p : \text{Polx } j s) \rightarrow I
\]
\[
\begin{align*}
\llcorner_, I J K i : (I \rightarrow \text{Set}) \rightarrow (J \rightarrow \text{Set}) \\
\llcorner_, X j = \Sigma (\text{ShIx } j) \lambda s \rightarrow (p : \text{Polx } j s) \rightarrow X (\text{rilx } j s p)
\end{align*}
\]

open \triangledown public

An \(I \triangleright J\) describes a \(J\)-indexed thing with places for \(I\)-indexed elements. Correspondingly, some \(j : J\) tells us which sort of thing we’re making, determining a shape set \(\text{Sh } j\) and a position family \(\text{Po } j\), just as with plain containers. The \(\text{ri}\) function then determines which \(I\)-index is demanded in each element position.

Interaction structures Hancock calls these indexed containers interaction structures. Consider \(J\) to be the set of possible ‘states of the world’ before an interaction, and \(I\) the possible states afterward. The ‘before’ states will determine a choice of commands we can issue, each of which has a set of possible responses which will then determine the state ‘after’. An interaction structure thus describes the predicate transformer which describes the precondition for achieving a postcondition by one step of interaction. We are just using proof-relevant Hoare logic as the type system!

Exercise 4.1 (functoriality) We have given the interpretation of indexed containers as operations on indexed families of sets. Equip them with their functorial action for the following notion of morphism

\[
\begin{align*}
\llcorner_\rightarrow : \forall \{k l\} \{I : \text{Set} k\} \rightarrow (I \rightarrow \text{Set} l) \rightarrow (I \rightarrow \text{Set} l) \rightarrow \text{Set} (l k) \\
X \rightarrow Y = \forall i \rightarrow X i \rightarrow Y i
\end{align*}
\]

\[
\text{ixMap : } \forall \{I J\} \{C : I \triangleright J\} \{X Y\} \rightarrow (X \rightarrow Y) \rightarrow \llcorner [C], X \rightarrow \llcorner [C], Y
\]

\[
\text{ixMap } f j xs = ?
\]
4.1 Petersson-Synek Trees

Kent Petersson and Dan Synek proposed a universal inductive family, amounting to the fixpoint of an indexed container

```haskell
data ITree { J : Set } ( C : J ⊢ J ) ( j : J ) : Set where
  ( _ ) : [ C ] [ ] ( ITree C ) j → ITree C j
```

The natural numbers are a friendly, if degenerate example.

```haskell
NatC : One ⊢ One
NatC = ( λ _ → Two ) ⊢ ( λ _ → Zero ) ⊢ One
zeroC : ITree NatC ⟨ ⟩
zeroC = ( ⟨ tt, magic ⟩

sucC : ITree NatC ⟨ ⟩ → ITree NatC ⟨ ⟩
sucC n = ( ⟨ ff, pure n ⟩
```

This is just the indexed version of the \(W \)-type, so the same issue with extensionality arises.

We may also define the node structure for vectors as an instance.

```haskell
VecC : Set → N ⊢ N
VecC X = VS ⊢ VP ⊢ Vr where -- depending on the length
  VS : N → Set
  VS zero = One -- nil is unlabelled
  VS ( suc n ) = X -- cons carried an element
  VP : ( n : N ) → VS n → Set
  VP zero _ = Zero -- nil has no children
  VP ( suc n ) _ = One -- cons has one child
  Vr : ( n : N ) ( s : VS n ) ( p : VP n s ) → N
  Vr zero ⟨ ⟩ = n -- nil has no children to index
  Vr ( suc n ) x ⟨ ⟩ = n -- the tail of a cons has the length one less
```

Let us at least confirm that we can rebuild the constructors.

```haskell
vnil : forall { X } → ITree ( VecC X ) zero
vnil = ( ⟨ ⟩, ( λ ⟨ ⟩ ) )

vcons : forall { X n } → X → ITree ( VecC X ) n → ITree ( VecC X ) ( suc n )
vcons x xs = ( ⟨ x, ( λ _ → xs ) ⟩
```

Why don’t you have a go at rebuilding an inductive family in this manner?

Exercise 4.2 (simply typed \(\lambda \)-calculus) Define the simply typed \(\lambda \)-terms as Petersson-Synek trees.

```haskell
STLC : ( Cx * * ) ⊢ ( Cx * * )
STLC = ?
```

Implement the constructors.

4.2 Closure Properties

It is not difficult to show that indexed containers have an identity composition which is compatible up to isomorphism with those of their interpretations.
4.2. CLOSURE PROPERTIES

Exercise 4.3 (identity and composition) Construct

\[\text{Id}_{\mathcal{I}} : \text{forall} \{ I \} \to I \triangleright I \]
\[\text{Id}_{\mathcal{I}} = ? \]

such that
\[\llbracket \text{Id}_{\mathcal{I}} \rrbracket, X \triangleright X \]

Similarly, construct the composition \(\text{Co}_{\mathcal{I}} \):

\[\text{Co}_{\mathcal{I}} : \text{forall} \{ I J K \} \to J \triangleright K \to I \triangleright J \to I \triangleright K \]
\[\text{Co}_{\mathcal{I}} C C' = ? \]

such that
\[\llbracket \text{Co}_{\mathcal{I}} C C' \rrbracket, X k \cong \llbracket C \rrbracket, (\llbracket C' \rrbracket, X) k \]

It may be useful to consider constructing binary products and coproducts, but let us chase after richer structure, exploiting dependent types to a greater extent.

We may describe a class of indexed functors, as follows.

My motivation for level polymorphism will appear in due course.

\[
\text{data} \quad \text{Desc} \{ l \} \{ I : \text{Set} \} \text{ where} \\
\text{var} : I \to \text{Desc} I \\
\sigma \pi : (A : \text{Set} l) (D : A \to \text{Desc} I) \to \text{Desc} I \\
\times_{\text{D}} : \text{Desc} I \to \text{Desc} I \to \text{Desc} I \\
\kappa : \text{Set} l \to \text{Desc} I \\
\text{infixr} 4 \times_{\text{D}}
\]

which admit a direct interpretation as follows

\[
\llbracket \text{DSh} \rrbracket : \text{forall} \{ I \} \{ I : \text{Set} l \} \to \text{Desc} I \to (I \to \text{Set} l) \to \text{Set} l \\
\llbracket \text{var} i \rrbracket_{\text{Dsh}} X = X i \\
\llbracket \sigma A D \rrbracket_{\text{Dsh}} X = \Sigma A \lambda a \to \llbracket D a \rrbracket_{\text{Dsh}} X \\
\llbracket \pi A D \rrbracket_{\text{Dsh}} X = (a : A) \to \llbracket D a \rrbracket_{\text{Dsh}} X \\
\llbracket D \times_{\text{D}} E \rrbracket_{\text{Dsh}} X = \llbracket D \rrbracket_{\text{Dsh}} X \times \llbracket E \rrbracket_{\text{Dsh}} X \\
\llbracket \kappa A \rrbracket_{\text{Dsh}} X = A
\]

A family of such descriptions in \(J \to \text{Desc} I \) thus determines, pointwise, a functor from \(I \to \text{Set} \) to \(J \to \text{Set} \). It is easy to see that every indexed container has a description.

\[\text{ixConDesc} : \text{forall} \{ I J \} \to I \triangleright J \to J \triangleright \text{Desc} I \]
\[\text{ixConDesc} (S \triangleleft P \triangleright r) J = \sigma (S j) \lambda s \to \pi (P j s) \lambda p \to \text{var} (r j s p) \]

Meanwhile, up to isomorphism at least, we can go the other way around.

Exercise 4.4 (from \(J \to \text{Desc} I \) to \(I \triangleright J \)) Construct functions

\[\text{DSh} : \{ I : \text{Set} \} \to \text{Desc} I \to \text{Set} \]
\[\text{DSh} D = ? \]
\[\text{DSh} \circ \text{DSh} \]
\[\text{DSh} D s = ? \]
\[\text{Dri} : \text{forall} \{ I \} \{ D : \text{Desc} I \} (s : \text{DSh} D) \to \text{DPo} D s \to I \]
\[\text{Dri} D s p = ? \]

in order to compute the indexed container form of a family of descriptions.

\[\text{descIxCon} : \text{forall} \{ I J \} \to (J \to \text{Desc} I) \to I \triangleright J \]
\[\text{descIxCon} F = (\text{DSh} \circ F) \triangleleft (\text{DPo} \circ F) \triangleright (\text{Dri} \circ F) \]

Exhibit the isomorphism

\[\llbracket \text{descIxCon} F \rrbracket, X j \cong \llbracket F j \rrbracket_{\text{Dsh}} X \]

We shall find further closure properties of indexed containers later, but let us explore description awhile.
4.3 Describing Datatypes

Descriptions are quite a lot like inductive family declarations. The traditional `Vec` declaration corresponds to

\[
\text{vecD} : \text{Set} \to \text{N} \to \text{Desc} \text{N}
\]

\[
\text{vecD} X n = \sigma \text{Two} \left(\kappa \; (n \simeq \text{zero}) \right)
\]

\[
\langle \langle \rangle \rangle \sigma \text{N} \lambda k \to \kappa \; X \times \text{var} \; k \times \text{D} \; \kappa \; (n \simeq \text{suc} \; k)
\]

The choice of constructors becomes a \(\sigma\)-description. Indices specialized in the return types of constructors become explicit equational constraints. However, in defining a family of descriptions, we are free to use the full computational power of the function space, inspecting the index, e.g.

\[
\text{vecD} : \text{Set} \to \text{N} \to \text{Desc} \text{N}
\]

\[
\text{vecD} X \; \text{zero} = \kappa \; \text{One}
\]

\[
\text{vecD} X \; (\text{suc} \; n) = \kappa \; X \times \text{D} \; \text{var} \; n
\]

To obtain a datatype from a description, we can turn it into a container and use the Petersson-Synek tree, or we can preserve the first orderness of first order things and use the direct interpretation.

\[
\text{data Data \{ l \} \{ J : \text{Set} \; l \} \{ F : J \to \text{Desc} \; J \} \{ j : \text{Set} \; l \} \text{ where }
\]

\[
\langle \langle \rangle \rangle : \left[F \; j \right]_\text{D} \left(\text{Data} \; F \right) \to \text{Data} \; F \; j
\]

For example, let us once again construct vectors.

\[
\text{vnil : forall \{ X \} \to \text{Data} \; (\text{vecD} \; X) \; \text{zero}
\]

\[
\text{vnil} = \langle \langle \rangle \rangle
\]

\[
\text{vcons : forall \{ X \; n \} \to \text{X} \to \text{Data} \; (\text{vecD} \; X) \; n \to \text{Data} \; (\text{vecD} \; X) \; (\text{suc} \; n)
\]

\[
\text{vcons} \; x \; xs = \langle x, xs \rangle
\]

Exercise 4.5 (something like ‘levitation’) Construct a family of descriptions which describes a type like `Desc`. As Agda is not natively cumulative, you will need to shunt types up through the `Set l` hierarchy by hand, with this gadget:

\[
\text{record \{ l \} \{ X : \text{Set} \; l \} \{ \text{Isuc} \; l \} \text{ where}
\]

\[
\text{constructor \{ l \} \{ X : \text{Set} \; l \} \{ \text{Isuc} \; l \} \text{ where}
\]

\[
\text{field \{ l \} \{ X : \text{Set} \; l \} \{ \text{Isuc} \; l \} \text{ where}
\]

\[
\text{open \{ l \} \{ X : \text{Set} \; l \} \{ \text{Isuc} \; l \} \text{ where}
\]

Now implement

\[
\text{DescD} : \forall \{ I : \text{Set} \; l \} \to \text{One} \; \{ \text{Isuc} \; l \} \to \text{Desc} \; (\text{One} \; \{ \text{Isuc} \; l \})
\]

\[
\text{DescD} \{ I \} _ = ?
\]

Check that you can map your described descriptions back to descriptions.

\[
\text{desc : forall \{ l \} \{ I : \text{Set} \; l \} \to \text{Data} \; (\text{DescD} \; I) \; \langle \rangle \to \text{Desc} \; I
\]

\[
\text{desc} \; D = ?
\]

We could, if we choose, work entirely with described datatypes. Perhaps, in some future programming language, the external `Desc I` type will be identified with the internal `Data (DescD I) \langle \rangle` so that `Data` is the only datatype.
4.4 Some Useful Predicate Transformers

A container stores a bunch of data. If we have a predicate \(P \) on data, it might be useful to formulate the predicates on bunches of data asserting that \(P \) holds everywhere or somewhere. But an indexed container is a predicate transformer! We can thus close indexed containers under the formation of ‘everywhere’.

\[
\text{Everywhere} : \forall \{I J\} (C : I \triangleright J) (X : I \rightarrow \text{Set}) \rightarrow \Sigma I X \triangleright I J (\llbracket C \rrbracket, X)
\]

\[
\text{Everywhere} (S \triangleleft P \triangleright r) X = (\lambda \rightarrow \text{One})
\]

\[
(\lambda \{ (j, s, k) \rightarrow P j s \})
\]

\[
(\lambda \{ (j, s, k) \rightarrow p \rightarrow r j s p, k p \})
\]

The witnesses to the property of the elements of the original container become the elements of the derived container. The trivial predicate holds everywhere.

\[
\text{allTrivial} : \forall \{I J\} (C : I \triangleright J) (X : I \rightarrow \text{Set}) \rightarrow \Sigma C X \triangleright I J (\llbracket \lambda \rightarrow \text{One} \rrbracket, X)
\]

\[
\text{allTrivial} C X = (\langle \rangle, \lambda p \rightarrow \langle \rangle)
\]

If you think of simply typed \(\lambda \)-calculus contexts as containers of types, then an environment is given by supplying values Everywhere.

Meanwhile, the finger now points at you, pointing a finger at an element.

Exercise 4.6 (Somewhere) Construct the transformer which takes \(C \) to the container for witnesses that a property holds for some element of a \(C \)-structure.

\[
\text{Somewhere} : \forall \{I J\} (C : I \triangleright J) (X : I \rightarrow \text{Set}) \rightarrow \Sigma I X \triangleright I J (\llbracket C \rrbracket, X)
\]

\[
\text{Somewhere} (S \triangleleft P \triangleright r) X = ?
\]

\[
(\lambda \rightarrow \text{Zero})
\]

\[
(\lambda \{ (j, s, k) \rightarrow Q j s \times R j s k \})
\]

Check that the impossible predicate cannot hold somewhere.

\[
\text{noMagic} : \forall \{I J\} (C : I \triangleright J) (X : I \rightarrow \text{Set}) \rightarrow \Sigma \text{ Somewhere} C X \triangleright I J (\llbracket \lambda \rightarrow \text{Zero} \rrbracket, X)
\]

\[
\text{noMagic} C X (p, m) = ?
\]

For simply typed \(\lambda \)-calculus contexts, a variable of type \(T \) is just the evidence that a type equal to \(T \) is somewhere. Environment lookup is just the obvious property that if \(Q \) holds everywhere and \(R \) holds somewhere, then their conjunction holds somewhere, too.

Exercise 4.7 (lookup) Implement generalized environment lookup.

\[
\text{lookup} : \forall \{I J\} (C : I \triangleright J) (X : I \rightarrow \text{Set}) \rightarrow \Sigma Q \text{ Everywher}e C X \triangleright I J (\llbracket Q \rrbracket, X) \rightarrow \Sigma \text{ Somewhere} C X \triangleright I J (\llbracket Q X \text{ Somewhere} C X \rrbracket, X) \rightarrow \Sigma R \text{ Somewhere} C X \triangleright I J (\llbracket R \rrbracket, X)
\]

\[
\text{lookup} C X j c q s r = ?
\]

A key use of the Everywhere transformer is in the formulation of induction principles. The induction hypotheses amount to asserting that the induction predicate holds at every substructure.
```haskell
\text{treeInd} : \text{forall } \{ I \} \ (C : I \triangleright I) \ (P : \Sigma I \ (\text{ITree } C) \rightarrow \text{Set}) \rightarrow

\begin{align*}
\llbracket \text{Everywhere } C \ (\text{ITree } C) \rrbracket &; P \rightarrow \\
\begin{cases}
\forall \lambda i \ ts \rightarrow P (i, (\langle ts \rangle)) \\
(i : I) \ (t : \text{ITree } C i) \rightarrow P (i, t)
\end{cases}
\end{align*}
\text{treeInd } C \ P \ m \ i \ (s, k) = m (i, s, k) \ (\langle \rangle, \lambda p \rightarrow \text{treeInd } C \ P \ m \ (k \ p))
```

The step method of the above looks a bit like an algebra, modulo plumbing.

\textbf{Exercise 4.8 (induction as a fold)} Peterson-Synek trees come with a ‘fold’ operator, making \text{ITree } C (weakly) initial for \llbracket C \rrbracket. We can compute any P from a \text{ITree } C, given a C-algebra for P.

\text{treeFold} : \text{forall } \{ I \} \ (C : I \triangleright I) \ (P : I \rightarrow \text{Set}) \rightarrow

\llbracket \text{ITree } C \rrbracket; P \rightarrow

\text{treeFold } C \ P \ m \ i \ (s, k) = m i (s, \lambda p \rightarrow \text{treeFold } C \ P \ m \ (k \ p))

However, \text{treeFold} does not give us dependent induction on \text{ITree } C. If all you have is a hammer, everything looks like a nail. If we want to compute why some P : \Sigma I \ (\text{ITree } C) \rightarrow \text{Set} always holds, we’ll need an indexed container storing P’s in positions corresponding to the children of a given tree. The \text{Everywhere } C construct does most of the work, but you need a little adaptor to unwrap the C container inside the \text{ITree } C.

\begin{align*}
\text{Children} : \text{forall } \{ I \} \ (C : I \triangleright I) \rightarrow \Sigma I (\text{ITree } C) \triangleright \Sigma I (\text{ITree } C) \\
\text{Children } C & = \text{Colx }? (\text{Everywhere } C (\text{ITree } C))
\end{align*}

Now, you can extract a general induction principle for \text{ITree } C from \text{treeFold } (\text{Children } C), but you will need a little construction. Finish the job.

\text{treeFoldInd} : \text{forall } \{ I \} \ (C : I \triangleright I) \ P \rightarrow

\llbracket \text{Children } C \rrbracket; P \rightarrow P \\
\text{for all } it \rightarrow P it

\text{treeFoldInd } C \ P \ m \ (i, t) = \text{treeFold } (\text{Children } C) \ P \ m \ (i, t)

Of course, you need to do what is effectively an inductive proof to fill in the hole. Induction really does amount to more than weak initiality. But one last induction will serve for all.

What goes for containers goes for descriptions. We can build all the equipment of this section for \text{Desc} and \text{Data}, too.

\textbf{Exercise 4.9 (Everywhere and Somewhere for Desc)} Define suitable description transformers, capturing what it means for a predicate to hold in every or some element position within a given described structure.

\begin{align*}
\text{EverywhereD SomewhereD} : \{ I : \text{Set} \} \ (D : \text{Desc } I) \ (X : I \rightarrow \text{Set}) \rightarrow

\llbracket D \rrbracket_\text{D} X \rightarrow \text{Desc } (\Sigma I X)
\end{align*}

\text{EverywhereD } D \ X \ x s = \ ? \\
\text{SomewhereD } D \ X \ x s = \ ?

Now construct

\text{dataInd} : \text{forall } \{ I : \text{Set} \} \ (F : I \rightarrow \text{Desc } I) \ (P : \Sigma I (\text{Data } F) \rightarrow \text{Set}) \rightarrow

\begin{align*}
\begin{cases}
\llbracket \text{EverywhereD } (F \ i) \ (\text{Data } F) \ ds \rrbracket_\text{D} P \rightarrow P \ (i, \langle \ ds \rangle) \\
\text{for all } i \ d \rightarrow P \ (i, d)
\end{cases}
\end{align*}
\text{dataInd } F \ P \ m \ i \ d = \ ?
4.5 Indexed Containers are Closed Under Fixpoints

So far, we have used indexed containers to describe the node structures of recursive data, but we have not considered recursive data structures to be containers themselves. Consider, e.g., the humble vector: might we not consider the vector’s elements to be a kind of contained thing, just as much as its subvectors? We can just throw in an extra kind of element!

\[
\text{vecNodeIx} : (\text{One} + \mathbb{N}) \triangleright \mathbb{N}
\]
\[
\text{vecNodeIx} = \text{descIxCon} \{ J = \mathbb{N} \} \lambda \\
\{ \text{zero} \rightarrow \kappa \text{One} \} \\
; (\text{suc } n) \rightarrow \text{var } (tt, productId) \times D \text{var } (ff, n)
\]

That is enough to see vector nodes as containers of elements or subnodes, but it still does not give vectors as containers:

\[
\text{vecIx} : \text{One} \triangleright \mathbb{N}
\]
\[
\text{vecIx} = ?
\]

We should be able to solve this goal by taking \(\text{vecNodeIx}\) and tying a recursive knot at positions labelled \((ff, n)\), retaining positions labelled \((tt, productId)\). Let us try the general case.

\[
\mu \text{Ix} : \forall \{ I J \} \rightarrow (I + J) \triangleright J \triangleright I \triangleright J
\]
\[
\mu \text{Ix} \{ I \} \{ J \} F = ((\text{Tree } F') \circ _{-} ff) \triangleleft (P' \circ _{-} ff) \ s \ (r' \circ _{-} ff)
\]

The shapes of the recursive structures are themselves trees, with unlabelled leaves at \(I\)-indexed places and \(F\)-nodes in \(J\)-indexed places. We could try to work in \(J \triangleright J\), cutting out the non-recursive positions. However, it is easier to shift to \((I + J) \triangleright (I + J)\), introducing ‘unlabelled leaf’ as the dull node structure whenever an \(I\) shape is requested. We may construct

\[
F : (I + J) \triangleright (I + J)
\]
\[
F = (V (\lambda i \rightarrow \text{One}) (?? \text{Shlx } F) \\
\triangleleft (V (\lambda _{-} \rightarrow \text{Zero}) (?? \text{Polx } F)) \\
s (V (\lambda tt ss) (?? \text{rilx } F))
\]

and then choose to start with \((ff, j)\) for the given top level \(j\) index. A position is then a path to a leaf: either we are at a leaf already, or we must descend further.

\[
P : (x : I + J) \rightarrow \text{ITree } F x \rightarrow \text{Set}
\]
\[
P (tt, i) = \text{One}
\]
\[
P (ff, j) (s, k) = \Sigma ((\text{Polx } F j s) \lambda p \rightarrow (\text{rilx } F j s p) (k p))
\]

Finally, we may follow each path to its indicated leaf and return the index which sent us there.

\[
r : (x : I + J) (t : \text{ITree } F x) \rightarrow P x t \rightarrow I
\]
\[
r (tt, i) = i
\]
\[
r (ff, j) (s, k) (p, ps) = r (k p) ps
\]

Let us check that this recipe cooks the vectors.

\[
\text{veclx} : \text{One} \triangleright \mathbb{N}
\]
\[
\text{veclx} = \mu \text{Ix } \text{vecNodeIx}
\]
4.6 Adding fixpoints to Desc

We can extend descriptions to include a fixpoint operator:

\[
\text{data } \text{Desc} (I : \text{Set}) : \text{Set} \text{ where }
\begin{align*}
\var & : I \to \text{Desc} I \\
\sigma \pi & : (A : \text{Set}) (D : A \to \text{Desc} I) \to \text{Desc} I \\
\times_D & : \text{Desc} I \to \text{Desc} I \to \text{Desc} I \\
\kappa & : \text{Set} \to \text{Desc} I \\
\mu & : (J : \text{Set}) \to (J \to \text{Desc} (I + J)) \to J \to \text{Desc} I
\end{align*}
\]

The interpretation must now be defined mutually with the universal inductive type.

\[
\text{mutual}
\begin{align*}
\text{mut}_{\var} & : \text{forall } \{I\} \to \text{Desc } I \to (I \to \text{Set}) \to \text{Set} \\
\text{mut}_{\sigma A D} & : X = \Sigma A \lambda a \to \text{mut}_{D a} X \\
\text{mut}_{\pi A D} & : X = (a : A) \to \text{mut}_{D a} X \\
\text{mut}_{D \times E} & : X = \text{mut}_{D} X \times \text{mut}_{E} X \\
\text{mut}_{\kappa A} & : X = A \\
\text{mut}_{\mu J F j} & : X = \text{Data } F X j \\
\end{align*}
\]

\[
\text{data } \text{Data} \{I \, J\} (F : J \to \text{Desc} (I + J)) (X : I \to \text{Set}) (j : J) : \text{Set} \text{ where }
\begin{align*}
\text{mut} & : \text{forall } \{I \, J\} (F : J \to \text{Desc} (I + J)) (X : I \to \text{Set}) (j : J) \to \text{Data } F X j
\end{align*}
\]

Indeed, \text{Desc } Zero now does quite a good job of reflecting \text{Set}, except that the domains of \(\sigma\) and \(\pi\) are not concretely represented, an issue we shall attend to in the next chapter.

Exercise 4.10 (induction) State and prove the induction principle for \text{Desc}. (This is not an easy exercise.)

4.7 Jacobians

I am always amused when computing people complain about being made to learn mathematics choose calculus as their favourite example of something that is of no use to them. I, for one, am profoundly grateful to have learned vector calculus: it is exactly what you need to develop notions of ‘context’ for dependent datatypes.

An indexed container in \(I \rhd J\) explains \(J\) sorts of structure in terms of \(I\) sorts of elements, and as such, we acquire a Jacobian matrix of partial derivatives, in \(I \rhd (J \times I)\). A \((j, i)\) derivative is a structure of index \(j\) with a hole of index \(i\). Here’s how we build it.
4.8. APOCRYPHA

\[J : \forall \{J\} \to I \triangleright J \to I \triangleright (J \times I) \]
\[J(S \triangleleft P \triangleright r) = (\lambda \left\{ j, i \right\} \to (S j) \lambda s \to r j s^{-1} i) \]
\[\triangleright (\lambda \left\{ j, (r j s p) \right\} (s, \text{from} p) \to P j s p) \]
\[\triangleleft (\lambda \left\{ j, (r j s p) \right\} (s, \text{from} p) (p', _ \right) \to r j s p') \]

The shape of an \((i, j)\)-derivative must select a \(j\)-indexed shape for the structure, together with a position (the hole) whose index is \(i\). As in the simple case, a position in the derivative is any position other than the hole, and its index is calculated as before.

Exercise 4.11 (plugging) Check that a decidable equality for positions is enough to define the ‘plugging in’ function.

\[\text{plugIx} : \forall \{I\} \{C : I \triangleright I\} \to ((j : J) (s : Shix C j) (p p' : Polx C j s) \to Dec (p \simeq p')) \to \forall \{i j X\} \rightarrow J \to \langle J [C \triangleright (X (j, i) \rightarrow X i \rightarrow \langle C \triangleright C \rangle X j) \text{plugIx} C \rangle \]

Exercise 4.12 (the Zipper) For a given \(C : I \triangleright I\), construct the indexed container \(\text{Zipper } C : (I \times I) \triangleright (I \times I)\) such that \(\text{ITree (Zipper } C\rangle (ir, ih)\) represents a one \(ih\)-hole context in a \(\text{ITree } C \triangleright ir\), represented as a sequence of hole-to-root layers.

\[\text{Zipper} : \forall \{I\} \rightarrow I \triangleright I \rightarrow (I \times I) \triangleright (I \times I) \]
\[\text{Zipper } C = ? \]

Check that you can zipper all the way out to the root.

\[\text{zipOut} : \forall \{I\} \{C : I \triangleright I\} \{ir, ih\} \rightarrow ((i : I) (s : Shix C i) (p p' : Polx C i s) \to Dec (p \simeq p')) \to \text{ITree (Zipper } C\rangle (ir, ih) \rightarrow \text{ITree } C \triangleright C \rangle \]
\[\text{zipOut } C \text{ eq? } \]

Exercise 4.13 (differentiating Desc) The notion corresponding to \(J\) for descriptions is \(\nabla\), computing a ‘vector’ of partial derivatives. Define it symbolically.

\[\nabla : \{I : \text{Set}\} \rightarrow \text{Desc } I \rightarrow I \rightarrow \text{Desc } I \]
\[\nabla D h = ? \]

Hence construct suitable zippering equipment for Data.

It is amusing to note that the mathematical notion of divergence, \(\nabla \cdot D\), corresponds exactly to the choice of decompositions of a \(D\)-structure into any element-in-context:

\[\sigma I \lambda i \rightarrow \nabla D i \times_D \text{var } i \]

I have not yet found a meaning for \(\text{curl, } \nabla \times D\), nor am I expecting Maxwell’s equations to pop up anytime soon. But I live in hope for light.

4.8 Apocrypha

4.8.1 Roman Containers

A Roman container is given as follows

\[\text{“grad”} \]

Symbolic differentiation is the first example of a pattern matching program in my father’s thesis (1970).
record Roman (I J : Set) : Set₁ where
 constructor SPqr
 field
 S : Set
 P : S → Set
 q : S → J
 r : (s : S) → P s → I

Plain : Con
Plain = S ≪ P

J K R : (I → Set) → (J → Set)
J K R X j = Σ (Σ (Σ S λ s → q s ≃ j) (λ λ s → (p : P s) → X (r s p)))

Plain = RomanPlain
J K R = Roman J K R

It’s just a plain container, decorated by functions which attach input indices to
positions and an output index to the shape. We can turn Roman containers into
indexed containers whose meanings match on the nose.

FromRoman : forall {I J} → Roman I J → I ⊳ J
FromRoman (SPqr S P q r)
 = (λ j → Σ S λ s → q s ≃ j)
 ≪ (λ j → P o fst)
 ≪ (λ f → r o fst)

onTheNose : forall {I J} (C : Roman I J) → J C K R ≃ J
onTheNose C = refl

Sadly, the other direction is a little more involved.

Exercise 4.14 (ToRoman) Show how to construct the Roman container isomorphic to a
given indexed container and exhibit the isomorphism.

ToRoman : forall {I J} → I ⊳ J → Roman I J
ToRoman {I} {J} (S ≪ P ≪ r) = ?

toRoman : forall {I J} (C : I ⊳ J) →
 forall {X j} → J C K R X j
toRoman C xs = ?

fromRoman : forall {I J} (C : I ⊳ J) →
 forall {X j} → J C K R X j
fromRoman C xs = ?

toAndFromRoman :
 forall {I J} (C : I ⊳ J) {X j}
 → (forall xs →
 toRoman C {X} {j} (fromRoman C {X} {j} xs) ≃ xs)
 × (forall x →
 toAndFromRoman C X j (toRoman C X j xs) ≃ xs)
toAndFromRoman C = ?

The general purpose tree type for Roman containers looks a lot like the
inductive families you find in Agda or the GADTs of Haskell.

data RomanData {I} (C : Roman I I) : I → Set where
 -- : (s : Roman.S C) →
 ((p : Roman.P C s) → RomanData C (Roman.r C s p)) →
 RomanData C (Roman.q C s)
I could have just taken the fixpoint of the interpretation, but I wanted to emphasize that the role of \(Roman.q \) is to specialize the return type of the constructor, creating the constraint which shows up as an explicit equation in the interpretation. The reason Roman containers are so called is that they invoke equality and its mysterious capacity for transubstantiation.

The \(RomanData \) type looks a lot like a \(W \)-type, albeit festooned with equations. Let us show that it is exactly that.

Exercise 4.15 (Roman containers are \(W \)-types) Construct a function which takes plain \(W \)-type data for a Roman container and marks up each node with the index required of it, using \(Roman.r \).

\[
ideology : \forall I \ (C : Roman I I) \to I \to W \ (Plain C) \to W \ (Plain C \times_a K_a I)
\]

\[
ideology C i t = ?
\]

Construct a function which takes plain \(W \)-type data for a Roman container and marks up each node with the index delivered by it, using \(Roman.q \).

\[
phenomenology : \forall I \ (C : Roman I I) \to W \ (Plain C) \to W \ (Plain C \times_a K_a I)
\]

\[
phenomenology C t = ?
\]

Take the \(W \)-type interpretation of a Roman container to be the plain data for which the required indices are delivered.

\[
RomanW : \forall I \ (C : Roman I I I) \to RomanW C i \to RomanData C i
\]

\[
RomanW C i = \Sigma (W \ (Plain C)) \lambda t \to phenomenology C t \simeq ideology C i t
\]

Now, check that you can extract \(RomanData \) from \(RomanW \).

\[
fromRomanW : \forall I \ (C : Roman I I I) \{i\} \to RomanW C i \to RomanData C i
\]

\[
fromRomanW C (t, \text{\emph{good}}) = ?
\]

To go the other way, it is easy to construct the plain tree, but to prove the constraint, you will need to establish equality of functions. Using

\[
postulate extensionality : \forall S : Set \ \{T : S \to Set\} \ (f g : (s : S) \to T s) \to ((s : S) \to f s \simeq g s) \to f \simeq g
\]

\[
construct toRomanW : \forall I \ (C : Roman I I I) \{i\} \to RomanData C i \to RomanW C i
\]

\[
toRomanW C t = ?
\]

4.8.2 Reflexive-Transitive closure

This does not really belong here, but it is quite fun, and something to do with indexed somethings. Consider the reflexive transitive closure of a relation, also known as the ‘paths in a graph’.

\[
data _\star^\star \ {I : Set} \ (R : I \times I \to Set) : I \times I \to Set where
\]

\[
\emptyset : \{i : I\} \to (R ^\star) (i, i)
\]

\[
_ _ : \{i j k : I\} \to R (i, j) \to (R ^\star) (j, k) \to (R ^\star) (i, k)
\]

\[
infix 1 _\star^\star
\]
You can construct the natural numbers as an instance.

\[
\text{NAT} : \text{Set} \\
\text{NAT} = (\text{Loop }^\circ) _ \text{ where Loop : One } \times \text{ One } \to \text{ Set; Loop } _ = \text{ One}
\]

Exercise 4.16 (further constructions with \(\cdot \)) Using no recursive types other than \(\cdot \), construct the following

- ordinary lists
- the \(\geq \) relation
- lists of numbers in decreasing order
- vectors
- finite sets
- a set of size \(n! \) for a given \(n \)
- ‘everywhere’ and ‘somewhere’ for edges in paths

Exercise 4.17 (monadic operations) Implement

\[
\begin{align*}
\text{one}^\circ : \forall \{ I \} \{ R : I \times I \to \text{ Set} \} \to R \to (R^\circ) \\
\text{one}^\circ r = ? \\
\text{join}^\circ : \forall \{ I \} \{ R : I \times I \to \text{ Set} \} \to (R^\circ) \to (R^\circ) \\
\text{join}^\circ _ _ = ?
\end{align*}
\]

such that the monad laws hold.

4.8.3 Pow and Fam

We have two ways to formulate a notion of ‘subset’ in type theory. We can define a subset of \(X \) as a predicate in

\[
X \to \text{ Set}
\]

giving a proof-relevant notion of evidence that a given \(X : X \) belongs, or we can pick out some elements of \(X \) as the image of a function

\[
\Sigma \text{ Set } \lambda I \to I \to X
\]

so we have a family of \(X \)'s indexed by some set.

Are these notions the same? That turns out to be a subtle question. A lot turns on the size of \(X \), so we had best be formal about it. In general, \(X \) is large.

\[
\begin{align*}
\text{Pow} : \text{ Set}_1 \to \text{ Set}_1 \\
\text{Pow} X &= X \to \text{ Set} \\
\text{Fam} : \text{ Set}_1 \to \text{ Set}_1 \\
\text{Fam} X &= \Sigma \text{ Set } \lambda I \to I \to X
\end{align*}
\]

Exercise 4.18 (small Pow and Fam) Show that, given a suitable notion of propositional equality, \(\text{Pow} \circ \uparrow \uparrow \) and \(\text{Fam} \circ \uparrow \uparrow \) capture essentially the same notion of subset.

\[
\begin{align*}
p2f : (\text{Pow} \circ \uparrow \uparrow) \to (\text{Fam} \circ \uparrow \uparrow) \\
p2f X P &= ? \\
f2p : (\text{Fam} \circ \uparrow \uparrow) \to (\text{Pow} \circ \uparrow \uparrow) \\
f2p X F &= ?
\end{align*}
\]
4.8. APOCRYPHA

Exercise 4.19 (functoriality of \(\text{Pow}\) and \(\text{Fam}\)) Equip \(\text{Pow}\) with a contravariant functorial action and \(\text{Fam}\) with a covariant functorial action.

\[
\begin{align*}
\forall \{I, J\} \to (J \to I) & \to \text{Pow} I \to \text{Pow} J \\
\forall \{I, J\} \to (I \to J) & \to \text{Fam} I \to \text{Fam} J
\end{align*}
\]

\(\text{Fam}\) \(\text{Set}\) is Martin-Löf’s notion of a universe, naming a bunch of sets by the elements of some indexing set. Meanwhile, the ‘representation type’ method of describing types concretely in Haskell is just using \(\text{Pow}\) \(\text{Set}\) in place of \(\text{Fam}\) \(\text{Set}\). It is good to get used to recognizing when concepts are related just by exchanging \(\text{Fam}\) and \(\text{Pow}\).

Modulo currying and \(\lambda\)-lifting of parameters, the distinction between \(\text{Roman} I J\) and our Hancock-style \(\text{H Hancock} I J\) is just that the former represents indexed shapes by a \(\text{Fam}\) (so \(\text{Roman}.q\) reads off the shape) whilst the latter uses a \(\text{Pow}\) (so the shapes pertain to a given index). Both use \(\text{Fams}\) for positions.

\[
\begin{align*}
\text{ROMAN} & : \text{Set} \to \text{Set} \to \text{Set}_1 \\
\text{ROMAN} I J & = \Sigma (\text{Fam} (\uparrow J)) \lambda \{(S, q) \to S \to \text{Fam} (\uparrow I)\} \\
\text{HANCOCK} & : \text{Set} \to \text{Set} \to \text{Set}_1 \\
\text{HANCOCK} I J & = \Sigma (\text{Pow} (\uparrow J)) \lambda S \to \Sigma J (S \circ \uparrow) \to \text{Fam} (\uparrow I)
\end{align*}
\]

A ‘Nottingham’ indexed container switches the positions to a \(\text{Pow}\) (see Altenkirch and Morris).

\[
\begin{align*}
\text{NOTTINGHAM} & : \text{Set} \to \text{Set} \to \text{Set}_1 \\
\text{NOTTINGHAM} I J & = \Sigma (\text{Pow} (\uparrow J)) \lambda S \to \Sigma J (S \circ \uparrow) \to \text{Pow} (\uparrow I)
\end{align*}
\]

which amounts to a presentation of shapes and positions as predicates:

\[
\begin{align*}
\text{NSh} & : J \to \text{Set} \\
\text{NPo} & : (j : J) \to \text{NSh} j \to I \to \text{Set}
\end{align*}
\]

For \(\text{HANCOCK}\) and \(\text{NOTTINGHAM}\), we can abstract the whole construction over \(J\), obtaining:

\[
\begin{align*}
\text{HANCOCK} & : \text{Set} \to \text{Set} \to \text{Set}_1 \\
\text{HANCOCK} I J & = J \to \text{Fam} (\text{Pow} (\uparrow I)) \\
\text{NOTTINGHAM} & : \text{Set} \to \text{Set} \to \text{Set}_1 \\
\text{NOTTINGHAM} I J & = J \to \text{Fam} (\text{Pow} (\uparrow I))
\end{align*}
\]

Exercise 4.20 (HANCOCK to ROMAN) We have, modulo plumbing,

\[
\begin{align*}
\text{HANCOCK} I J & = J \to \text{Fam} (\text{Fam} (\uparrow I)) \\
\text{ROMAN} I J & = \text{Fam} (\uparrow J \times \text{Fam} (\uparrow I))
\end{align*}
\]

Using \(\text{Fam-Pow}\) flips and currying, find a path from one to the other. However, see below . . .

But just when we’re getting casual about \(\text{Fam-Pow}\) flipping, think about what happens when the argument is a large.
Exercise 4.21 (fool’s errand) Construct the large version of the Fam-Pow exchange

\[
p2f : \text{Pow} \rightarrow \text{Fam} \\
p2f \ X \ P = ? \\
f2p : \text{Fam} \rightarrow \text{Pow} \\
f2p \ X \ F = ?
\]

In our study of datatypes so far, we have been constructing inductively defined inhabitants of \(\text{Pow}(\uparrow I)\). Let us now perform our own flip and consider inductive definition in \(\text{Fam} \ I\). What should we expect? Nothing much different for small \(I\), of course. But for a large \(I\), all Heaven breaks loose.
Chapter 5

Ornaments, Algebraic and Otherwise

This is new lecture material for 2015. It will probably be a bit sketchy in the printed version of the notes.

This chapter re-examines the presentation of datatypes in dependently typed languages, addressing in particular the issue of what it means for one datatype to be in various ways more informative than another. Informal human observations like ‘lists are natural numbers with extra decoration’ and ‘vectors are lists indexed by length’ are expressed in a first class language of ornaments — presentations of fancy new types based on plain old ones — encompassing both decoration and, in the sense of Tim Freeman and Frank Pfenning Freeman and Pfenning [1991], refinement.

Each ornament adds information, so it comes with a forgetful function from fancy data back to plain, expressible as the fold of its ornamental algebra: lists built from numbers acquire the ‘length’ algebra. Conversely, each algebra for a datatype induces a way to index it — an algebraic ornament. The length algebra for lists induces the construction of the paradigmatic dependent vector types.

Dependent types thus provide not only a new ‘axis of diversity’ — indexing — for data structures, but also new abstractions to manage and exploit that diversity. In the spirit of ‘the new programming’ McBride and McKinna [2004], the engineering of coincidence is replaced by the propagation of consequence.

5.1 Numbers, Lists and Vectors

If you stare at the inductive definition of List, you might notice that it looks a lot like the inductive definition of natural numbers. There is a trivial ‘base-constructor’, and there is a ‘step-constructor’ with one recursive position. The List step carries a label from the given element type; the N step constructor is unlabelled. Indeed List One makes a perfectly good copy of the natural numbers. The length operation throws away the labelling.

Meanwhile, if we revisit the inductive definition of Vec, or ‘List indexed by length’, we see that vectors carry exactly the information which is present in a List but absent from its length — the correct number of elements with which to label the sucs. In some sense, the idea of labelling numbers to get lists induces the notion of vectors.

Now that we have a universe of first-class descriptions for data, it makes sense to explore more formally these structural relationships between datatypes.
5.2 A Datatype of Datatype Ornaments

A datatype ornament is a way to make an existing datatype more informative. We might make a datatype more interestingly indexed (e.g., Vec is more interestingly indexed than List). To increase interest from indexing on \(I \) to indexing on \(J \), we will need to give a function which forgets, \(f : J \rightarrow I \), and we will need to target specific old indices \(i \) with new indices chosen from \(f^{-1}i \). We can define that notion thus.

\[
\text{data Inv} \{ I \} \{ I J : \text{Set} I \} (f : J \rightarrow I) : I \rightarrow \text{Set} I \text{ where } \text{inv} : (j : J) \rightarrow \text{Inv} f (f j)
\]

There are other ways in which ornaments make datatypes more informative. New fields can be added. Old fields can be specialised. What we must retain is the underlying tree-like structure of the data. We can give a datatype which explains how to ornament a given \(\text{Desc} \).

\[
\text{data Orn} \{ I \} \{ I J : \text{Set} I \} (f : J \rightarrow I) : \text{Desc} I \rightarrow \text{Set} (\text{lsuc} I) \text{ where } \\
\begin{align*}
\var &: \{ i : I \} \rightarrow \text{Inv} f i \rightarrow \text{Orn} f (\var i) \\
\sigma &: \{ A : \text{Set} I \} \{ D : A \rightarrow \text{Desc} I \} (D' : (a : A) \rightarrow \text{Orn} f (D a)) \rightarrow \\
& \quad \text{Orn} f (\sigma A D) \\
\pi &: \{ A : \text{Set} I \} \{ D : A \rightarrow \text{Desc} I \} (D' : (a : A) \rightarrow \text{Orn} f (D a)) \rightarrow \\
& \quad \text{Orn} f (\pi A D) \\
\kappa &: \{ A : \text{Set} I \} \{ B : \text{Set} I \} (k : B \rightarrow A) \rightarrow \text{Orn} f (\kappa A) \\
\insr &: \{ D : \text{Desc} I \} (A : \text{Set} I) (D' : A \rightarrow \text{Orn} f D) \rightarrow \text{Orn} f D \\
\delsr &: \{ A : \text{Set} I \} \{ D : A \rightarrow \text{Desc} I \} (a : A) (D' : \text{Orn} f (D a)) \rightarrow \\
& \quad \text{Orn} f (\sigma A D)
\end{align*}
\]

The first five constructors retain the structure of the original description, just refining the index in the \(\var \) case. The last three modify the tuple structure of the data. Wherever a field is inserted, the rest of the ornament can depend on the new field’s value. Wherever a field is deleted, the ornament chooses its value.

We obtain the new datatype from the old by interpreting \(\text{Orns as Descs} \) at index \(J \).

\[
[_ _]_0 : \text{forall} \{ I \} \{ I J : \text{Set} I \} \{ f : J \rightarrow I \} \{ D : \text{Desc} I \} \rightarrow \\
\text{Orn} f D \rightarrow \text{Desc} J
\]

\[
\begin{align*}
[\var \text{ inv} j]_0 &= \var j \\
[\sigma D']_0 &= \sigma (_ _ A) \rightarrow [D' a]_0 \\
[\pi D']_0 &= \pi (_ _ A) \rightarrow [D' a]_0 \\
[D' \times D'']_0 &= [D' a]_0 \times [D' a]_0 \\
[\kappa B]_0 &= \kappa B \\
[\insr A D']_0 &= \sigma (_ _ A \lambda a \rightarrow [D' a]_0) \\
[\delsr a D']_0 &= [D' a]_0
\end{align*}
\]

For example, the description of natural numbers is given as follows.

\[
\text{NAT}_D : \text{One} \rightarrow \text{Desc} \text{One} \\
\text{NAT}_D i = \sigma \text{ Two} \lambda \{ \tt \rightarrow \var i; \ff \rightarrow \kappa \text{ One} \}
\]

We can describe how lists relate to numbers, following the structure until we reach the step case, where we insert a label.

\[
\text{LIST}_O : (A : \text{Set}) \rightarrow (i : \text{One}) \rightarrow \text{Orn} \text{id} (\text{NAT}_D i) \\
\text{LIST}_O A i = \sigma (\lambda \{ \tt \rightarrow \text{insr} A (\lambda _ _ \rightarrow \text{var} \text{ inv} i); \ff \rightarrow \kappa \text{ One} \text{id} \})
\]
LIST_D : Set → One → Desc One
LIST_D A i = [[LIST_D A i]]_0

Now, every described datatype has a catamorphism — a structural ‘fold’ operator, parametrised by an algebra for its description which explains how to compute an X given a node structure full of Xs.

Alg : forall {l} {I : Set l} {F : I → Desc I} (X : I → Set l) → Set l
Alg F X = forall {i} → [[F i]]_0 X → X i

cata : forall {l} {I : Set l} (F : I → Desc I) (X : I → Set l) →
Alg F X → forall {i} → Data F i → X i

cata F X phi {i} ⟨d⟩ = phi (mapCata (F i) d) where
 mapCata : (D : Desc _) → [[D]]_0 (Data F) → [[D]]_0 X
 mapCata (var i) d = cata F X phi d
 mapCata (σ A D) (a, d) = a, mapCata (D a) d
 mapCata (π A D) f = λ a → mapCata (D a) (f a)
 mapCata (κ ×_D D′) (d, d') = mapCata D d, mapCata D' d'
 mapCata (κ A) a = a

5.3 Ornamental Algebras

An ornament determines an erasure operation, mapping new nodes to old by throwing away the extra data.

erase : forall {l} {I J : Set l} {f : J → I} {D : Desc I} {X : I → Set l}
(D' : Orn f D) → [[D']]_0 (X o f) → [[D]]_0 X
erase (var (inv j)) x = x
erase (σ D′) (a, d′) = a, erase (D′ a) d′
erase (π D′) f′ = λ a → erase (D′ a) (f′ a)
erase (D′ ×_D D″) (d′, d″) = erase D′ d′, erase D″ d″
erase (κ B k) b = k b
erase (ins σ A D′) (a, d′) = erase (D′ a) d'
erase (del σ a D′) d' = a, erase D′ d'

We can use erase to construct the ornamental algebra for new nodes, computing old data.

ornAlg : forall {l} {I J : Set l} {f : J → I} {F : I → Desc I}
(F : (j : J) → Orn f (F (f j))) → Alg (λ j → [[F j]]_0) (Data F o f)
ornAlg F {j} d' = ⟨ erase (F j) d' ⟩

For example, we obtain length.

length : {X : Set} → Data (LIST_D X) {} → Data NAT_D {}
length {X} = cata (LIST_D X) _ (ornAlg (LIST_D X))

5.4 Algebraic Ornaments

Not only does every ornament deliver an algebra: every algebra determines an ornament, telling us how to index over the carrier of the algebra, as well as our original indices.
At each node, we demand the data required by the algebra and check that the correct index is computed. We then delete from the data the information which is already determined by the algebra’s input.

\[
\text{algOrn} : \forall \{\ell\} \{I : \text{Set} \ell\} \{F : I \to \text{Desc} I\} (X : I \to \text{Set} \ell) \to \\
\text{Alg} F X \to (\lambda x : \Sigma I X \to \text{Orn} \{\ell\} \{I\} \{\Sigma I X\} \text{fst} (F (\text{fst} \lambda x))) \\
\text{algOrn} \{I = I\} \{F = F\} X \phi i, x = \\
\text{ins} (\lambda F i \|_D X) \lambda xs \to \\
\text{ins} (\phi xs \simeq x) \lambda q \to \text{help} (F i) xs
\]

where

\[
\text{help} : (D : \text{Desc} I) (xs : \| D \|_D X) \to \text{Orn} \text{fst} D \\
\text{help} (\text{var} i) x = \text{var} (\text{inv} (i, x)) \\
\text{help} (\sigma A D) (a, xs) = \text{del} \sigma a (\text{help} (D a) xs) \\
\text{help} (\pi A D) f = \pi \lambda a \to \text{help} (D a) (f a) \\
\text{help} (D \times_D D') (xs, xs') = \text{help} D xs \times_D \text{help} D' xs' \\
\text{help} (\kappa A) a = \kappa \text{One} (\lambda - \to a)
\]
Chapter 6

Induction-Recursion

(This chapter will probably not feature in lectures, but it does give the basics of modelling type theory in type theory, so I’ve left it in the notes.)

Recall that \(\text{Fin } n \) is an enumeration of \(n \) elements. We might consider how to take these enumerations as the atomic components of a dependent type system, closed under \(\Sigma \)- and \(\Pi \)-types. Finite sums and products of finite things are finite, so we can compute their sizes.

\[
\text{sum prod} : (n : \mathbb{N}) \to (\text{Fin } n \to \mathbb{N}) \to \mathbb{N} \\
\text{sum zero} \quad = \quad 0 \\
\text{sum} (\text{suc } n) f \quad = \quad f \text{ zero } +\mathbb{N} \text{ sum } (f \circ \text{suc}) \\
\text{prod zero} \quad = \quad 1 \\
\text{prod} (\text{suc } n) f \quad = \quad f \text{ zero } \times\mathbb{N} \text{ sum } (f \circ \text{suc})
\]

But can we write down a precise datatype of the type expressions in our finitary system?

\[
data \text{FTy} : \mathbb{Set} \\
\text{fin} : \mathbb{N} \to \text{FTy} \\
\sigma \pi : (S : \text{FTy}) (T : \text{Fin } ? \to \text{FTy}) \to \text{FTy}
\]

I was not quite able to finish the definition, because I could not give the domain of \(T \). Intuitively, when we take sums or products over a domain, we should have one summand or factor for each element of that domain. But we have only \(S \), the expressions which \textit{stands for} the domain. We know that it is bound to be finite, so I have filled in \(\text{Fin } ? \), but to make further progress, we need to know the \textit{size} of \(S \). Intuitively, it is easy to compute the size of an \(\text{FTy} \): the base case is direct; the structural cases are captured by \text{sum} and \text{prod}. The trouble is that we cannot wait until after declaring \(\text{FTy} \) to define the size, because we need size information, right there at that \(? \). What can we do?

One thing that Agda lets us do is just the thing we need. We can define \(\text{FTy} \) and its size function, \# , \textit{simultaneously}.

\[
\text{mutual} \\
data \text{FTy} : \mathbb{Set} \\
\text{fin} : \mathbb{N} \to \text{FTy} \\
\sigma \pi : (S : \text{FTy}) (T : \text{Fin } ? \to \text{FTy}) \to \text{FTy} \\
: \text{FTy} \to \mathbb{N} \\
(\text{fin } n) = n \\
(\sigma S T) = \text{sum } (\# S) \lambda s \to # (T s) \\
(\pi S T) = \text{prod } (\# S) \lambda s \to # (T s)
\]
CHAPTER 6. INDUCTION-RECURSION

For example, if we define the forgetful map from Fin back to \(\mathbb{N} \),

\[
\begin{align*}
\text{fog} & : \text{forall } \{ n \} \rightarrow \text{Fin } n \rightarrow \mathbb{N} \\
\text{fog zero} & = \text{zero} \\
\text{fog } (\text{suc } i) & = \text{suc } (\text{fog } i)
\end{align*}
\]

in honour of Gauss we can check that

\[
\# (\sigma \text{ (fin } 101) \lambda s \rightarrow \text{fin } (\text{fog } s)) = 5050
\]

We have just seen our first example of induction-recursion. Where an inductive definition tells us how to perform construction of data incrementally, induction-recursion tells us how to perform construction-with-interpretation incrementally. Together, \((\text{FTy}, \#) : \text{Fam } \mathbb{N}\), with the interpretation just telling us sizes, so that \(\text{Fin } \circ \#\) gives an unstructured representation of a given \text{FTy} type. If we wanted a structured representation, we could just as well have interpreted \text{FTy} in Set.

\[
\begin{align*}
\text{mutual} \\
\text{data } \text{FTy} : \text{Set } \text{where} \\
\text{fin} & : \mathbb{N} \rightarrow \text{FTy} \\
\sigma \pi & : (S : \text{FTy}) (T : \text{FEI } S \rightarrow \text{FTy}) \rightarrow \text{FTy} \\
\text{FEI} & : \text{FTy } \rightarrow \text{Set} \\
\text{FEI } (\text{fin } n) & = \text{Fin } n \\
\text{FEI } (\sigma \; S \; T) & = \Sigma (\text{FEI } S) \lambda s \rightarrow \text{FEI } (T \; s) \\
\text{FEI } (\pi \; S \; T) & = (s : \text{FEI } S) \rightarrow \text{FEI } (T \; s)
\end{align*}
\]

Now, what has happened? We have \((\text{FTy}, \text{FEI}) : \text{Fam } \text{Set}\), picking out a subset of \text{Set} by choosing names for them in \text{FTy}. But \text{FTy} is small enough to be a \text{Set} itself! IR is the Incredible Ray that shrinks large sets to small encodings of subsets of them.

Here is a standard example of induction recursion for you to try.

Exercise 6.1 (FreshList) By means of a suitable choice of recursive interpretation, fill the \(?\) with a condition which ensures that FreshLists have distinct elements. Try to make sure that, for any concrete FreshList, ok can be inferred trivially.

\[
\begin{align*}
\text{module } \text{FRESHLIST } (X : \text{Set}) (Xeq\; ? : (x \; x' : X) \rightarrow \text{Dec } (x \simeq x')) \text{ where} \\
\text{mutual} \\
\text{data } \text{FreshList} : \text{Set } \text{where} \\
[] & : \text{FreshList} \\
- - & : (x : X) (xs : \text{FreshList}) \{ \text{ok} : ? \} \rightarrow \text{FreshList}
\end{align*}
\]

6.1 Records

Randy Pollack identified the task of modelling record types as a key early use of induction-recursion, motivated to organise libraries for mathematical structure.

It doesn’t take IR to have a go at modelling records, just something a bit like Desc, but just describing the right-nested \(\Sigma\)-types.

\[
\begin{align*}
\text{data } \text{RecR} : \text{Set}_1 \text{ where} \\
\langle \rangle & : \text{RecR} \\
- - & : (A : \text{Set}) (R : A \rightarrow \text{RecR}) \rightarrow \text{RecR} \\
[\text{[_-]}]_{\text{RR}} & : \text{RecR } \rightarrow \text{Set}
\end{align*}
\]
6.1. RECORDS

\[
\begin{align*}
\mathbb{[}()\mathbb{]}_{RR} &= \text{One} \\
\mathbb{[}A,R\mathbb{]}_{RR} &= \Sigma A \lambda a \to \mathbb{[}R a\mathbb{]}_{RR}
\end{align*}
\]

That gives us a very flexible, variant notion of record, where the values of earlier fields can determine the entire structure of the rest of the record. Sometimes, however, it may be too flexible: you cannot tell from a \text{RecR} description how many fields a record has—indeed, this quantity may vary from record to record. You can, of course, count the fields in an actual record, then define projection. You do it.

Exercise 6.2 (projection from \text{RecR}) Show how to compute the size of a record, then define the projections, first of types, then of values.

\[
\begin{align*}
sizeRR : (R : \text{RecR}) \to \mathbb{[}R\mathbb{]}_{RR} \to \mathbb{N} \\
\text{TyRR} : (R : \text{RecR}) (r : \mathbb{[}R\mathbb{]}_{RR}) \to \text{Fin}(\text{sizeRR } R r) \to \text{Set} \\
\text{vaRR} : (R : \text{RecR}) (r : \mathbb{[}R\mathbb{]}_{RR}) (i : \text{Fin}(\text{sizeRR } R r)) \to \text{TyRR } R r i
\end{align*}
\]

Of course, we could enforce uniformity of length by indexing. But a bigger problem with \text{RecR} is that, being right-nested, our access to it is left-anchored. Extending a record with more fields whose types depend on existing fields (e.g., adding laws to a record of operations) is a difficult right-end access, as is suffix-truncation.

Sometimes we want to know that we are writing down a signature with a fixed set of fields, and we want easy extensibility at the dependent right end. That means left-nested record types (also known as contexts). And that’s where we need IR.

mutual
data \text{RecL} : \text{Set}_1 where
\[
\begin{align*}
\mathcal{E} : & \text{RecL} \\
\mathbb{[}r\mathbb{]}_{RL} : & \text{RecL} \to \text{Set} \\
\mathbb{[}\mathcal{E}\mathbb{]}_{RL} &= \text{One} \\
\mathbb{[}R, A\mathbb{]}_{RL} &= \Sigma \mathbb{[}R\mathbb{]}_{RL} A
\end{align*}
\]

Exercise 6.3 (projection from \text{RecL}) Show how to compute the size of a \text{RecL} without knowing the individual record. Show how to interpret a projection as a function from a record, first for types, then values.

\[
\begin{align*}
sizeRL : & \text{RecL} \to \mathbb{N} \\
\text{TyRL} : & (R : \text{RecL}) \to \text{Fin}(\text{sizeRL } R) \to \mathbb{[}R\mathbb{]}_{RL} \to \text{Set} \\
\text{vaRL} : & (R : \text{RecL}) (i : \text{Fin}(\text{sizeRL } R)) (r : \mathbb{[}R\mathbb{]}_{RL}) \to \text{TyRL } R i r
\end{align*}
\]

Exercise 6.4 (truncation) Show how to truncate a record signature from a given field and compute the corresponding projection on structures.

\[
\begin{align*}
\text{TruncRL} : & (R : \text{RecL}) \to \text{Fin}(\text{sizeRL } R) \to \text{RecL} \\
\text{TruncRL } R i &= ? \\
\text{truncRL} : & (R : \text{RecL}) (i : \text{Fin}(\text{sizeRL } R)) \to \mathbb{[}R\mathbb{]}_{RL} \to \mathbb{[}\text{TruncRL } R i\mathbb{]}_{RL} \\
\text{truncRL } R i &= ?
\end{align*}
\]
6.1.1 Manifest Fields

Pollack extends his notion of record with manifest fields, i.e., fields whose values are computed from earlier fields. It is rather like allowing definitions in contexts.

First, I define the type of data with a manifest value (sometimes also known as singletons). I deliberately keep the index right of the colon to force Agda to store the singleton value in the data structure.

```
data Manifest {A : Set} : A → Set where
  ⟨_⟩ : (a : A) → Manifest a
```

Now, I extend the notion of record signature with a constructor for manifest fields. I could have chosen simply to omit these fields from the record structure, but instead I make them Manifest so that projection need not involve recomputation. I also index by size, to save on measuring.

```
mutable data RecM : N → Set₁ where
  _棺_ : {n : N} (R : RecM n) (A : [[ R ]]RM → Set) → RecM (suc n)
  _棺_ → _棺_ : {n : N} (R : RecM n) (A : [[ R ]]RM → Set) (a : (r : [[ R ]]RM → A) r) → RecM (suc n)

  ⟨_⟩RM : {n : N} → RecM n → Set
  [[_]]RM = One
  [[ R , A ]]RM = Σ [[ R ]]RM A
  [[ R , A ∃[a]]]RM = Σ [[ R ]]RM (Manifest ◦ a)
```

Exercise 6.5 (projection from RecM) Implement projection for RecM.

```
TyRM : {n : N} (R : RecM n) → Fin n → [[ R ]]RM → Set
TyRM R i = ?
vaRM : {n : N} (R : RecM n) (i : Fin n) (r : [[ R ]]RM) → TyRM R i r
vaRM R i = ?
```

Be careful not to recompute the value of a manifest field.

Exercise 6.6 (record extension) When building libraries of structures, we are often concerned with the idea of one record signature being the extension of another. The following

```
mutable data REx : {n m : N} → RecM n → RecM m → Set₁ where
  _棺_ : REx _棺_ _棺_
  rfog : forall {n m} {R : RecM n} {R' : RecM m} (X : REx R R') →
      [[ R' ]]RM → [[ R ]]RM
rfog _棺_ = (_)
6.2 A Universe

We’ve already seen that we can use IR to build a little internal universe. I have a favourite such universe, with a scattering of base types, dependent pairs and functions, and Petersson-Synek trees. That’s quite a lot of Set, right there!

mutual
data TU : Set where
  Zero' One' Two' : TU
  Σ' Π' : (S : TU) (T : [S]TU → TU) → TU
  Tree' : (I : TU)
    (F : [I]TU → Σ TU λ S →
      [S]TU → Σ TU λ P →
      [P]TU → [I]TU)
    (i : [I]TU) → TU

The TU universe is not closed under a principle of inductive-recursive definition, so the shrinking ray has not shrunk the shrinking raygun.

Exercise 6.7 (TU examples) Check that you can encode natural numbers, lists and vectors in TU. For an encore, try the simply typed λ-calculus.

6.3 Universe Upon Universe

Not only can you build one small universe inside Set using induction-recursion, you can build a predicative hierarchy of them. The key is to define the ‘next universe’ operator, and then iterate it. The following construction takes a universe X and builds another, NU X, on top.

mutual
data NU (X : Fam Set) : Set where
  U' : NU X
  El' : fst X → NU X
  Nat' : NU X
  Π' : (S : NU X) (T : [S]NU → NU X) → NU X

As you can see, NU X has names El' T for the types in X and a name U' for X itself. Now we can jack up universes as far as we like.
\[
\text{EMPTY} : \text{Fam Set}
\]
\[
\text{EMPTY} = \text{Zero}, \lambda ()
\]
\[
\text{LEVEL} : \mathbb{N} \to \text{Fam Set}
\]
\[
\text{LEVEL zero} = \text{NU EMPTY} \llbracket \text{NU} \rrbracket
\]
\[
\text{LEVEL (suc } n) = \text{NU (LEVEL } n) \llbracket \text{NU} \rrbracket
\]

This hierarchy is explicitly cumulative: \(\text{El}'\) embeds types upward without changing their meaning. One consequence is that we have a redundancy of representation:

**Exercise 6.8 (\(\mathbb{N} \to \mathbb{N}\))** Find five names for \(\mathbb{N} \to \mathbb{N}\) in \(\text{fst (LEVEL } 1)\).

### 6.3.1 A Redundancy-Free Hierarchy

We can try to eliminate the redundancy by including only the names for lower universes at each level: we do not need to embed \(\mathbb{N} \to \mathbb{N}\) from \(\text{LEVEL } 0\), because \(\text{LEVEL } 1\) has a perfectly good version. This time, we parametrize the universe by a de Bruijn indexed collection of the previous universes.

**mutual**

\[
\begin{align*}
\text{data HU \{ } n \text{ \}} (U : \text{Fin } n \to \text{Set}) : \text{Set where} \\
\quad \text{U}' : \text{Fin } n \to \text{HU } U \\
\quad \text{Nat'} : \text{HU } U \\
\quad \Pi' : (S : \text{HU } U) (T : \llbracket S \rrbracket_{\text{HU}} \to \text{HU } U) \to \text{HU } U \\
\llbracket \_ \rrbracket_{\text{HU}} : \text{forall } \{ n \} \{ U : \text{Fin } n \to \text{Set} \} \to \text{HU } U \to \text{Set} \\
\llbracket \_ \rrbracket_{\text{HU}} \{ U = U' \} (U' i) = U i \\
\llbracket \text{Nat'} \rrbracket_{\text{HU}} = \mathbb{N} \\
\llbracket \Pi' ST \rrbracket_{\text{HU}} = (s : \llbracket S \rrbracket_{\text{HU}}) \to \llbracket T s \rrbracket_{\text{HU}}
\end{align*}
\]

To finish the job, we must build the collections of levels to hand to \(\text{HU}\). At each step, level \(\text{zero}\) is the new top level, built with a fresh appeal to \(\text{HU}\), but lower levels can be projected from the previous collection.

\[
\text{HPREDS} : (n : \mathbb{N}) \to \text{Fin } n \to \text{Set}
\]
\[
\text{HPREDS zero } ()
\]
\[
\text{HPREDS (suc } n) \text{ zero } = \text{HU (HPREDS } n)
\]
\[
\text{HPREDS (suc } n) (\text{suc } i) = \text{HPREDS } n i
\]
\[
\text{HSET} : \mathbb{N} \to \text{Set}
\]
\[
\text{HSET } n = \text{HU (HPREDS } n)
\]

Note that \(\text{HSET } n\) is indeed \(\llbracket U' \text{ zero } \rrbracket_{\text{HU}}\) at level \(\text{suc } n\).

The trouble with this representation, however, is that it is not cumulative for free. Intuitively, every type at each level has a counterpart at all higher levels, but how can we get our hands on it?

**Exercise 6.9 (fool's errand)** Find out what breaks when you try to implement cumulativity. What equation do you need to hold? Can you prove it?

\[
\text{Cumu} : (n : \mathbb{N}) (T : \text{HSET } n) \to \text{HSET (suc } n)
\]
\[
\text{Cumu } n T = ?
\]
6.4 Encoding Induction-Recursion

So far, we have been making mutual declarations of inductive types and recursive functions to which Agda has said 'yes'. Clearly, however, we could write down some rather paradoxical definitions if we were not careful. Fortunately, the following is not permitted,

\[
\begin{align*}
\text{mutual} & \quad -- \text{rejected} \\
data \ V V & : \ \text{Set} \ \\
V' & : V V \\
\Pi' & : (S : V V) (T : [S]_{V V} \to V V) \to V V \\
\llcorner V V & : V V \to \text{Set} \\
\llcorner V' & = V V \\
\llcorner \Pi' S T & = (s : [S]_{V V}) \to [T s]_{V V}
\end{align*}
\]

but it was not always so.

It would perhaps help to make sense of what is possible, as well as to provide some sort of metaprogramming facility, to give an encoding of the permitted inductive-recursive definitions. Such a thing was given by Peter Dybjer and Anton Setzer in 1999. Their encoding is (morally) as follows, describing one node of an inductive recursive type rather in the manner of a right-nested record, but one from which we expect to read off a J-value, and whose children allow us to read off I-values.

\[
\begin{align*}
data \ DS (I J : \text{Set}_1) & : \text{Set}_1 \ \\
\iota & : J \to DS I J \quad -- \text{no more fields} \\
\sigma & : (S : \text{Set}) (T : S \to DS I J) \to DS I J \quad -- \text{ordinary field} \\
\delta & : (H : \text{Set}) (T : (H \to I) \to DS I J) \to DS I J \quad -- \text{child field}
\end{align*}
\]

We interpret a DS I J as a functor from Fam I to Fam J: I build the components separately for readability.

\[
\begin{align*}
\llcorner DS : \text{forall } \{I J\} & \to DS I J \to \text{Fam } I \to \text{Fam } J \\
\llcorner \iota j & \llcorner DS X x i = \text{One} \\
& \ \quad , \ \lambda \{() \to j\} \\
\llcorner \sigma S T & \llcorner DS X x i = (\Sigma S \lambda s \to \text{fst (}\llcorner T s \llcorner DS X x i)) \\
& \ \quad , \ \lambda \{(s,t)\to \text{snd (}\llcorner T s \llcorner DS X x i) t\} \\
\llcorner \delta H T & \llcorner DS (X, x i) = (\Sigma (H \to X) \lambda h x \to \text{fst (}\llcorner T (x i \circ h x) \llcorner DS (X, x i))) \\
& \ \quad , \ \lambda \{(h x, t)\to \text{snd (}\llcorner T (x i \circ h x) \llcorner DS (X, x i)) t\}
\end{align*}
\]

In each case, we must say which set is being encoded and how to read off a J from a value in that set. The \iota constructor carries exactly the J required. The other two specify a field in the node structure, from which the computation of the J gains some information. The \sigma specifies a field of type S, and the rest of the structure may depend on a value of type S.

The \delta case is the clever bit. It specifies a place for an H-indexed bunch of children, and even though we do not fix what set represents the children, we do know that they allow us to read off an I. Correspondingly, the rest of the structure can at least depend on knowing a function in H \to I which gives access to the interpretation of the children. Once we plug in a specific (X, x i) : Fam I, we represent the field by the small function space h x : H \to X, then the composition x i \circ h x tells us how to compute the large meaning of each child.
Exercise 6.10 (idDS) A morphism from \((X, x_i)\) to \((Y, y_i)\) in Fam \(I\) is a function \(f : X \to Y\) such that \(x_i = y_i \circ f\). Construct a code for the identity functor on Fam \(I\), being

\[
\text{idDS} : \{ I : \text{Set}_I \} \to \text{DS} I I
\]

\[
\text{idDS} = ?
\]

such that

\[
\llbracket \text{idDS} \rrbracket_{\text{DS}} \cong \text{id}
\]

in the sense that both take isomorphic inputs to isomorphic outputs.

With this apparatus in place, we could now tie the recursive knot. . .

\[\text{mutual} \quad \text{-- fails positivity check and termination check}\]

\[
\begin{align*}
\text{data} & \quad \text{DataDS} \{ I \} (D : \text{DS} I I) : \text{Set} \ 	ext{where} \\
\langle \_ \rangle & \quad : \ 	ext{fst} (\llbracket D \rrbracket_{\text{DS}} (\text{DataDS} D, \llbracket \_ \rrbracket_{\text{DS}})) \to \text{DataDS} D \\
\llbracket \_ \rrbracket_{\text{DS}} & \quad : \{ I : \text{Set}_I \} \ (D : \text{DS} I I) \to \text{DataDS} D \to I \\
\llbracket \_ \rrbracket_{\text{DS}} (D = D) (\ ds) & \quad = \ \text{snd} (\llbracket D \rrbracket_{\text{DS}} (\text{DataDS} D, \llbracket \_ \rrbracket_{\text{DS}})) ds \\
\text{NoDS} & \quad : \{ I : \text{Set}_I \} (D D' : \text{DS} I I) \to \text{Set} \\
\text{NoDS} D (\ i \ i) & \quad = \text{One} \\
\text{NoDS} D (\sigma S T) & \quad = \Sigma S \lambda s \to \text{NoDS} D (T s) \\
\text{NoDS} D (\delta H T) & \quad = \Sigma (H \to \text{DataDS} D) \lambda h d \to \text{NoDS} D (T (\lambda h \to \llbracket h d h \rrbracket_{\text{DS}})) \\
\text{DeDS} & \quad : \{ I : \text{Set}_I \} (D D' : \text{DS} I I) \to \text{NoDS} D D' \to I \\
\text{DeDS} D (\ i \ i) & \quad \langle \_ \rangle = i \\
\text{DeDS} D (\sigma S T) (\ s, t) & \quad = \text{DeDS} D (T s) t \\
\text{DeDS} D (\delta H T) (h d, t) & \quad = \text{DeDS} D (T (\lambda h \to \llbracket h d h \rrbracket_{\text{DS}})) t
\end{align*}
\]

. . . if only the positivity checker could trace the construction of the node set through the tupled presentation of \(\llbracket \_ \rrbracket_{\text{DS}}\) and the termination checker could accept that the recursive invocation of \(\llbracket \_ \rrbracket_{\text{DS}}\) is used only for the children packed up inside the node record. Not for the first or the last time, we can only get out of the jam by inlining the interpretation:

\[\text{mutual} \quad \text{-- fails positivity check and termination check}\]

\[
\begin{align*}
\text{data} & \quad \text{DataDS} \{ I \} (D : \text{DS} I I) : \text{Set} \ 	ext{where} \\
\langle \_ \rangle & \quad : \ 	ext{fst} (\llbracket D \rrbracket_{\text{DS}} (\text{DataDS} D, \llbracket \_ \rrbracket_{\text{DS}})) \to \text{DataDS} D \\
\llbracket \_ \rrbracket_{\text{DS}} & \quad : \{ I : \text{Set}_I \} \ (D : \text{DS} I I) \to \text{DataDS} D \to I \\
\llbracket \_ \rrbracket_{\text{DS}} (D = D) (\ ds) & \quad = \ \text{snd} (\llbracket D \rrbracket_{\text{DS}} (\text{DataDS} D, \llbracket \_ \rrbracket_{\text{DS}})) ds \\
\text{NoDS} & \quad : \{ I : \text{Set}_I \} (D D' : \text{DS} I I) \to \text{Set} \\
\text{NoDS} D (\ i \ i) & \quad = \text{One} \\
\text{NoDS} D (\sigma S T) & \quad = \Sigma S \lambda s \to \text{NoDS} D (T s) \\
\text{NoDS} D (\delta H T) & \quad = \Sigma (H \to \text{DataDS} D) \lambda h d \to \text{NoDS} D (T (\lambda h \to \llbracket h d h \rrbracket_{\text{DS}})) \\
\text{DeDS} & \quad : \{ I : \text{Set}_I \} (D D' : \text{DS} I I) \to \text{NoDS} D D' \to I \\
\text{DeDS} D (\ i \ i) & \quad \langle \_ \rangle = i \\
\text{DeDS} D (\sigma S T) (\ s, t) & \quad = \text{DeDS} D (T s) t \\
\text{DeDS} D (\delta H T) (h d, t) & \quad = \text{DeDS} D (T (\lambda h \to \llbracket h d h \rrbracket_{\text{DS}})) t
\end{align*}
\]

Exercise 6.11 (encode TU) Construct an encoding of TU in DS Set Set.

If you have an eye for this sort of thing, you may have noticed that DS \(I\) is a monad, with \(\iota\) as its ‘return’.

Exercise 6.12 (bindDS and its meaning) Implement the appropriate bindDS operator, corresponding to substitution at \(\iota\).

\[
\begin{align*}
\text{bindDS} & \quad : \text{forall} \{ I J K \} \to \text{DS} I J \to (J \to \text{DS} I K) \to \text{DS} I K \\
\text{bindDS} \ T \ U & \quad = ?
\end{align*}
\]

Show that bindDS corresponds to a kind of \(\Sigma\) by implementing pairing and projections:

\[
\begin{align*}
\text{pairDS} & \quad : \text{forall} \{ I J K \} (T : \text{DS} I J) (U : J \to \text{DS} I K) \{ X : \text{Fam} I \} \to \\
& \quad (t : \text{fst} (\llbracket T \rrbracket_{\text{DS}} X)) (u : \text{fst} (\llbracket U (\text{snd} (\llbracket T \rrbracket_{\text{DS}} X) t) \rrbracket_{\text{DS}} X)) \\
& \quad \to \text{fst} (\llbracket \text{bindDS} T U \rrbracket_{\text{DS}} X)
\end{align*}
\]
6.5 IRISH INDUCTION-RECURSION

\[
\text{pairDS } T U t u = ? \]
\[
\text{projDS : } \forall \{ I J K \} ( T : DS I I ) ( U : J \to DS I K ) \{ X : \text{Fam } I \} \to \\
\text{fst } ( \text{bindDS } T U \downharpoonright_{DS} X ) \to \\
\Sigma ( \text{fst } ( \text{projDS } T U X ) ) \lambda t \to \text{fst } ( \text{projDS } U ( \text{snd } ( \text{projDS } T U X ) ) t ) \downharpoonright_{DS} X
\]
\[
\text{projDS } T U t u = ?
\]

Which coherence properties hold?

There is one current snag with the \( DS I J \) coding of functors yielding inductive-recursive definitions, as you will discover if you attempt the following exercise.

Exercise 6.13 (composition for \( DS \)) This is an open problem. Construct

\[
\text{coDS : } \forall \{ I J K \} \to DS J K \to DS I J \to DS I K
\]
\[
\text{coDS } E D = ?
\]
such that

\[
\| \text{coDS } E D \downharpoonright_{DS} \cong \| E \downharpoonright_{DS} \circ \| D \downharpoonright_{DS}
\]

Alternatively, find a counterexample which wallops the very possibility of \( \text{coDS} \).

In the next section, we can try to do something about the problem.

6.5 Irish Induction-Recursion

So I went to this meeting with some friends who like containers, induction-recursion, and other interesting animals in the zoo of datatypes. I presented what I thought was just a boring \( \text{Desc} \)-like rearrangement of Dybjer and Setzer’s encoding of induction-recursion. ‘That’s not IR!’ said the audience, and it remains an open problem whether or not they were correct: it is certainly IR-ish, but we do not yet know whether it captures just the same class of functors as Dybjer and Setzer’s encoding, or strictly more. (If the latter, we shall need a new model construction, to ensure the system’s consistency.)

I give an inductive-recursive definition of IR. The type \( \text{Irish } I \) describes node structures where children can be interpreted in \( I \). Deferring the task of interpreting such a node, let us rather compute the type of Information we can learn from it. Note that \( \text{Info } \{ I \} T \) is large because \( I \) is, but fear not, for it is not the type of the nodes themselves.

\[
\text{mutual}
\]
\[
\text{data } \text{Irish } ( I : \text{Set}_1 ) : \text{Set}_1 \text{ where}
\]
\[
i : \text{Irish } I
\]
\[
\kappa : \text{Set} \to \text{Irish } I
\]
\[
\pi : ( S : \text{Set} ) ( T : S \to \text{Irish } I ) \to \text{Irish } I
\]
\[
\sigma : ( S : \text{Irish } I ) ( T : \text{Info } S \to \text{Irish } I ) \to \text{Irish } I
\]
\[
\text{Info } : \forall \{ I \} \to \text{Irish } I \to \text{Set}_1
\]
\[
\text{Info } \{ I \} i = I
\]
\[
\text{Info } ( \kappa A ) = \uparrow A
\]
\[
\text{Info } ( \pi S T ) = ( s : S ) \to \text{Info } ( T s )
\]
\[
\text{Info } ( \sigma S T ) = \Sigma ( \text{Info } S ) \lambda s \to \text{Info } ( T s )
\]

To interpret \( \pi \) and \( \sigma \), we shall need to equip \( \text{Fam} \) with pointwise lifting and dependent pairs, respectively.

\[
\text{ΠF } : ( S : \text{Set} ) \{ J : S \to \text{Set}_1 \} ( T : ( s : S ) \to \text{Fam } ( J s ) ) \to \\
\text{Fam } ( ( s : S ) \to J s )
\]
\[ \prod_{S \to T} = ((s : S) \to \text{fst}(T s)), \lambda f s \to \text{snd}(T s)(f s) \]
\[ \Sigma F : \{ I : \text{Set}_1 \}(S : \text{Fam } I) \{ J : I \to \text{Set}_1 \}(T : (i : I) \to \text{Fam}(J i)) \to \text{Fam}(\Sigma I J) \]
\[ \Sigma F S T = \Sigma (\text{fst } S)(\text{fst } (T \circ \text{snd } S)) \]
\[ \lambda \{(s, t) \to \text{snd } S s, \text{snd } (T (\text{snd } S s))t \} \]

Now, for any \( T : \text{Irish } I \), if someone gives us a \( \text{Fam } I \) to represent children, we can compute a \( \text{Fam } (\text{Info } T) \) — a small node structure from which the large \( \text{Info } T \) can be extracted.

\[
\begin{align*}
\text{Node} : \forall \{ I \} (T : \text{Irish } I) \to \text{Fam } I \to \text{Fam } (\text{Info } T) \\
\text{Node } t X &= X \\
\text{Node } (\kappa A) X &= A, \uparrow \\
\text{Node } (\pi S T) X &= \prod_{F S} \lambda s \to \text{Node } (T s) X \\
\text{Node } (\sigma S T) X &= \Sigma F (\text{Node } S X) \lambda i S \to \text{Node } (T i S) X
\end{align*}
\]

A functor from \( \text{Fam } I \) to \( \text{Fam } J \) is then given by a pair

\[
\begin{align*}
\text{IF} : \text{Set}_1 \to \text{Set}_1 \to \text{Set}_1 \\
\text{IF } I J &= \Sigma (\text{Irish } I) \lambda T \to \text{Info } T \to J \\
\text{[]}_I F : \forall \{ I J \} \to \text{IF } I J \to \text{Fam } I \to \text{Fam } J \\
\text{[ } T, d \text{ ]}_I F X &= d s, \text{Node } T X
\end{align*}
\]

With a certain tedious inevitability, we find that Agda rejects the obvious attempt to tie the knot.

\[
\begin{align*}
\text{mutual} & \quad \text{fails positivity and termination checks} \\
\text{data } \text{DataIF } \{ I \} (F : \text{IF } I I) : \text{Set where} \\
\langle _{\_} \rangle : \forall F \to (\text{Fst } F) \to \text{DataIF } F \\
\langle _{-} F \rangle : \forall \{ F : \text{IF } I I \} \to \text{DataIF } F \to I \\
\langle _{-} F \rangle \{ F = F \} (rs) &= \text{snd } F (\text{DataIF } F, rs)
\end{align*}
\]

Again, specialization of \( \text{Node} \) fixes the problem

\[
\begin{align*}
\text{mutual} \\
\text{data } \text{DataIF } \{ I \} (F : \text{IF } I I) : \text{Set where} \\
\langle _{\_} \rangle : \text{NoIF } F (\text{Fst } F) \to \text{DataIF } F \\
\langle _{-} F \rangle : \forall \{ F : \text{IF } I I \} \to \text{DataIF } F \to I \\
\langle _{-} F \rangle \{ F = F \} (rs) &= \text{snd } F (\text{DataIF } F, rs)
\end{align*}
\]

Given that Agda lets us implement Irish IR, one wonders whether it allows even more. Irish IR is a little closer to the user experience of IR in Agda, in that you give separately a description of your data’s node structure and the ‘algebra’ which decodes it.
Exercise 6.14 (Irish TU) Give a construction for the TU universe as a description-decoder pair in IF Set Set.

We should check that Irish IR allows at least as much as Dybjer-Setzer.

Exercise 6.15 (Irish-to-Swedish) Show how to define

\[
\begin{align*}
\text{DSIF} : \forall \{ I, J \} \rightarrow \text{DS} I J \rightarrow \text{IF} I J \\
\text{DSIF} T = ?
\end{align*}
\]

such that

\[
[\text{DSIF} T ]_{\text{DS}} \cong [ T ]_{\text{IF}}
\]

We clearly have an identity for Irish IR.

\[
\text{idIF} : \forall \{ I \} \rightarrow \text{IF} I I \\
idIF = \iota, \text{id}
\]

Now, DS I J had a substitution-for-\(\iota\) structure which induced a notion of pairing, because \(\iota\) marks ‘end of record’. What makes the Irish encoding conductive to composition is that the \(\iota\)-leaves of an Irish I mark where the children go.

Exercise 6.16 (subIF) Construct a substitution operator for Irish J with a refinement of the following type.

\[
\begin{align*}
\text{subIF} : \forall \{ I, J \} \{ T : \text{Irish} J \} ( F : \text{IF} I J ) \rightarrow \Sigma (\text{Irish} I) ? \\
\text{subIF} T F = ?
\end{align*}
\]

Hint: you will find out what you need in the \(\sigma\) case.

Exercise 6.17 (coIF) Now define composition for Irish IR functors.

\[
\begin{align*}
\text{coIF} : \forall \{ I, J, K \} \rightarrow \text{IF} J K \rightarrow \text{IF} I J \rightarrow \text{IF} I K \\
\text{coIF} G F = ?
\end{align*}
\]

Some of us are inclined to suspect that IF does admit more functors than DS, but the exact status of Irish induction-recursion remains the stuff of future work.
Bibliography


