
Generic discrimination

Fritz Henglein
henglein@diku.dk

Department of Computer Science
University of Copenhagen

(DIKU)

SSGEP, Oxford, 2015-07-06

Some simple problems

Given a list of pointers, how many unique elements does it
contain?

Given a list of pointers, what are its unique elements.

Given a list of pointer lists, what are its unique pointer lists.

Given a list of pointer sets (given as lists considered equal
modulo permutations and duplicates), what re its unique
pointer sets.

How efficient are your solutions?

Do they allow copying garbage collection?

2

Great speed, no abstraction

The C and Java solution:

Convert pointers to numbers (casting, hashing)

Use address arithmetic and table lookups.

Consequences:

Potentially nondeterministic program behavior: ptr = new

... ; if ptr < 4000 then ...

No data abstraction: Cannot change implementation, impedes
garbage collection.

3

Great abstraction, no speed

The ML solution:

Abstract pointers (references): Allow only equality testing,
lookup, allocation, update on pointers.

Use pairwise comparisons.

4

Great abstraction, no speed

The ML solution:

Abstract pointers (references): Allow only equality testing,
lookup, assignment, update on pointers.

Use pairwise comparisons.

Consequence:

Theorem

Determining the number of unique elements in a list of n ML
references takes Ω(n2) equality tests.

5

Have your cake and eat it too?

Question: Can you sort and partition

generically: user-defined orders/equivalences;

fully abstractly: pairwise comparisons determine output;

scalably: worst-case linear time1

expressed with very short and simple program code?

Answer: Yes

1for standard and many other orders/equivalences
6

Great abstraction, great speed

part :: Equiv k -> [k] -> [[k]]

numUniqElems ps = length (part eqRef ps)

uniqElems ps = [head b | b <- part eqRef ps]

uniqPtrLists pss = [head b | b <- part (listE eqRef) pss]

uniqPtrSets pss = [head b | b <- part (SetE eqRef) pss]

Worst-case linear time
(= O(number of pointer occurrences))

Same order of pointers before and after garbage collection (=
as if using only equality tests to compute result)

7

Key ingredient: Discriminator

Provide n-ary “comparison” function

discRef :: [(Ref a, v)] -> [[v]]

to data type instead of binary comparison function

== :: Ref a -> Ref a -> Ref a

Fully abstract: Only pairwise equality can be “observed”
through discRef (like having only ==).

Asymptotically optimal performance: O(n) worst-case time
(like treating pointers—internally—as numbers).

8

Generic discrimination: Method

Expressive domain-specific language for defining orders and
equivalences compositionally.

Inherently efficient (usually linear-time and fully abstract)
discriminators by structural recursion (“generically”) on order
and equivalence representations.

Partitioning, sorted partitioning, sorting, joining functions,
etc., as applications of discriminators.

9

Example: Word occurrences

Word occurrences, alphabetically sorted:

occsO :: [(String, Int)] -> [[Int]]

occsO = sdisc ordString8

Word occurrences, in order of occurrence in input

occsE :: [(String, Int)] -> [[Int]]

occsE = disc eqString8

10

Example: Word occurrences, case insensitive

Definition of alphabetic order, but case-insensitive:

ordString8Ins :: Order String

ordString8Ins = listL (MapO toUpper ordChar8)

Word occurrences, case insensitive, alphabetically sorted:

occsCaseInsO :: [(String, Int)] [[Int]]

occsCaseInsO = sdisc ordString8Ins

Word occurrences, case insensitive, order of occurrence in input:

occsCaseInsE :: [(String, Int)] [[Int]]

occsCaseInsE = disc (equiv ordString8Ins)

11

Orders

Definition (Total preorder)

A total preorder (order) (T ,≤) is a type T together with a binary
relation ≤⊆ T × T that is reflexive, transitive and total.

12

Order constructions

Constructions for defining new orders from old:

Trivial order on any type

Standard total orders on primitive types

Constructions:

Lexicographic order (on pair types)
Sum order (on sum types)
Induced order on domain type by a function to an ordered
range type
Recursion
Inverse order, etc.

Let’s look at some examples.

13

Order expressions
A typed language of order constructions:

data Order t where

Nat :: Int -> Order Int

Triv :: Order t

SumL :: Order t1 -> Order t2 -> Order (Either t1 t2)

PairL:: Order t1 -> Order t2 -> Order (t1, t2)

MapO :: (t1 -> t2) -> Order t2 -> Order t1

Inv :: Order t -> Order t

BagO :: Order t -> Order [t]

SetO :: Order t -> Order [t]

Implicit recursion is allowed. So order expressions may be infinite.
(Think of them as potentially infinite trees.)
Examples:
ordChar8 = MapO ord (Nat 255)

listL r = MapO fromList

(SumL ordUnit (PairL r (listL r)))
14

Generic definition of comparison functions

lte :: Order t -> t -> t -> Bool

Definitional interpreter (= denotational semantics of order
representations)

Idea: Structural recursion on first argument (the order
expression)

lte (Nat n) x y = x <= y

lte Triv x y = True

...

lte (PairL r1 r2) (x1, x2) (y1, y2) =

lte r1 x1 y1 &&

if lte r1 y1 x1 then lte r2 x2 y2 else True

lte (MapO f r) x y = lte r (f x) (f y)

lte (Inv r) x y = lte r y x

15

Generic definition of sorting functions

Generic definition of lte corresponds to compositional
definition of comparison functions; e.g.

Q: Given comparison functions lte r1 and lte r2, how to
construct a comparison function lte (PairL r1 r2) for the
product order?
A:

lte (PairL r1 r2) (x1, x2) (y1, y2) =

lte r1 x1 y1 &&

if lte r1 y1 x1 then lte r2 x2 y2 else True

Sorting using a comparison function entails Ω(n log n)-lower
bound on number of comparisons

Why not define sorting functions generically (by structural
recursion on order expressions)?

16

Generic definition of sorting functions: Problem

sort :: Order k -> [k] -> [k]

Imagine now we want to define the case for Pair r1 r2:

sort (Pair r1 r2) xs =

... sort r1 ... sort r2 ...

How to do this?

We need to sort lists of pairs, but both sort r1 and sort r2

can only sort lists of single components—association of
components is lost.

Does not work!

Idea: Allow for “satellite data” to be associated with keys to
be sorted.

17

Discriminator

Definition (Discriminator)

A function ∆ is a discriminator for equivalence relation E if

it maps a list of key-value pairs to a list of groups, where each
group contains the value components that are associated with
E -equivalent keys in the input (partitioning property);

it is parametric in the value components: For all binary
relations Q, if ~x (id × Q)∗ ~y then ∆(~x) Q∗∗∆(~y)
(parametricity property).

18

Order discriminator

Definition (Order discriminator)

∆ is an order discriminator for ordering relation O if it

is a discriminator for ≡O , the equivalence relation canonically
induced by O, and

returns the groups of values in ascending O-order on the keys
giving rise to them (ordered partitioning property).

19

Partial abstraction

Definition (Key equivalence)

Let P be an equivalence relation. Lists ~x and ~y are key equivalent
under P if ~x (P × id)∗ ~y .

Definition (Partially abstract discriminator)

A discriminator ∆ for equivalence relation E is partially abstract if
∆(~x) = ∆(~y) whenever ~x and ~y are key equivalent under E .

Result does not depend on particular equivalence class
representative.

E.g., the particular list representation under set equivalence:
∆([([1, 4, 5], 100), ([2, 3], 200)) =
∆([([5, 1, 4], 100), ([3, 2], 200))

20

Full abstraction

Definition (R-correspondence)

Let R be an equivalence relation. Lists ~x = [(k1, v1), . . . , (km, vm)]
and ~l = [(l1,w1), . . . , (ln,wn)] are R-correspondent, written
~x ∼=R ~y , if m = n and for all i , j ∈ {1 . . . n} we have vi = wi and
ki R kj ⇔ li R lj .

Definition (Fully abstract equivalence discriminator)

A discriminator is a fully abstract equivalence discriminator for E if
it respects E -correspondent inputs: For all ~x , ~y , if ~x ∼=E ~y then
∆(~x) = ∆(~y).

Result depends only on which pairwise equivalences hold
between the input keys.

21

Full implies partial

Proposition

A fully abstract discriminator is also partially abstract, but not
necessarily vice versa.

22

Example

Let D be a fully abstract equivalence discriminator.

(x , y) ∈ E0 iff both x , y even or both odd.

Possible result:
D[(5, 100), (4, 200), (9, 300)] = [[100, 300], [200]]

By parametricity, then also:
D[(5, ”foo”), (4, ”bar”), (9, ”baz”)] = [[”foo”, ”baz”], [”bar”]]

By partial abstraction, then also:
D[(3, 100), (8, 200), (1, 300)] = [[100, 300], [200]]

By full abstraction, then also:
D[(16, 100), (29, 200), (4, 300)] = [[100, 300], [200]]

23

Partitioning and sorting from discrimination

Sorted partitioning from order discrimination:

spart :: Order t -> [t] -> [[t]]

spart r xs = sdisc r [(x, x) | x <- xs]

Sorting from sorted partitioning:

dsort :: Order t -> [t] -> [t]

dsort r xs = [y | ys <- spart r xs, y <- ys]

Unique sorting (no duplicates modulo equivalence) from sorted
partitioning:

usort :: Order t -> [t] -> [t]

usort r xs = [head ys | ys <- spart r xs]

24

Basic order discrimination: Bucket sorting

sdisc requires basic order discriminator sdiscNat n for (the
standard order on) small integers [0 . . . n].
Use bucketing:

1 Allocate/reuse bucket table T [0 . . . n], initialized to empty lists.
2 For each key-value pair (k , v) in input, add v to T [k].
3 For 0 ≤ i ≤ n in ascending order,

if T [i] nonempty, append contents to output and reset T [i] to
empty.

Note: Last step requires n (size of bucket table) steps, even if
input is very small.

In Haskell:

sdiscNat n xs = filter (not . null) (bucket n update xs)

where update vs v = v : vs

bucket (n :: Int) update xs =

reverse (elems (accumArray update [] (0, n) xs))

25

Pair discrimination

sdisc (PairL r1 r2) xs =

[vs | ys <- sdisc r1 [(k1, (k2, v)) | ((k1, k2), v) <- xs],

vs <- sdisc r2 ys]

1 Discriminate on first component of keys.

2 For each resulting group, discriminate on second component.

26

Generic order discrimination

sdisc : A stable generic order discriminator.

The complete code (except for BagO, SetO):

sdisc :: Order k -> [(k, v)] -> [[v]]

sdisc r [] = []

sdisc r [(k, v)] = [[v]]

sdisc (Nat n) xs = sdiscNat n xs

sdisc Triv xs = [map snd xs]

sdisc (SumL r1 r2) xs = sdisc r1 lefts ++ sdisc r2 rights

where (lefts, rights) = split xs

sdisc (PairL r1 r2) xs =

[vs | ys <- sdisc r1 [(k1, (k2, v)) | ((k1, k2), v) <- xs],

vs <- sdisc r2 ys]

sdisc (MapO f r) xs = sdisc r [(f k, v) | (k, v) <- xs]

sdisc (Inv r) xs = reverse (sdisc r xs)

27

Asymptotic time complexity

Theorem

For each finite r the function sdisc r executes in worst-case
linear time.

Proof: Induction on r.
Note:

The linear factor depends on r.

Applies only to nonrecursive types of elements (“finite”).

28

Asymptotic time complexity

Theorem

Let R ∈ R∞ and R ′ ∈ R[r1] such that

R = MapO f (R ′[R/r1])

where R :: Order T and R ′ :: Order T ′. Furthermore let
f :: T → T ′[T/t1] be such that |f (k)| ≤ |k| and
Tf (k) = O(|f (k)|T ′

).
Then R ∈ L: R is linear-time discriminable.

Corollary

For all standard orders r on first-order regular recursive types,
sdisc r xs executes in linear time.

29

Nonlinearity

Standard lexicographic ordering:

listL p = MapO fromList

(SumL ordUnit (PairL p (listL p)))

Flip-flop ordering on lists: Compare last elements, then first,
then next-to-last, then second . . . :

flipflop p = MapO (fromList . reverse)

(SumL ordUnit (PairL p (flipflop p)))

Observe:

sdisc (listL ordChar8): Linear time.

sdisc (flipflop ordChar8): Quadratic time.

30

Linear-time: Idea

The recursive type can be polymorphically abstracted in listL:

listL p = MapO fromList

(R (listL p))

where R :: Order t -> Order (Either () (Char, t)

R r = SumL ordUnit (PairL p r)

Only parametric polymorphic functions can occur in
abstracted constructor R, which cannot “touch” (access)
those parts of the input that are passed to the recursive calls
of the same discriminator.

Not possible for flipflop— occurrence of reverse in
abstracted version is not typable.

31

Basic equivalence discrimination

Instead of bucket sort, use basic multiset discrimination (Cai,
Paige 1994).

Like bucket sort, but
Traverse table in key insertion order.

Yields a fully abstract integer equality discriminator.

Performance even better than bucket sorting: Final traversal
of whole array avoided.

No dynamic bucket table allocation required.
Use single static bucket array (per thread).

32

Basic equivalence discriminator in Haskell

discNat :: Int -> [(Int, v)] -> [[v]]

discNat size =

unsafePerformIO (

do table <- newArray (0, size) [] :: IO (IOArray Int [v])

let discNat’ xs = unsafePerformIO (

do ks <- foldM (\keys (k, v) ->

do vs <- readArray table k

case vs of [] -> do writeArray table k [v]

return (k : keys)

_ -> do writeArray table k (v : vs)

return keys)

[] xs

foldM (\vss k -> do elems <- readArray table k

writeArray table k []

return (reverse elems : vss))

[] ks)

return discNat’)

33

Generic equivalence discrimination

disc :: Equiv k -> [(k, v)] -> [[v]]

disc _ [] = []

disc _ [(_, v)] = [[v]]

disc (NatE n) xs =

if n < 65536 then discNat16 xs else disc eqInt32 xs

disc TrivE xs = [map snd xs]

disc (SumE e1 e2) xs = disc e1 [(k, v) | (Left k, v) <- xs] ++

disc e2 [(k, v) | (Right k, v) <- xs]

disc (ProdE e1 e2) xs =

[vs | ys <-disc e1 [(k1, (k2, v)) | ((k1, k2), v) <- xs],

vs <- disc e2 ys]

disc (MapE f e) xs = disc e [(f k, v) | (k, v) <- xs]

disc (ListE e) xs = disc (listE e) xs

disc (BagE e) xs = discColl updateBag e xs

disc (SetE e) x = discColl updateSet e xs

34

Abstraction properties

Theorem (Full abstraction of sdisc)

sdisc is fully abstract (for ordering) and stable.

Theorem (Abstraction properties of disc)

disc is partially abstract (for equivalence) for equivalences not
containing BagE and SetE.

Theorem (Fully abstract equivalence discrimination)

There is a fully abstract generic discriminator edisc with the same
asymptotic performance as disc and sdisc.

35

Performance

36

Performance

37

Performance

38

Performance

39

Performance

40

Variations, extensions

Domain-theoretic semantics

Avoiding sparse bucket table traversals for order
discrimination and sorting

Equivalence expressions (analogous to order expressions)

Bag and set equivalence discrimination

Run-time order and equivalence normalization for correctness
and efficiency

Combinatory discriminator library (without order/equivalence
expressions, requires rank-2 polymorphic types)

Comparison with complexity of sorting

Generic tries

Nontrivial applications: AC-term equivalence, type
isomorphism, equijoins

41

Select related work

Paige et al. (1987-97): Basic multiset discrimination for
pointers, strings, acyclic graphs; application to lexicographic
sorting

Henglein (2003): Unpublished note on multiset discrimination
(top-down, bottom-up) and algorithms for circular data
structures

Ambus (MS thesis, 2004): Java discriminator library, internal
and external (disk) data, application to asynchronous data
coalescing in P2P-based XML Store (see plan-x.org)

Henglein (ICFP 2008): Order discriminators

Henglein (JFP, Nov. 2012): Generic top-down discrimination
for sorting and partitioning in linear time

Henglein, Hinze (APLAS 2013): Generic Sorting and
Searching

Kmett (2015): Generic discrimination, streaming

42

Open problems (“Homework”)

Generic bottom-up discrimination (for acyclic data structures)

Generic cyclic discrimination (for cyclic data structures)

Staged implementation (partial evaluation)

Parallel discrimination

43

Take-home message: GAS

Simultaneously:

Genericity: DSL for orders and equivalences for correctness
and safety/limited expressiveness

Abstraction: Statically guaranteed representation
independence

Scalability: Asymptotically optimal computational
performance

All equi-abstract interfaces are equivalent, but some are faster than
others.

44

Program

1 Today: Generic discrimination

2 Tomorrow: Generic multiset programming

3 Thursday: Generic linear algebra

End of talk

45

	Motivation
	Sorting and partitioning
	Generic discrimination

