
Embedded Domain Specific Languages in Idris

Edwin Brady
University of St Andrews, KY16 9SX, UK,

ecb10@st-andrews.ac.uk

3rd July 2015

Abstract

Types describe a program’s meaning. Dependent types, which allow types to be predicated on values,
allow a program to be given a more precise type, and thus a more precise meaning. Typechecking amounts
to verifying that the implementation of a program matches its intended meaning. In this tutorial, I will
describe Idris, a pure functional programming language with dependent types, and show how it may be
used to develop verified embedded domain specific languages (EDSLs).

Idris has several features intended to support EDSL development, including syntax extensions, over-
loadable binders and implicit conversions. I will describe how these features, along with dependent types,
can be used to capture important functional and extra-functional properties of programs, how resources
such as file handles and network protocols may be managed through EDSLs, and finally describe a general
framework for programming and reasoning about side-effects, implemented as an embedded DSL.

1 Introduction

In conventional programming languages, there is a clear distinction between types and values. For example,
in Haskell [13], the following are types, representing integers, characters, lists of characters, and lists of any
value respectively:

• Int, Char, [Char], [a]

Correspondingly, the following values are examples of inhabitants of those types:

• 42, ’a’, "Hello world!", [2,3,4,5,6]

In a language with dependent types, however, the distinction is less clear. Dependent types allow types to
“depend” on values — in other words, types are a first class language construct and can be manipulated like
any other value. A canonical first example is the type of lists of a specific length1, Vect n a, where a is the
element type and n is the length of the list and can be an arbitrary term.

When types can contain values, and where those values describe properties (e.g. the length of a list) the
type of a function can describe some of its own properties. For example, concatenating two lists has the
property that the resulting list’s length is the sum of the lengths of the two input lists. We can therefore give
the following type to the app function, which concatenates vectors:

app : Vect n a -> Vect m a -> Vect (n + m) a

This tutorial introduces Idris, a general purpose functional programming language with dependent types,
and in particular how to use Idris to implement Embedded Domain Specific Languages (EDSLs). It includes
a brief introduction to the most important features of the language for EDSL development, and is aimed

1Typically, and perhaps confusingly, referred to in the dependently typed programming literature as “vectors”

1

at readers already familiar with a functional language such as Haskell or OCaml. In particular, a certain
amount of familiarity with Haskell syntax is assumed, although most concepts will at least be explained
briefly.

1.1 Outline

The tutorial is organised as follows:

• This Section describes how to download and install Idris and build an introductory program.

• Section 2 (page 4) introduces the fundamental features of the language: primitive types, and how to
define types and functions.

• Section 3 (page 16) describes type classes in Idris and gives two specific examples, Monad and
Applicative.

• Section 4 (page 19) describes dependent pattern matching, in particular views, which give a means of
abstracting over pattern matching.

• Section 5 (page 22) introduces proofs and theorem proving in Idris, and introduces provisional defini-
tions, which are pattern definitions which require additional proof obligations.

• Section 6 (page 25) gives a first example of EDSL implementation, a well-typed interpreter

• Section 7 (page 28) describes how Idris provides support for interactive program development, and in
particular how this is incorporated into text editors.

• Section 8 (page 32) introduces syntactic support for EDSL implementation.

• Section 9 (page 36) gives an extending example of an EDSL, which supports resource aware program-
ming.

• Section 10 (page 41) describes how Idris supports side-effecting and stateful programs with system
interaction, by using an EDSL

• Finally, Section 11 (page 55) concludes and provides references to further reading.

Many of these sections (2, 4, 5, 7, 8 and 10) end with exercises to reinforce your understanding. The
tutorial includes several examples, which have been tested with Idris version 0.9.18. The files are available
in the Idris distribution, so that you can try them out easily2. However, it is strongly recommended that you
type them in yourself, rather than simply loading and reading them.

1.2 Downloading and Installing

Idris requires an up to date Haskell Platform3. Once this is installed, Idris can be installed with the following
commands:

cabal update
cabal install idris

This will install the latest version released on Hackage, along with any dependencies. If, however, you
would like the most up to date development version, you can find it on GitHub at https://github.com/
idris-lang/Idris-dev. You can also find up to date download instructions at http://idris-lang.
org/download, including details of binaries for OSX and Windows.

To check that installation has succeeded, and to write your first Idris program, create a file called
“hello.idr” containing the following text:

2https://github.com/idris-lang/Idris-dev/tree/master/examples
3http://haskell.org/platform

2

Listing 1: Idris prompt
$ idris

____ __ _
/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.18

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris>

module Main

main : IO ()
main = putStrLn "Hello world"

We will explain the details of how this program works later. For the moment, you can compile the program to
an executable by entering idris hello.idr -o hello at the shell prompt. This will create an executable
called hello, which you can run:

$ idris hello.idr -o hello
$./hello
Hello world

Note that the $ indicates the shell prompt! Some useful options to the idris command are:

• -o prog to compile to an executable called prog.

• --check type check the file and its dependencies without starting the interactive environment.

• --help display usage summary and command line options

1.3 The interactive environment

Entering idris at the shell prompt starts up the interactive environment. You should see something like
Listing 1.

This gives a ghci-style interface which allows evaluation of expressions, as well as type checking
expressions, theorem proving, compilation, editing and various other operations. :? gives a list of supported
commands. Figure 2 shows an example run in which hello.idr is loaded, the type of main is checked
and then the program is compiled to the executable hello.

Listing 2: Sample Interactive Run
$ idris hello.idr

____ __ _
/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.18

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Type checking ./hello.idr

*hello> :t main
Main.main : IO ()

*hello> :c hello

3

*hello> :q
Bye bye
$./hello
Hello world

Type checking a file, if successful, creates a bytecode version of the file (in this case hello.ibc) to speed
up loading in future. The bytecode is regenerated on reloading if the source file changes.

2 Types and Functions

2.1 Primitive Types

Idris defines several primitive types: Int, Integer and Float for numeric operations, Char and String
for text manipulation, and Ptr which represents foreign pointers. There are also several data types declared
in the library, including Bool, with values True and False. We can declare some constants with these
types. Enter the following into a file prims.idr and load it into the Idris interactive environment by typing
idris prims.idr:

module prims

x : Int
x = 42

foo : String
foo = "Sausage machine"

bar : Char
bar = ’Z’

quux : Bool
quux = False

An Idris file consists of a module declaration (here module prims) followed by an optional list of imports
(none here, however Idris programs can consist of several modules, each of which has its own namespace)
and a collection of declarations and definitions. The order of definitions is significant — functions and data
types must be defined before use. Each definition must have a type declaration (here, x : Int, foo :
String, etc). Indentation is significant — a new declaration begins at the same level of indentation as the
preceding declaration. Alternatively, declarations may be terminated with a semicolon.

A library module prelude is automatically imported by every Idris program, including facilities for
IO, arithmetic, data structures and various common functions. The prelude defines several arithmetic and
comparison operators, which we can use at the prompt. Evaluating things at the prompt gives an answer,
and the type of the answer. For example:

*prims> 6*6+6
42 : Integer

*prims> x == 6*6+6
True : Bool

All of the usual arithmetic and comparison operators are defined for the primitive types (e.g. == above
checks for equality). They are overloaded using type classes, as we will discuss in Section 3 and can be
extended to work on user defined types. Boolean expressions can be tested with the if...then...else
construct:

*prims> if x == 6 * 6 + 6 then "The answer!"

4

else "Not the answer"
"The answer!" : String

2.2 Data Types

Data types are defined in a similar way to Haskell data types, with a similar syntax. Natural numbers and
lists, for example, can be declared as follows:

data Nat = Z | S Nat −− N a t u r a l n u m b e r s
−− (z e r o , s u c c e s s o r)

data List a = Nil | (::) a (List a) −− P o l y m o r p h i c l i s t s

The above declarations are taken from the standard library. Unary natural numbers can be either zero (Z), or
the successor of another natural number (S k). Lists can either be empty (Nil) or a value added to the front
of another list (x :: xs). In the declaration for List, we used an infix operator ::. New operators such
as this can be added using a fixity declaration, as follows:

infixr 10 ::

Functions, data constructors and type constuctors may all be given infix operators as names. They may be
used in prefix form if enclosed in brackets, e.g. (::). Infix operators can use any of the symbols:

:+-*/=_.?|&><!@$%^~.

2.3 Functions

Functions are implemented by pattern matching, again using a similar syntax to Haskell. The main difference
is that Idris requires type declarations for all functions, and that Idris uses a single colon : (rather than
Haskell’s double colon ::). Some natural number arithmetic functions can be defined as follows, again
taken from the standard library:

−− U n a r y a d d i t i o n
plus : Nat -> Nat -> Nat
plus Z y = y
plus (S k) y = S (plus k y)

−− U n a r y m u l t i p l i c a t i o n
mult : Nat -> Nat -> Nat
mult Z y = Z
mult (S k) y = plus y (mult k y)

The standard arithmetic operators + and * are also overloaded for use by Nat, and are implemented using
the above functions. Unlike Haskell, there is no restriction on whether types and function names must begin
with a capital letter or not. Function names (plus and mult above), data constructors (Z, S, Nil and ::)
and type constructors (Nat and List) are all part of the same namespace. As a result, it is not possible to
use the same name for a type and data constructor.

Like arithmetic operations, integer literals are also overloaded using type classes, meaning that we can
test these functions as follows:

Idris> plus 2 2
4 : Nat
Idris> mult 3 (plus 2 2)
12 : Nat

5

Aside: It is natural to ask why we have unary natural numbers when our computers have integer arithmetic
built in to their CPU. The reason is primarily that unary numbers have a convenient structure which is easy
to reason about, and easy to relate to other data structures, as we will see later. Nevertheless, we do not want
this convenience to be at the expense of efficiency. Idris knows about the relationship between Nat (and
similarly structured types) and numbers, so optimises the representation and functions such as plus and
mult.

where clauses

Functions can also be defined locally using where clauses. For example, to define a function which reverses
a list, we can use an auxiliary function which accumulates the new, reversed list, and which does not need to
be visible globally:

reverse : List a -> List a
reverse xs = revAcc [] xs where

revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Indentation is significant — functions in the where block must be indented further than the outer function.
Scope. Any names which are visible in the outer scope are also visible in the where clause (unless they

have been redefined, such as xs here). A name which appears only in the type will be in scope in the where
clause if it is a parameter to one of the types, i.e. it is fixed across the entire structure.

As well as functions, where blocks can include local data declarations, such as the following where MyLT
is not accessible outside the definition of foo:

foo : Int -> Int
foo x = case isLT of

Yes => x*2
No => x*4

where
data MyLT = Yes | No

isLT : MyLT
isLT = if x < 20 then Yes else No

In general, functions defined in a where clause need a type declaration just like any top level function.
However, the type declaration for a function f can be omitted if:

• f appears in the right hand side of the top level definition

• The type of f can be completely determined from its first application

So, for example, the following definitions are legal:

even : Nat -> Bool
even Z = True
even (S k) = odd k where
odd Z = False
odd (S k) = even k

test : List Nat
test = [c (S 1), c Z, d (S Z)]

where c x = 42 + x
d y = c (y + 1 + z y)

where z w = y + w

6

2.4 Dependent Types

2.4.1 First Class Types

In Idris, types are a first class language construct, meaning that they can be computed and manipulated (and
passed to functions) just like any other language construct. For example, we could write a function which
computes a type:

isSingleton : Bool -> Type
isSingleton True = Nat
isSingleton False = List Nat

This function calculates the appropriate type from a Bool which flags whether the type should be a
singleton or not. We can use this function to calculate a type anywhere that a type can be used. For example,
it can be used to calculate a return type:

mkSingle : (x : Bool) -> isSingleton x
mkSingle True = 0
mkSingle False = []

Or it can be used to have varying input types. The following function calculates either the sum of a list of
Nat, or returns the given Nat, depending on whether the singleton flag is true:

sum : (single : Bool) -> isSingleton single -> Nat
sum True x = x
sum False [] = 0
sum False (x :: xs) = x + sum False xs

2.4.2 Vectors

A standard example of a dependent data type is the type of “lists with length”, conventionally called vectors
in the dependent type literature. They are available in the Idris library by importing Data.Vect, or we can
declare them as follows:

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that we have used the same constructor names as for List. Ad-hoc name overloading such as this is
accepted by Idris, provided that the names are declared in different namespaces (in practice, normally in
different modules). Ambiguous constructor names can normally be resolved from context.

This declares a family of types, and so the form of the declaration is rather different from the simple
type declarations earlier. We explicitly state the type of the type constructor Vect—it takes a Nat and a
type as an argument, where Type stands for the type of types. We say that Vect is indexed over Nat and
parameterised by Type. Each constructor targets a different part of the family of types. Nil can only be used
to construct vectors with zero length, and :: to construct vectors with non-zero length. In the type of ::,
we state explicitly that an element of type a and a tail of type Vect k a (i.e., a vector of length k) combine
to make a vector of length S k.

We can define functions on dependent types such as Vect in the same way as on simple types such as
List and Nat above, by pattern matching. The type of a function over Vect will describe what happens to
the lengths of the vectors involved. For example, ++, defined in the library, appends two Vects:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

7

The type of (++) states that the resulting vector’s length will be the sum of the input lengths. If we get the
definition wrong in such a way that this does not hold, Idris will not accept the definition. For example:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ xs −− BROKEN

$ idris vbroken.idr --check
vbroken.idr:3:Can’t unify Vect n a with Vect m a

Specifically:
Can’t unify n with m

This error message suggests that there is a length mismatch between two vectors — we needed a vector of
length m, but provided a vector of length n.

2.4.3 Finite Sets

Finite sets, as the name suggests, are sets with a finite number of elements. They are available by importing
Data.Fin, or can be declared as follows:

data Fin : Nat -> Type where
FZ : Fin (S k)
FS : Fin k -> Fin (S k)

For all n : Nat, Fin n is a type containing exactly n possible values: FZ is the first element of a finite
set with S k elements, indexed by zero; FS n is the n+1th element of a finite set with S k elements. Fin
is indexed by a Nat, which represents the number of elements in the set. Obviously we can’t construct an
element of an empty set, so neither constructor targets Fin Z.

A useful application of the Fin family is to represent bounded natural numbers. Since the first n natural
numbers form a finite set of n elements, we can treat Fin n as the set of natural numbers bounded by n.

For example, the following function which looks up an element in a Vect, by a bounded index given as
a Fin n, is defined in the prelude:

index : Fin n -> Vect n a -> a
index FZ (x :: xs) = x
index (FS k) (x :: xs) = index k xs

This function looks up a value at a given location in a vector. The location is bounded by the length of the
vector (n in each case), so there is no need for a run-time bounds check. The type checker guarantees that the
location is no larger than the length of the vector.

Note also that there is no case for Nil here. This is because it is impossible. Since there is no element of
Fin Z, and the location is a Fin n, then n can not be Z. As a result, attempting to look up an element in an
empty vector would give a compile time type error, since it would force n to be Z.

2.4.4 Implicit Arguments

Let us take a closer look at the type of index:

index : Fin n -> Vect n a -> a

It takes two arguments, an element of the finite set of n elements, and a vector with n elements of type a. But
there are also two names, n and a, which are not declared explictly. These are implicit arguments to index.
We could also write the type of index as:

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

8

Implicit arguments, given in braces {} in the type declaration, are not given in applications of index; their
values can be inferred from the types of the Fin n and Vect n a arguments. Any name with a lower case
initial letter which appears as a parameter or index in a type declaration, but which is otherwise free, will be
automatically bound as an implicit argument. Implicit arguments can still be given explicitly in applications,
using {a=value} and {n=value}, for example:

index {a=Int} {n=2} FZ (2 :: 3 :: Nil)

In fact, any argument, implicit or explicit, may be given a name. We could have declared the type of index
as:

index : (i:Fin n) -> (xs:Vect n a) -> a

It is a matter of taste whether you want to do this — sometimes it can help document a function by making
the purpose of an argument more clear.

2.4.5 “using” notation

Sometimes it is useful to provide types of implicit arguments, particularly where there is a dependency
ordering, or where the implicit arguments themselves have dependencies. For example, we may wish to
state the types of the implicit arguments in the following definition, which defines a predicate on vectors:

data Elem : a -> List a -> Type where
Here : {x:a} -> {xs:List a} ->

Elem x (x :: xs)
There : {x,y:a} -> {xs:List a} ->

Elem x xs -> Elem x (y :: xs)

An instance of Elem x xs states that x is an element of xs. We can construct such a predicate if the required
element is Here, at the head of the list, or There, in the tail of the list. For example:

testList : List Int
testList = 3 :: 4 :: 5 :: 6 :: Nil

inList : Elem 5 testList
inList = There (There Here)

If the same implicit arguments are being used several times, it can make a definition difficult to read. To
avoid this problem, a using block gives the types and ordering of any implicit arguments which can appear
within the block:

using (x:a, y:a, xs:List a)
data Elem : a -> List a -> Type where

Here : Elem x (x :: xs)
There : Elem x xs -> Elem x (y :: xs)

Note: Declaration Order and mutual blocks

In general, functions and data types must be declared before use, since dependent types allow functions to
appear as part of types, and their reduction behaviour to affect type checking. However, this restriction can
be relaxed by using a mutual block, which allows data types and functions to be defined simultaneously:

mutual
even : Nat -> Bool
even Z = True
even (S k) = odd k

9

odd : Nat -> Bool
odd Z = False
odd (S k) = even k

In a mutual block, the Idris type checker will first check all of the type declarations in the block, then the
function bodies. As a result, none of the function types can depend on the reduction behaviour of any of the
functions in the block.

2.5 I/O

Computer programs are of little use if they do not interact with the user or the system in some way. The
difficulty in a pure language such as Idris — that is, a language where expressions do not have side-effects —
is that I/O is inherently side-effecting. Therefore in Idris, such interactions are encapsulated in the type IO:

data IO a −− I O o p e r a t i o n r e t u r n i n g a v a l u e o f t y p e a

We’ll leave the definition of IO abstract, but effectively it describes what the I/O operations to be executed
are, rather than how to execute them. The resulting operations are executed externally, by the run-time
system. We’ve already seen one IO program:

main : IO ()
main = putStrLn "Hello world"

The type of putStrLn explains that it takes a string, and returns an element of the unit type () via an I/O
action. There is a variant putStr which outputs a string without a newline:

putStrLn : String -> IO ()
putStr : String -> IO ()

We can also read strings from user input:

getLine : IO String

A number of other I/O operations are defined in the prelude, for example for reading and writing files,
including:

data File −− a b s t r a c t
data Mode = Read | Write | ReadWrite

openFile : String -> Mode -> IO File
closeFile : File -> IO ()

fread : File -> IO String
fwrite : File -> String -> IO ()
feof : File -> IO Bool

readFile : String -> IO String

2.6 “do” notation

I/O programs will typically need to sequence actions, feeding the output of one computation into the input
of the next. IO is an abstract type, however, so we can’t access the result of a computation directly. Instead,
we sequence operations with do notation:

greet : IO ()
greet = do putStr "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

10

The syntax x <- iovalue executes the I/O operation iovalue, of type IO a, and puts the result, of type
a, into the variable x. In this case, getLine returns an IO String, so name has type String. Indentation
is significant — each statement in the do block must begin in the same column. The return operation
allows us to inject a value directly into an IO operation:

return : a -> IO a

As we will see later, do notation is more general than this, and can be overloaded.

2.7 Laziness

Normally, arguments to functions are evaluated before the function itself (that is, Idris uses eager evaluation).
However, consider the following function:

boolCase : Bool -> a -> a -> a
boolCase True t e = t
boolCase False t e = e

This function uses one of the t or e arguments, but not both (in fact, this is used to implement the
if...then...else construct as we will see later.) We would prefer if only the argument which was
used was evaluated. To achieve this, Idris provides a Lazy data type, which allows evaluation to be
suspended:

data Lazy : Type -> Type where
Delay : (val : a) -> Lazy a

Force : Lazy a -> a

A value of type Lazy a is unevaluated until it is forced by Force. The Idris type checker knows about
the Lazy type, and inserts conversions where necessary between Lazy a and a, and vice versa. We can
therefore write boolCase as follows, without any explicit use of Force or Delay:

boolCase : Bool -> Lazy a -> Lazy a -> a
boolCase True t e = t
boolCase False t e = e

2.8 Useful Data Types

The Idris prelude includes a number of useful data types and library functions (see the lib/ directory in the
distribution). The functions described here are imported automatically by every Idris program, as part of
Prelude.idr in the prelude package.

2.8.1 List and Vect

We have already seen the List and Vect data types:

data List a = Nil | (::) a (List a)

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that the constructor names are the same for each — constructor names (in fact, names in general)
can be overloaded, provided that they are declared in different namespaces (in practice, typically different
modules), and will be resolved according to their type. As syntactic sugar, any type with the constructor
names Nil and :: can be written in list form. For example:

11

• [] means Nil

• [1,2,3] means 1 :: 2 :: 3 :: Nil

The library also defines a number of functions for manipulating these types. map is overloaded both for
List and Vect and applies a function to every element of the list or vector.

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

map : (a -> b) -> Vect n a -> Vect n b
map f [] = []
map f (x :: xs) = f x :: map f xs

For example, to double every element in a vector of integers, we can define the following:

intVec : Vect 5 Int
intVec = [1, 2, 3, 4, 5]

double : Int -> Int
double x = x * 2

Then we can use map at the Idris prompt:

map> map double intVec
[2, 4, 6, 8, 10] : Vect 5 Int

For more details of the functions available on List and Vect, look in the library, in Prelude/List.idr
and Prelude/Vect.idr respectively. Functions include filtering, appending, reversing, etc.

2.8.2 Maybe

Maybe describes an optional value. Either there is a value of the given type, or there isn’t:

data Maybe a = Just a | Nothing

Maybe is one way of giving a type to an operation that may fail. For example, indexing a List (rather than
a vector) may result in an out of bounds error:

list_lookup : Nat -> List a -> Maybe a
list_lookup _ Nil = Nothing
list_lookup Z (x :: xs) = Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

The maybe function is used to process values of type Maybe, either by applying a function to the value, if
there is one, or by providing a default value:

maybe : Lazy b -> (a -> b) -> Maybe b

Note that the type of the first argument is Lazy b rather than simply b. Since the default value might not
be used, we mark it as Lazy in case it is a large expression where evaluating it then discarding it would be
wasteful.

2.8.3 Tuples

Values can be paired with the following built-in data type:

data Pair a b = MkPair a b

12

As syntactic sugar, we can write (a, b) which, according to context, means either Pair a b or MkPair
a b. Tuples can contain an arbitrary number of values, represented as nested pairs:

fred : (String, Int)
fred = ("Fred", 42)

jim : (String, Int, String)
jim = ("Jim", 25, "Cambridge")

Dependent Pairs

Dependent pairs allow the type of the second element of a pair to depend on the value of the first element:

data Sigma : (A : Type) -> (P : A -> Type) -> Type where
Sg_intro : {P : A -> Type} ->

(a : A) -> P a -> Sigma A P

Again, there is syntactic sugar for this. (a : A ** P) is the type of a dependent pair of A and P, where
the name a can occur inside P. (a ** p) constructs a value of this type. For example, we can pair a
number with a Vect of a particular length.

vec : (n : Nat ** Vect n Int)
vec = (2 ** [3, 4])

The type checker can infer the value of the first element from the length of the vector; we can write an
underscore _ in place of values which we expect the type checker to fill in, so the above definition could also
be written as:

vec : (n : Nat ** Vect n Int)
vec = (_ ** [3, 4])

We might also prefer to omit the type of the first element of the pair, since, again, it can be inferred:

vec : (n ** Vect n Int)
vec = (_ ** [3, 4])

Without the syntactic sugar, this would be written in full as follows:

vec : Sigma Nat (\n => Vect n Int)
vec = Sg_intro 2 [3,4]

One use for dependent pairs is to return values of dependent types where the index is not necessarily known
in advance. For example, if we filter elements out of a Vect according to some predicate, we will not know
in advance what the length of the resulting vector will be:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)

If the Vect is empty, the result is easy:

filter p Nil = (_ ** [])

In the :: case, we need to inspect the result of a recursive call to filter to extract the length and the vector
from the result. We use a case expression to inspect the intermediate value:

filter p (x :: xs)
= case filter p xs of

(_ ** xs’) => if p x then (_ ** x :: xs’)
else (_ ** xs’)

13

2.9 More Expressions

let bindings

Intermediate values can be calculated using let bindings:

mirror : List a -> List a
mirror xs = let xs’ = rev xs in

xs ++ xs’

We can do simple pattern matching in let bindings too. For example, we can extract fields from a record as
follows, as well as by pattern matching at the top level:

data Person = MkPerson String Int

showPerson : Person -> String
showPerson p = let MkPerson name age = p in

name ++ " is " ++ show age ++
" years old"

List comprehensions

Idris provides comprehension notation as a convenient shorthand for building lists. The general form is:

[expression | qualifiers]

This generates the list of values produced by evaluating the expression, according to the conditions given
by the comma separated qualifiers. For example, we can build a list of Pythagorean triples as follows:

pythag : Int -> List (Int, Int, Int)
pythag n = [(x, y, z) | z <- [1..n], y <- [1..z],

x <- [1..y],
x * x + y * y == z * z]

The [a..b] notation is another shorthand which builds a list of numbers between a and b. Alternatively
[a,b..c] builds a list of numbers between a and c with the increment specified by the difference between
a and b. This works for any enumerable type.

case expressions

Another way of inspecting intermediate values of simple types, as we saw with filter on vectors, is to use
a case expression. The following function, for example, splits a string into two at a given character:

splitAt : Char -> String -> (String, String)
splitAt c x = case break (== c) x of

(x, y) => (x, strTail y)

break is a library function which breaks a string into a pair of strings at the point where the given function
returns true. We then deconstruct the pair it returns, and remove the first character of the second string.
Restrictions: The case construct is intended for simple analysis of intermediate expressions to avoid the
need to write auxiliary functions, and is also used internally to implement pattern matching let and lambda
bindings. It will only work if:

• Each branch matches a value of the same type, and returns a value of the same type.

• The type of the expression as a whole can be determined without checking the branches of the case-
expression itself. This is because case expressions are lifted to top level functions by the Idris type
checker, and type checking is type-directed.

14

2.10 Dependent Records

Records are data types which collect several values (the record’s fields) together. Idris provides syntax for
defining records and automatically generating field access and update functions. For example, we can
represent a person’s name and age in a record:

record Person : Type where
MkPerson : (name : String) ->

(age : Int) -> Person

fred : Person
fred = MkPerson "Fred" 30

Record declarations are like data declarations, except that they are introduced by the record keyword,
and can only have one constructor. The names of the binders in the constructor type (name and age) here
are the field names, which we can use to access the field values:

*record> name fred
"Fred" : String

*record> age fred
30 : Int

*record> :t name
name : Person -> String

We can also use the field names to update a record (or, more precisely, produce a new record with the given
fields updated).

*record> record { name = "Jim" } fred
MkPerson "Jim" 30 : Person

*record> record { name = "Jim", age = 20 } fred
MkPerson "Jim" 20 : Person

The syntax record { field = val, ... } generates a function which updates the given fields in a
record.

Records, and fields within records, can have dependent types. Updates are allowed to change the type of
a field, provided that the result is well-typed, and the result does not affect the type of the record as a whole.
For example:

record Class : Type where
ClassInfo : (students : Vect n Person) ->

(className : String) ->
Class

It is safe to update the students field to a vector of a different length because it will not affect the type of
the record:

addStudent : Person -> Class -> Class
addStudent p c = record { students = p :: students c } c

*record> addStudent fred (ClassInfo [] "CS")
ClassInfo [(MkPerson "Fred" 30)] "CS" : Class

Exercises

1. Write a function repeat : (n : Nat) -> a -> Vect n a which constructs a vector of n
copies of an item.

15

2. Consider the following function types:

vtake : (n : Nat) -> Vect (n + m) a -> Vect n a
vdrop : (n : Nat) -> Vect (n + m) a -> Vect m a

Implement these functions. Do the types tell you enough to suggest what they should do?

3. A matrix is a 2-dimensional vector, and could be defined as follows:

Matrix : Type -> Nat -> Nat -> Type
Matrix a n m = Vect (Vect a m) n

(a) Using repeat, above, and Vect.zipWith, write a function which transposes a matrix.
Hints: Remember to think carefully about its type first! zipWith for vectors is defined as follows:

zipWith : (a -> b -> c) ->
Vect a n -> Vect b n -> Vect c n

zipWith f [] [] = []
zipWith f (x::xs) (y::ys) = f x y :: zipWith f xs ys

(b) Write a function to multiply two matrices.

3 Type Classes

We often want to define functions which work across several different data types. For example, we would
like arithmetic operators to work on Int, Integer and Float at the very least. We would like == to work
on the majority of data types. We would like to be able to display different types in a uniform way.

To achieve this, we use a feature which has proved to be effective in Haskell, namely type classes. To define
a type class, we provide a collection of overloaded operations which describe the interface for instances of
that class. A simple example is the Show type class, which is defined in the prelude and provides an interface
for converting values to Strings:

class Show a where
show : a -> String

This generates a function of the following type (which we call a method of the Show class):

show : Show a => a -> String

We can read this as “under the constraint that a is an instance of Show, take an a as input and return a
String.” An instance of a class is defined with an instance declaration, which provides implementations
of the function for a specific type. For example, the Show instance for Nat could be defined as:

instance Show Nat where
show Z = "Z"
show (S k) = "s" ++ show k

Idris> show (S (S (S Z)))
"sssZ" : String

Like Haskell, by default only one instance of a class can be given for a type—instances may not overlap4.
Also, type classes and instances may themselves have constraints, for example:

class Eq a => Ord a where ...
instance Show a => Show (List a) where ...

4Named instances are also available, but beyond the scope of this tutorial.

16

3.1 Monads and do-notation

In general, type classes can have any number (greater than 0) of parameters, and the parameters can have
any type. If the type of the parameter is not Type, we need to give an explicit type declaration. For example:

class Monad (m : Type -> Type) where
return : a -> m a
(>>=) : m a -> (a -> m b) -> m b

The Monad class allows us to encapsulate binding and computation, and is the basis of do-notation intro-
duced in Section 2.6. Inside a do block, the following syntactic transformations are applied:

• x <- v; e becomes v »= (\x => e)

• v; e becomes v »= (_ => e)

• let x = v; e becomes let x = v in e

IO is an instance of Monad, defined using primitive functions. We can also define an instance for Maybe, as
follows:

instance Monad Maybe where
return = Just

Nothing >>= k = Nothing
(Just x) >>= k = k x

Using this we can, for example, define a function which adds two Maybe Ints, using the monad to
encapsulate the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = do x’ <- x −− E x t r a c t v a l u e f r o m x

y’ <- y −− E x t r a c t v a l u e f r o m y
return (x’ + y’) −− Add t h e m

This function will extract the values from x and y, if they are available, or return Nothing if they are not.
Managing the Nothing cases is achieved by the »= operator, hidden by the do notation.

*classes> m_add (Just 20) (Just 22)
Just 42 : Maybe Int

*classes> m_add (Just 20) Nothing
Nothing : Maybe Int

3.2 Idiom brackets

While do notation gives an alternative meaning to sequencing, idioms give an alternative meaning to
application. The notation and larger example in this section is inspired by Conor McBride and Ross Paterson’s
paper “Applicative Programming with Effects” [12].

First, let us revisit m_add above. All it is really doing is applying an operator to two values extracted
from Maybe Ints. We could abstract out the application:

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _ _ = Nothing

Using this, we can write an alternative m_add which uses this alternative notion of function application,
with explicit calls to m_app:

17

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = m_app (m_app (Just (+)) x) y

Rather than having to insert m_app everywhere there is an application, we can use idiom brackets to do the
job for us. To do this, we use the Applicative class, which captures the notion of application for a data
type:

infixl 2 <$>

class Applicative (f : Type -> Type) where
pure : a -> f a
(<$>) : f (a -> b) -> f a -> f b

Maybe is made an instance of Applicative as follows, where <$> is defined in the same way as m_app
above:

instance Applicative Maybe where
pure = Just
(Just f) <$> (Just a) = Just (f a)
_ <$> _ = Nothing

Using idiom brackets we can use this instance as follows, where a function application [| f a1 ... an
|] is translated into pure f <$> a1 <$> ... <$> an:

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = [| x + y |]

3.2.1 An error-handling interpreter

Idiom brackets are often useful when defining evaluators for embedded domain specific languages. McBride
and Paterson describe such an evaluator [12], for a small language similar to the following:

data Expr = Var String −− v a r i a b l e s
| Val Int −− v a l u e s
| Add Expr Expr −− a d d i t i o n

Evaluation will take place relative to a context mapping variables (represented as Strings) to integer values,
and can possibly fail. We define a data type Eval to wrap an evaluation function:

data Eval : Type -> Type where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

We begin by defining a function to retrieve values from the context during evaluation:

fetch : String -> Eval Int
fetch x = MkEval fetchVal where

fetchVal : List (String, Int) -> Maybe Int
fetchVal [] = Nothing
fetchVal ((v, val) :: xs)

= if (x == v) then Just val
else fetchVal xs

When defining an evaluator for the language, we will be applying functions in the context of an Eval, so it
is natural to make Eval an instance of Applicative. Before Eval can be an instance of Applicative it
is necessary to make Eval an instance of Functor:

18

instance Functor Eval where
fmap f (MkEval g) = MkEval (\e => fmap f (g e))

instance Applicative Eval where
pure x = MkEval (\e => Just x)
(<$>) (MkEval f) (MkEval g)

= MkEval (\x => app (f x) (g x)) where
app : Maybe (a -> b) -> Maybe a -> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ _ = Nothing

Evaluating an expression can now make use of the idiomatic application to handle errors:

eval : Expr -> Eval Int
eval (Var x) = fetch x
eval (Val x) = [| x |]
eval (Add x y) = [| eval x + eval y |]

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of

MkEval envFn => envFn env

By defining appropriate Monad and Applicative instances, we can overload notions of binding and
application for specific data types, which can give more flexibility when implementing EDSLs.

4 Views and the “with” rule

4.1 Dependent pattern matching

Since types can depend on values, the form of some arguments can be determined by the value of others.
For example, if we were to write down the implicit length arguments to (++), we’d see that the form of the
length argument was determined by whether the vector was empty or not:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) {n=Z} [] ys = ys
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys

If n was a successor in the [] case, or zero in the :: case, the definition would not be well typed.

4.2 The with rule — matching intermediate values

Very often, we need to match on the result of an intermediate computation. Idris provides a construct for
this, the with rule, inspired by views in EPIGRAM [11], which takes account of the fact that matching on a
value in a dependently typed language can affect what we know about the forms of other values —we can
learn the form of one value by testing another. For example, a Nat is either even or odd. If it’s even it will be
the sum of two equal Nats. Otherwise, it is the sum of two equal Nats plus one:

data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether it is even or odd and constructs
the predicate accordingly.

parity : (n:Nat) -> Parity n

19

We will return to this function in Section 5.3 to complete the definition of parity. For now, we can use it to
write a function which converts a natural number to a list of binary digits (least significant first) as follows,
using the with rule:

natToBin : Nat -> List Bool
natToBin Z = Nil
natToBin k with (parity k)

natToBin (j + j) | even = False :: natToBin j
natToBin (S (j + j)) | odd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result of parity k depends on k. So,
as well as the patterns for the result of the intermediate computation (even and odd) right of the |, we also
write how the results affect the other patterns left of the |. Note that there is a function in the patterns (+) and
repeated occurrences of j — this is allowed because another argument has determined the form of these
patterns.

4.3 Membership Predicates

We have already seen (in Section 2.4.5) the Elem x xs type, an element of which is a proof that x is an
element of the list xs:

using (x:a, y:a, xs:List a)
data Elem : a -> List a -> Type where

Here : Elem x (x :: xs)
There : Elem x xs -> Elem x (y :: xs)

We have also seen how to construct proofs of this at compile time. However, data is not often available at
compile-time — proofs of list membership may arise due to user data, which may be invalid and therefore
needs to be checked. What we need, therefore, is a function which constructs such a predicate, taking into
account possible failure. In order to do so, we need to be able to construct equality proofs.

4.3.1 Propositional Equality

Idris allows propositional equalities to be declared, allowing theorems about programs to be stated and
proved. Equality is built in, but conceptually has the following definition:

data (=) : a -> b -> Type where
Refl : x = x

Equalities can be proposed between any values of any types, but the only way to construct a proof of equality
is if values actually are equal. For example:

fiveIsFive : 5 = 5
fiveIsFive = Refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = Refl

4.3.2 Decidable Equality

The library provides a Dec type, with two constructors, Yes and No. Dec represents decidable propositions,
either containing a proof that a type is inhabited, or a proof that it is not. Here, _|_ represents the empty
type, which we will discuss further in Section 5.1:

20

data Dec : Type -> Type where
Yes : a -> Dec a
No : (a -> _|_) -> Dec a

We can think of this as an informative version of Bool — not only do we know the truth of a value, we
also have an explanation for it. Using this, we can write a type class capturing types which can not only be
compared for equality, but which also provide a proof of that equality:

class DecEq t where
decEq : (x1 : t) -> (x2 : t) -> Dec (x1 = x2)

Using DecEq, we can construct equality proofs where necessary at run-time. There are instances defined in
the prelude for primitive types, as well as many of the types defined in the prelude such as Bool, Maybe a,
List a, etc.

Now that we can construct equality proofs dynamically, we can implement the following function, which
dynamically constructs a proof that x is contained in a list xs, if possible:

isElem : DecEq a =>
(x : a) -> (xs : List a) -> Maybe (Elem x xs)

isElem x [] = Nothing
isElem x (y :: xs) with (decEq x y)

isElem x (x :: xs) | (Yes Refl) = return Here
isElem x (y :: xs) | (No f) = do p <- isElem x xs

return (There p)

This function works first by checking whether the list is empty. If so, the value cannot be contained in the
list, so it returns Nothing. Otherwise, it uses decEq to try to construct a proof that the element is at the
head of the list. If it succeeds, dependent pattern matching on that proof means that x must be at the head of
the list. Otherwise, it searches in the tail of the list.

Exercises

1. The following view describes a pair of numbers as a difference:

data Cmp : Nat -> Nat -> Type where
cmpLT : (y : _) -> Cmp x (x + S y)
cmpEQ : Cmp x x
cmpGT : (x : _) -> Cmp (y + S x) y

(a) Write the function cmp : (n : Nat) -> (m : Nat) -> Cmp n m which proves that
every pair of numbers can be expressed in this way.

(b) Assume you have a vector xs : Vect a n, where n is unknown. How could you use cmp to
construct a suitable input to vtake and vdrop from xs?

2. You are given the following definition of binary trees:

data Tree a = Leaf | Node (Tree a) a (Tree a)

Define a membership predicate ElemTree and a function elemInTree which calculates whether a
value is in the tree, and a corresponding proof.

data ElemTree : a -> Tree a -> Type where ...

elemInTree : DecEq a =>
(x : a) -> (t : Tree a) -> Maybe (ElemTree x t)

21

5 Theorem Proving

As we have seen in Section 4.3.1, Idris supports propositional equality:

data (=) : a -> b -> Type where
Refl : x = x

We have used this to build membership proofs of Lists, but it is more generally applicable. In particular, we
can reason about equality. The library function replace uses an equality proof to transform a predicate on
one value into a predicate on another, equal, value:

replace : {P : a -> Type} -> x = y -> P x -> P y
replace Refl prf = prf

The library function cong is a function defined in the library which states that equality respects function
application:

cong : {f : t -> u} -> a = b -> f a = f b
cong Refl = Refl

Using the equality type, replace, cong and the properties of the type system, we can write proofs of
theorems such as the following, which states that addition of natural numbers is commutative:

plus_commutes : (n, m : Nat) -> plus n m = plus m n

In this section, we will see how to develop such proofs.

5.1 The Empty Type

There is an empty type, ⊥, which has no constructors. It is therefore impossible to construct an element
of the empty type, at least without using a partially defined or general recursive function (which will be
explained in more detail in Section 5.4). We can therefore use the empty type to prove that something is
impossible, for example zero is never equal to a successor:

disjoint : (n : Nat) -> Z = S n -> _|_
disjoint n p = replace {P = disjointTy} p ()

where
disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = _|_

Here we use replace to transform a value of a type which can exist, the empty tuple, to a value of a type
which can’t, by using a proof of something which can’t exist. Once we have an element of the empty type,
we can prove anything. FalseElim is defined in the library, to assist with proofs by contradiction.

FalseElim : _|_ -> a

5.2 Simple Theorems

When type checking dependent types, the type itself gets normalised. So imagine we want to prove the
following theorem about the reduction behaviour of plus:

plusReduces : (n:Nat) -> plus Z n = n

We’ve written down the statement of the theorem as a type, in just the same way as we would write the
type of a program. In fact there is no real distinction between proofs and programs. A proof, as far as we
are concerned here, is merely a program with a precise enough type to guarantee a particular property of
interest.

22

We won’t go into details here, but the Curry-Howard correspondence [10] explains this relationship. The
proof itself is trivial, because plus Z n normalises to n by the definition of plus:

plusReduces n = Refl

It is slightly harder if we try the arguments the other way, because plus is defined by recursion on its first
argument. The proof also works by recursion on the first argument to plus, namely n.

plusReducesZ : (n:Nat) -> n = plus n Z
plusReducesZ Z = Refl
plusReducesZ (S k) = cong (plusReducesZ k)

We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) ->
S (plus n m) = plus n (S m)

plusReducesS Z m = Refl
plusReducesS (S k) m = cong (plusReducesS k m)

Detailed discussion of how to construct proofs is beyond the scope of this tutorial. However, a tutorial on
theorem proving is available in the online Idris documentation5.

5.3 Theorem Proving in Action: Parity

Sometimes when programming with dependent types, the type required by the type checker and the type
of the program we have written will be different (in that they do not have the same normal form), but
nevertheless provably equal. For example, recall the parity function:

data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))

parity : (n:Nat) -> Parity n

We would like to implement this as follows:

parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | even = even {n=S j}
parity (S (S (S (j + j)))) | odd = odd {n=S j}

This simply states that zero is even, one is odd, and recursively, the parity of k+2 is the same as the parity of
k. Explicitly marking the value of n in even and odd is necessary to help type inference. Unfortunately, the
type checker rejects this:

views.idr:12:Can’t unify Parity (plus (S j) (S j)) with
Parity (S (S (plus j j)))

The type checker is telling us that (j+1)+(j+1) and 2+j+j do not normalise to the same value. This is
because plus is defined by recursion on its first argument, and in the second value, there is a successor
symbol on the second argument, so this will not help with reduction. These values are obviously equal—how
can we rewrite the program to fix this problem?

The solution is to rewrite the type according to an equality proof. We can achieve this using the replace
function with the following theorem from the prelude:

5http://docs.idris-lang.org/en/latest/proofs/

23

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)

Using replace directly can be inconvenient because it requires a predicate which cannot by inferred by
the usual inference mechanism. So instead, Idris provides the rewrite...in construct, which rewrites a
type according to an equality proof. We can implement parity as follows:

parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)
parity (S (S (j + j))) | even

= rewrite plusSuccRightSucc j j in even {n=S j}
parity (S (S (S (j + j)))) | odd

= rewrite plusSuccRightSucc j j in odd {n=S j}

5.4 Totality Checking

If we really want to trust our proofs, it is important that they are defined by total functions. A total function
is a function which is defined for all possible inputs and is guaranteed to terminate. Otherwise we could
construct an element of the empty type, from which we could prove anything:

−− m a k i n g u s e o f ’ hd ’ b e i n g p a r t i a l l y d e f i n e d
empty1 : _|_
empty1 = hd [] where

hd : List a -> a
hd (x :: xs) = x

−− n o t t e r m i n a t i n g
empty2 : _|_
empty2 = empty2

Internally, Idris checks every definition for totality, and we can check at the prompt with the :total
command. We see that neither of the above definitions is total:

*theorems> :total empty1
possibly not total due to: empty1, hd

not total as there are missing cases

*theorems> :total empty2
possibly not total due to recursive path empty2

Note the use of the word “possibly” — a totality check can, of course, never be certain due to the undecidab-
ility of the halting problem. The check is, therefore, conservative. It is also possible (and indeed advisable, in
the case of proofs) to mark functions as total so that it will be a compile time error for the totality check to
fail:

total empty2 : _|_
empty2 = empty2

Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to
recursive path empty2

Reassuringly, our proof in Section 5.1 that the zero and successor constructors are disjoint is total:

24

*theorems> :total disjoint
Total

The totality check is, necessarily, conservative. To be recorded as total, a function f must:

• Cover all possible inputs

• Be well-founded — i.e. by the time a sequence of (possibly mutually) recursive calls reaches f again, it
must be possible to show that one of its arguments has decreased.

• Not use any data types which are not strictly positive.

• Not call any non-total functions.

5.4.1 Directives and Compiler Flags for Totality

By default, Idris allows all definitions, whether total or not. However, it is desirable for functions to be total
as far as possible, as this provides a guarantee that they provide a result for all possible inputs, in finite time.
It is possible to make total functions a requirement, either:

• By using the -total compiler flag.

• By adding a %default total directive to a source file. All definitions after this will be required to
be total, unless explicitly flagged as partial.

All functions after a %default total declaration are required to be total. Correspondingly, after a
%default partial declaration, the requirement is relaxed.

6 EDSL Example 1: The Well-Typed Interpreter

In this section, we will use the features we have seen so far to write a larger example, an interpreter for a
simple functional programming language, implemented as an Embedded Domain Specific Language. The
object language (i.e., the language we are implementing) has variables, function application, binary operators
and an if...then...else construct. We will use the type system from the host language (i.e. Idris) to
ensure that any programs which can be represented are well-typed.

First, let us define the types in the language. We have integers, booleans, and functions, represented by
Ty:

data Ty = TyInt | TyBool | TyFun Ty Ty

We can write a function to translate these representations to a concrete Idris type — remember that types are
first class, so can be calculated just like any other value:

interpTy : Ty -> Type
interpTy TyInt = Int
interpTy TyBool = Bool
interpTy (TyFun A T) = interpTy A -> interpTy T

We will define a representation of our language in such a way that only well-typed programs can be
represented. We index the representations of expressions by their type and the types of local variables (the
context), which we’ll be using regularly as an implicit argument, so we define everything in a using block:

using (G:Vect n Ty)

The full representation of expressions is given in Figure 3. They are indexed by the types of the local variables,
and the type of the expression itself:

25

data Expr : Vect n Ty -> Ty -> Type

Since expressions are indexed by their type, we can read the typing rules of the language from the definitions
of the constructors. Let us look at each constructor in turn.

Listing 3: Expression representation
data Expr : Vect n Ty -> Ty -> Type where

Var : HasType i G t -> Expr G t
Val : (x : Int) -> Expr G TyInt
Lam : Expr (a :: G) t -> Expr G (TyFun a t)
App : Expr G (TyFun a t) -> Expr G a -> Expr G t
Op : (interpTy a -> interpTy b -> interpTy c) ->

Expr G a -> Expr G b -> Expr G c
If : Expr G TyBool ->

Lazy (Expr G a) -> Lazy (Expr G a) -> Expr G a

We use a nameless representation for variables — they are de Bruijn indexed. Variables are represented by a
proof of their membership in the context, HasType i G T, which is a proof that variable i in context G has
type T. This is defined as follows:

data HasType : Fin n -> Vect n Ty -> Ty -> Type where
stop : HasType FZ (t :: G) t
pop : HasType k G t -> HasType (FS k) (u :: G) t

We can treat stop as a proof that the most recently defined variable is well-typed, and pop n as a proof that, if
the nth most recently defined variable is well-typed, so is the n+1th. In practice, this means we use stop to
refer to the most recently defined variable, pop stop to refer to the next, and so on, via the Var constructor:

Var : HasType i G t -> Expr G t

So, in an expression \x. \y. x y, the variable x would have a de Bruijn index of 1, represented as
pop stop, and y 0, represented as stop. We find these by counting the number of lambdas between the
definition and the use.
A value carries a concrete representation of an integer:

Val : (x : Int) -> Expr G TyInt

A lambda creates a function. In the scope of a function of type a -> t, there is a new local variable of type
a, which is expressed by the context index:

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

Function application produces a value of type t given a function from a to t and a value of type a:

App : Expr G (TyFun a t) -> Expr G a -> Expr G t

Given these constructors, the expression \x. \y. x y above would be represented as Lam (Lam (App
(Var (pop stop)) (Var stop))).

We also allow arbitrary binary operators, where the type of the operator informs what the types of the
arguments must be:

Op : (interpTy a -> interpTy b -> interpTy c) ->
Expr G a -> Expr G b -> Expr G c

Finally, If expressions make a choice given a boolean. Each branch must have the same type, and we will
evaluate the branches lazily so that only the branch which is taken need be evaluated:

If : Expr G TyBool ->
Lazy (Expr G a) -> Lazy (Expr G a) -> Expr G a

26

Listing 4: Intepreter definition
interp : Env G -> Expr G t -> interpTy t
interp env (Var i) = lookup i env
interp env (Val x) = x
interp env (Lam body) = \x => interp (x :: env) body
interp env (App f s) = (interp env f) (interp env s)
interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x

then interp env t
else interp env e

When we evaluate an Expr, we’ll need to know the values in scope, as well as their types. Env is an
environment, indexed over the types in scope. Since an environment is just another form of list, albeit with a
strongly specified connection to the vector of local variable types, we use the usual :: and Nil constructors
so that we can use the usual list syntax. Given a proof that a variable is defined in the context, we can then
produce a value from the environment:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup stop (x :: xs) = x
lookup (pop k) (x :: xs) = lookup k xs

Given this, an interpreter (Listing 4) is a function which translates an Expr into a concrete Idris value with
respect to a specific environment:

interp : Env G -> Expr G t -> interpTy t

To translate a variable, we simply look it up in the environment:

interp env (Var i) = lookup i env

To translate a value, we just return the concrete representation of the value:

interp env (Val x) = x

Lambdas are more interesting. In this case, we construct a function which interprets the scope of the lambda
with a new value in the environment. So, a function in the object language is translated to an Idris function:

interp env (Lam body) = \x => interp (x :: env) body

For an application, we interpret the function and its argument and apply it directly. We know that interpreting
f must produce a function, because of its type:

interp env (App f s) = (interp env f) (interp env s)

Operators and If expressions are, again, direct translations into the equivalent Idris constructs. For operators,
we apply the function to its operands directly, and for If, we apply the Idris if...then...else construct
directly.

interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x

then interp env t
else interp env e

27

We can make some simple test functions. Firstly, adding two inputs \x. \y. y + x is written as follows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var stop) (Var (pop stop))))

More interestingly, we can write a factorial function (i.e. \x. if (x == 0) then 1 else (fact
(x-1) * x)) which is written as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1)
(Op (*)

(App fact (Op (-) (Var stop) (Val 1)))
(Var stop)))

To finish, we write a main program which interprets the factorial function on user input:

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (interp [] fact (cast x))

Here, cast is an overloaded function which converts a value from one type to another if possible. Here, it
converts a string to an integer, giving 0 if the input is invalid. An example run of this program at the Idris
interactive environment is shown in Listing 5.

Aside: cast

The prelude defines a type class Cast which allows conversion between types:

class Cast from to where
cast : from -> to

It is a multi-parameter type class, defining the source type and object type of the cast. It must be possible
for the type checker to infer both parameters at the point where the cast is applied. There are casts defined
between all of the primitive types, as far as they make sense.

Listing 5: Running the well-typed interpreter
$ idris interp.idr

____ __ _
/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.18

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Type checking ./interp.idr

*interp> :exec
Enter a number: 6
720

*interp>

7 Interactive Editing

By now, we have seen several examples of how Idris’ dependent type system can give extra confidence in a
function’s correctness by giving a more precise description of its intended behaviour in its type. We have also

28

seen an example of how the type system can help with EDSL development by allowing a programmer to
describe the type system of an object language. However, precise types give us more than verification of
programs — we can also exploit types to help write programs which are correct by construction.

The Idris REPL provides several commands for inspecting and modifying parts of programs, based on
their types, such as case splitting on a pattern variable, inspecting the type of a metavariable, and even a
basic proof search mechanism. In this section, we explain how these features can be exploited by a text editor,
and specifically how to do so in Vim6. An interactive mode for Emacs7 is also available.

7.1 Editing at the REPL

The REPL provides a number of commands, which we will describe shortly, which generate new program
fragments based on the currently loaded module. These take the general form

:command [line number] [name]

That is, each command acts on a specific source line, at a specific name, and outputs a new program fragment.
Each command has an alternative form, which updates the source file in-place:

:command! [line number] [name]

When the REPL is loaded, it also starts a background process which accepts and responds to REPL commands,
using idris --client. For example, if we have a REPL running elsewhere, we can execute commands
such as:

$ idris --client ’:t plus’
Prelude.Nat.plus : Nat -> Nat -> Nat
$ idris --client ’2+2’
4 : Integer

A text editor can take advantage of this, along with the editing commands, in order to provide interactive
editing support.

7.2 Editing Commands

7.2.1 :addclause

The :addclause n f command (abbreviated :ac n f) creates a template definition for the function
named f declared on line n.

For example, if the code beginning on line 94 contains. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

. . . then :ac 94 vzipWith will give:

vzipWith f xs ys = ?vzipWith_rhs

The names are chosen according to hints which may be given by a programmer, and then made unique by
the machine by adding a digit if necessary. Hints can be given as follows:

%name Vect xs, ys, zs, ws

This declares that any names generated for types in the Vect family should be chosen in the order xs, ys,
zs, ws.

6https://github.com/idris-hackers/idris-vim
7https://github.com/idris-hackers/idris-emacs

29

7.2.2 :casesplit

The :casesplit n x command, abbreviated :cs n x, splits the pattern variable x on line n into the
various pattern forms it may take, removing any cases which are impossible due to unification errors. For
example, if the code beginning on line 94 is. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f xs ys = ?vzipWith_rhs

. . . then :cs 96 xs will give:

vzipWith f [] ys = ?vzipWith_rhs_1
vzipWith f (x :: xs) ys = ?vzipWith_rhs_2

That is, the pattern variable xs has been split into the two possible cases [] and x :: xs. Again, the
names are chosen according to the same heuristic. If we update the file (using :cs!) then case split on ys
on the same line, we get:

vzipWith f [] [] = ?vzipWith_rhs_3

That is, the pattern variable ys has been split into one case [], Idris having noticed that the other possible
case y :: ys would lead to a unification error.

7.2.3 :addmissing

The :addmissing n f command, abbreviated :am n f, adds the clauses which are required to make the
function f on line n cover all inputs. For example, if the code beginning on line 94 is. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1

. . . then :am 96 vzipWith gives:

vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

That is, it notices that there are no cases for non-empty vectors, generates the required clauses, and eliminates
the clauses which would lead to unification errors.

7.2.4 :proofsearch

The :proofsearch n f command, abbreviated :ps n f, attempts to find a value for the metavariable f
on line n by proof search, trying values of local variables, recursive calls and constructors of the required
family. Optionally, it can take a list of hints, which are functions it can try applying to solve the metavariable.
For example, if the code beginning on line 94 is. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1
vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

. . . then :ps 96 vzipWith_rhs_1 will give

[]

This works because it is searching for a Vect of length 0, of which the empty vector is the only possibiliy. Sim-
ilarly, and perhaps surprisingly, there is only one possibility if we try to solve :ps 97 vzipWith_rhs_2:

f x y :: (vzipWith f xs ys)

30

This works because vzipWith has a precise enough type: The resulting vector has to be non-empty (::);
the first element must have type c and the only way to get this is to apply f to x and y; finally, the tail of the
vector can only be built recursively.

7.2.5 :makewith

The :makewith n f command, abbreviated :mw n f, adds a with to a pattern clause. For example, recall
parity. If line 10 is. . .

parity (S k) = ?parity_rhs

. . . then :mw 10 parity will give:

parity (S k) with (_)
parity (S k) | with_pat = ?parity_rhs

If we then fill in the placeholder _ with parity k and case split on with_pat using :cs 11 with_pat
we get the following patterns:

parity (S (plus n n)) | even = ?parity_rhs_1
parity (S (S (plus n n))) | odd = ?parity_rhs_2

Note that case splitting has normalised the patterns here (giving plus rather than +). In any case, we see
that using interactive editing significantly simplifies the implementation of dependent pattern matching by
showing a programmer exactly what the valid patterns are.

7.3 Interactive Editing in Vim

The editor mode for Vim provides syntax highlighting, indentation and interactive editing support using the
commands described above. Interactive editing is achieved using the following editor commands, each of
which update the buffer directly:

• \d adds a template definition for the name declared on the current line (using :addclause.)

• \c case splits the variable at the cursor (using :casesplit.)

• \m adds the missing cases for the name at the cursor (using :addmissing.)

• \w adds a with clause (using :makewith.)

• \o invokes a proof search to solve the metavariable under the cursor (using :proofsearch.)

• \p invokes a proof search with additional hints to solve the metavariable under the cursor (using
:proofsearch.)

There are also commands to invoke the type checker and evaluator:

• \t displays the type of the (globally visible) name under the cursor. In the case of a metavariable, this
displays the context and the expected type.

• \e prompts for an expression to evaluate.

• \r reloads and type checks the buffer.

Corresponding commands are also available in the Emacs mode. Support for other editors can be added in a
relatively straighforward manner by using idris --client.

31

Exercises

Re-implement the following functions using interactive editing mode as far as possible:

append : Vect n a -> Vect m a -> Vect (n + m) a
vzipWith : (a -> b -> c) ->

Vect n a -> Vect n b -> Vect n b
isElem : DecEq a =>

(x : a) -> (xs : List a) -> Maybe (Elem x xs)
cmp : (n : Nat) -> (m : Nat) -> Cmp n m

When does :proofsearch succeed and when does it fail? How often does it provide the definition you
would expect?

8 Support for EDSL Implementation

Idris supports the implementation of EDSLs in several ways. For example, as we have already seen, it is
possible to extend do notation and idiom brackets. Another important way is to allow extension of the core
syntax. In this section I describe further support for EDSL development. I introduce syntax rules and dsl
notation [8], and describe how to make programs more concise with implicit conversions.

8.1 syntax rules

We have seen if...then...else expressions, but these are not built in — instead, we define a function in
the prelude, using lazy types to ensure that the branches are only evaluated if required. . .

boolCase : (x:Bool) -> Lazy a -> Lazy a -> a
boolCase True t e = t
boolCase False t e = e

. . . and extend the core syntax with a syntax declaration:

syntax if [test] then [t] else [e] = boolCase test t e

The left hand side of a syntax declaration describes the syntax rule, and the right hand side describes its
expansion. The syntax rule itself consists of:

• Keywords — here, if, then and else, which must be valid identifiers.

• Non-terminals — included in square brackets, [test], [t] and [e] here, which stand for arbitrary
expressions. To avoid parsing ambiguities, these expressions cannot use syntax extensions at the top
level (though they can be used in parentheses.)

• Names — included in braces, which stand for names which may be bound on the right hand side.

• Symbols — included in quotations marks, e.g. ":=". This can also be used to include reserved words
in syntax rules, such as "let" or "in".

The limitations on the form of a syntax rule are that it must include at least one symbol or keyword, and
there must be no repeated variables standing for non-terminals. Any expression can be used, but if there are
two non-terminals in a row in a rule, only simple expressions may be used (that is, variables, constants, or
bracketed expressions). Rules can use previously defined rules, but may not be recursive. The following
syntax extensions would therefore be valid:

syntax [var] ":=" [val] = Assign var val
syntax [test] "?" [t] ":" [e] = if test then t else e
syntax select [x] from [t] where [w] = SelectWhere x t w
syntax select [x] from [t] = Select x t

32

Syntax rules may also be used to introduce alternative binding forms. For example, a for loop binds a
variable on each iteration:

forLoop : List a -> (a -> IO ()) -> IO ()
forLoop [] f = return ()
forLoop (x :: xs) f = do f x; forLoop xs f

syntax for {x} "in" [xs] ":" [body] = forLoop xs (\x => body)

main : IO ()
main = do for x in [1..10]:

putStrLn ("Number " ++ show x)
putStrLn "Done!"

Note that we have used the {x} form to state that x represents a bound variable, substituted on the right
hand side. We have also put "in" in quotation marks since it is already a reserved word.

8.2 dsl notation

The well-typed interpreter in Section 6 is a simple example of a common programming pattern with
dependent types, namely: describe an object language and its type system with dependent types to guarantee
that only well-typed programs can be represented, then program using that representation. Using this
approach we can, for example, write programs for serialising binary data [2] or running concurrent processes
safely [6].

Unfortunately, the form of object language programs makes it rather hard to program this way in practice.
Recall the factorial program in Expr for example:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1)
(Op (*)

(app fact (Op (-) (Var stop) (Val 1)))
(Var stop)))

It is hard to expect EDSL users to program in this style! Therefore, Idris provides syntax overloading [8] to
make it easier to program in such object languages:

dsl expr
lambda = Lam
variable = Var
index_first = stop
index_next = pop

A dsl block describes how each syntactic construct is represented in an object language. Here, in the
expr language, any Idris lambda is translated to a Lam constructor; any variable is translated to the Var
constructor, using pop and stop to construct the de Bruijn index (i.e., to count how many bindings since the
variable itself was bound). It is also possible to overload let in this way. We can now write fact as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1)
(Op (*) (app fact (Op (-) x (Val 1))) x))

In this new version, expr declares that the next expression will be overloaded. We can take this further,
using idiom brackets, by declaring:

33

(<$>) : (f : Expr G (TyFun a t)) -> Expr G a -> Expr G t
(<$>) = App

pure : Expr G a -> Expr G a
pure = id

Note that there is no need for these to be part of an instance of Applicative, since idiom bracket notation
translates directly to the names <$> and pure, and ad-hoc type-directed overloading is allowed. We can
now say:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1)
(Op (*) [| fact (Op (-) x (Val 1)) |] x))

With some more ad-hoc overloading and type class instances, and a new syntax rule, we can even go as far
as:

syntax IF [x] THEN [t] ELSE [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0

THEN 1
ELSE [| fact (x - 1) |] * x)

8.3 Auto implicit arguments

We have already seen implicit arguments, which allows arguments to be omitted when they can be inferred
by the type checker, e.g.

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

In other situations, it may be possible to infer arguments not by type checking but by searching the context
for an appropriate value, or constructing a proof. For example, the following definition of head which
requires a proof that the list is non-empty:

isCons : List a -> Bool
isCons [] = False
isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = x

If the list is statically known to be non-empty, either because its value is known or because a proof already
exists in the context, the proof can be constructed automatically. Auto implicit arguments allow this to
happen silently. We define head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: xs) = x

The auto annotation on the implicit argument means that Idris will attempt to fill in the implicit argument
by searching for a value of the appropriate type. It will try the following, in order:

• Local variables, i.e. names bound in pattern matches or let bindings, with exactly the right type.

• The constructors of the required type. If they have arguments, it will search recursively up to a
maximum depth of 100.

34

• Local variables with function types, searching recursively for the arguments.

• Any function with the appropriate return type which is marked with a %hint annotation.

In the case that a proof is not found, it can be provided explicitly as normal:

head xs {p = ?headProof}

8.4 Implicit conversions

Idris supports the creation of implicit conversions, which allow automatic conversion of values from one type
to another when required to make a term type correct. This is intended to increase convenience and reduce
verbosity. A contrived but simple example is the following:

implicit intString : Int -> String
intString = show

test : Int -> String
test x = "Number " ++ x

In general, we cannot append an Int to a String, but the implicit conversion function intString can
convert x to a String, so the definition of test is type correct. An implicit conversion is implemented just
like any other function, but given the implicit modifier, and restricted to one explicit argument.

Only one implicit conversion will be applied at a time. That is, implicit conversions cannot be chained.
Implicit conversions of simple types, as above, are however discouraged! More commonly, an implicit
conversion would be used to reduce verbosity in an embedded domain specific language, or to hide details
of a proof. We will see an example of this in the next section.

Exercises

1. Add a let binding construct to the Expr language from Section 6, and extend the interp function
and dsl notation to handle it.

2. Define the following function, which updates the value in a variable:

update : HasType i G t -> Env G -> interpTy t -> Env G

3. Using update and let, you can extend Expr with imperative features. Add the following constructs:

(a) Sequencing actions

(b) Input and output operations

(c) for loops

Note that you will need to change the type of interp so that it supports IO and returns an updated
environment:

interp : Env G -> Imp G t -> IO (interpTy t, Env G)

For each of these features, how could you use syntax macros, dsl notation, or any other feature to
improve the readability of programs in your language?

35

9 EDSL Example 2: A Resource Aware Interpreter

In a typical file management API, such as that in Haskell, we might find the following typed operations:

open : String -> Purpose -> IO File
read : File -> IO String
close : File -> IO ()

Unfortunately, it is easy to construct programs which are well-typed, but nevertheless fail at run-time, for
example, if we read from a file opened for writing:

fprog filename = do h <- open filename Writing
content <- read h
close h

If we make the types more precise, parameterising open files by purpose, fprog is no longer well-typed,
and will therefore be rejected at compile-time.

data Purpose = Reading | Writing

open : String -> (p:Purpose) -> IO (File p)
read : File Reading -> IO String
close : File p -> IO ()

However, there is still a problem. The following program is well-typed, but fails at run-time — although the
file has been closed, the handle h is still in scope:

fprog filename = do h <- open filename Reading
content <- read h
close h
read h

Furthermore, we did not check whether the handle h was created successfully. Resource management
problems such as this are common in systems programming — we need to deal with files, memory, network
handles, etc, ensuring that operations are executed only when valid and errors are handled appropriately.

9.1 Resource Correctness as an EDSL

To tackle this problem, we can implement an EDSL which tracks the state of resources at any point during
program execution in its type, and ensures that any resource protocol is correctly executed. We begin by
categorising resource operations into creation, update and usage operations, by lifting them from IO. We
illustrate this using Creator; Updater and Reader can be defined similarly.

data Creator a = MkCreator (IO a)

ioc : IO a -> Creator a
ioc = MkCreator

The MkCreator constructor is left abstract, so that a programmer can lift an operation into Creator using
ioc, but cannot run it directly. IO operations can be converted into resource operations, tagging them
appropriately:

open : String -> (p:Purpose)
-> Creator (Either () (File p))

close : File p -> Updater ()
read : File Reading -> Reader String

36

Listing 6: Resource constructs
data Res : Vect n Ty -> Vect n Ty -> Ty -> Type where

Let : Creator (interpTy a) ->
Res (a :: G) (Val () :: G’) (R t) ->
Res G G’ (R t)

Update : (a -> Updater b) ->
(p : HasType i G (Val a)) ->
Res G (update G p (Val b)) (R ())

Use : (a -> Reader b) -> HasType i G (Val a) ->
Res G G (R b)

...

Listing 7: Control constructs
data Res : Vect Ty n -> Vect Ty n -> Ty -> Type where

...
Lift : IO a -> Res G G (R a)
Check : (p:HasType i G

(Choice (interpTy a) (interpTy b))) ->
Res (update G p a) (update G p c) t ->
Res (update G p b) (update G p c) t ->
Res G (update G p c) t

While : Res G G (R Bool) ->
Res G G (R ()) -> Res G G (R ())

Return : a -> Res G G (R a)
(>>=) : Res G G’ (R a) ->

(a -> Res G’ G’’ (R t)) ->
Res G G’’ (R t)

Here: open creates a resource, which may be either an error (represented by ()) or a file handle that has
been opened for the appropriate purpose; close updates a resource from a File p to a () (i.e., it makes
the resource unavailable); and read accesses a resource (i.e., it reads from it, and the resource remains
available). They are implemented using the relevant (unsafe) IO functions from the Idris library. Resource
operations are executed via a resource management EDSL, Res, with resource constructs (Listing 6), and
control constructs (Listing 7).

As we did with Expr in Section 6, we index Res over the variables in scope (which represent resources),
and the type of the expression. This means that firstly we can refer to resources by de Bruijn indices, and
secondly we can express precisely how operations may be combined. Unlike Expr, however, we allow types
of variables to be updated. Therefore, we index over the input set of resource states, and the output set:

data Res : Vect Ty n -> Vect Ty n -> Ty -> Type

We can read Res G G’ T as, “an expression of type T, with input resource states G and output resource
states G’”. Expression types can be resources, values, or a choice type:

data Ty = R Type | Val Type | Choice Type Type

The distinction between resource types, R a, and value types, Val a, is that resource types arise from IO
operations. A choice type corresponds to Either — we use Either rather than Maybe as this leaves open
the possibility of returning informative error codes:

37

interpTy : Ty -> Type
interpTy (R t) = IO t
interpTy (Val t) = t
interpTy (Choice x y) = Either x y

As with the interpreter in Section 6, we represent variables by proofs of context membership:

data HasType : Fin n -> Vect n Ty -> Ty -> Type where
stop : HasType FZ (t :: G) t
pop : HasType k G t -> HasType (FS k) (u :: G) t

As well as a lookup function for retrieving values in an environment corresponding to a context, we also
implement an update function:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType G i a -> Env G -> interpTy a
lookup stop (x :: xs) = x
lookup (pop k) (x :: xs) = lookup k xs

update : (G : Vect n Ty) ->
HasType G i b -> Ty -> Vect n Ty

update (x :: xs) stop y = y :: xs
update (x :: xs) (pop k) y = x :: update xs k y

The type of the Let construct explicitly shows that, in the scope of the Let expression, a new resource of
type a is added to the set, having been made by a Creator operation. Furthermore, by the end of the scope,
this resource must have been consumed (i.e. its type must have been updated to Val ()):

Let : Creator (interpTy a) ->
Res (a :: G) (Val () :: G’) (R t) ->
Res G G’ (R t)

The Update construct applies an Updater operation, changing the type of a resource in the context. Here,
using HasType to represent resource variables allows us to write the required type of the update operation
simply as a -> Updater b, and put the operation first, rather than the variable.

Update : (a -> Updater b) ->
(p : HasType G i (Val a)) ->
Res G (update G p (Val b)) (R ())

The Use construct simply executes an operation without updating the context, provided that the operation
is well-typed:

Use : (a -> Reader b) -> HasType G i (Val a) ->
Res G G (R b)

Finally, we provide a small set of control structures: Check, a branching construct that guarantees that
resources are correctly defined in each branch; While, a loop construct that guarantees that there are no
state changes during the loop; Lift, a lifting operator for IO functions, Return to inject pure values into a
Res program, and (»=) to support do-notation using ad-hoc name overloading. Note that we cannot make
Res an instance of the Monad type class to support do-notation, since the type of »= here captures updates
in the resource set.

We use dsl-notation to overload the Idris syntax, in particular providing a let-binding to bind a
resource and give it a human-readable name:

38

dsl res
variable = id
let = Let
index_first = stop
index_next = pop

To further reduce notational overhead, we can make Lifting an IO operation implicit, using an implicit
conversion as described in Section 8.4:

implicit ioLift : IO a -> Res G G a
ioLift = Lift

The interpreter for Res is written in continuation-passing style, where each operation passes on a result and
an updated environment (containing resources):

interp : Env G -> Res G G’ t ->
(Env G’ -> interpTy t -> IO u) -> IO u

syntax RES [x] = {G:Vect n Ty} -> Res G G (R x)
syntax run [prog] = interp [] prog (\env, res => res)

The syntax rules provides convenient notations for declaring the type of a resource aware program, and for
running a program in any context. For reference, the full interpreter is presented in Listing 8.

9.2 Example: File Management

We can use Res to implement a safe file-management protocol, where each file must be opened before use,
opening a file must be checked, and files must be closed on exit. We define the following operations for
opening, closing, reading a line8, and testing for the end of file.

open : String -> (p:Purpose)
-> Creator (Either () (File p))

close : File p -> Updater ()
read : File Reading -> Reader String
eof : File Reading -> Reader Bool

Since these operations are now managed by the Res EDSL rather than directly as IO operations, we should
ensure that the programmer cannot use the original IO operations. Names can be hidden using the %hide
directive as follows:

%hide openFile
%hide closeFile
...

Returning to our simple example from the beginning of this Section, we now write the file-reading program
as follows:

fprog : String -> RES String
fprog filename =

res do let h = open filename Reading
Check h

putStrLn "File error"
do content <- Use read h

Update close h

8Reading a line may fail, but for the purposes of this example, we consider this harmless and return an empty string.

39

Listing 8: Resource EDSL Interpreter
interp : Env G -> Res G G’ t ->

(Env G’ -> interpTy t -> IO u) -> IO u
interp env (Let val scope) k =

do x <- getCreator val
interp (x :: env) scope

(\env’, scope’ => k (envTail env’) scope’)
interp env (Update method x) k =

do x’ <- getUpdater (method (envLookup x env))
k (envUpdateVal x x’ env) (return ())

interp env (Use method x) k =
do x’ <- getReader (method (envLookup x env))

k env (return x’)
interp env (Lift io) k =

k env io
interp env (Check x left right) k =

either (envLookup x env)
(\a => interp (envUpdate x a env) left k)
(\b => interp (envUpdate x b env) right k)

interp env (While test body) k
= interp env test (\env’, result =>

do r <- result
if (not r)

then (k env’ (return ()))
else (interp env’ body (\env’’, body’ =>

do v <- body’
interp env’’ (While test body) k)))

interp env (Return v) k = k env (return v)
interp env (v >>= f) k
= interp env v (\env’, v’ => do n <- v’

interp env’ (f n) k)

40

This is well-typed because the file is opened for reading, and by the end of the scope, the file has been
closed. Syntax overloading allows us to name the resource h rather than using a de Bruijn index or context
membership proof.

10 An EDSL for Managing Side Effects

The resource aware EDSL presented in the previous section handles an instance of a more general problem,
namely how to deal with side-effects and state in a pure functional language.

In this section, I describe how to implement effectful programs in Idris using an EDSL Effects for
capturing algebraic effects [1], in such a way that they are easily composable, and translatable to a variety of
underlying contexts using effect handlers. I will give a collection of example effects (State, Exceptions, File
and Console I/O, random number generation and non-determinism) and their handlers, and some example
programs which combine effects.

The Effects EDSL makes essential use of dependent types, firstly to verify that a specific effect is
available to an effectful program using simple automated theorem proving, and secondly to track the state
of a resource by updating its type during program execution. In this way, we can use the Effects DSL to
verify implementations of resource usage protocols.

The framework consists of a DSL representation Eff for combining mutable effects and implementations
of several predefined effects. We refer to the whole framework with the name Effects. Here, we describe
how to use Effects; implementation details are described elsewhere [4].

The Effects library is included as part of the main Idris distribution, but is not imported by default. In
order to use it, you must invoke Idris with the -p effects flag, and use the following in your programs:

import Effects

10.1 Programming with Effects

An effectful program f has a type of the following form:

f : (x1 : a1) -> (x2 : a2) -> ... ->
Eff t input_effs (\result => output_effs)

That is, the return type gives the effects that f supports (input_effs, of type List EFFECT), the effects
available after running f (output_effs) which may be calculated using the result of the operation result
of type t.

A function which does not update its available effects has a type of the following form:

f : (x1 : a1) -> (x2 : a2) -> ... -> Eff effs t

A function which updates its available effects but without using the result of the operation has a type of
the following form:

f : (x1 : a1) -> (x2 : a2) -> ... -> Eff input_effs output_effs t

Underneath, Eff is an overloaded function with different forms for each of these cases. There are the
following three versions:

SimpleEff.Eff : (t : Type) -> (input_effs : List EFFECT) -> Type
TransEff.Eff : (t : Type) -> (input_effs : List EFFECT) ->

(output_effs : List EFFECT) -> Type
DepEff.Eff : (t : Type) -> (input_effs : List EFFECT) ->

(output_effs_fn : x -> List EFFECT) -> Type

Side effects are described using the EFFECT type; we will refer to these as concrete effects. For example:

41

STATE : Type -> EFFECT
EXCEPTION : Type -> EFFECT
FILE_IO : Type -> EFFECT
STDIO : EFFECT
RND : EFFECT

States are parameterised by the type of the state being carried, and exceptions are parameterised by a type
representing errors. File I/O allows a single file to be processed, with the type giving the current state of
the file (i.e. closed, open for reading, or open for writing). Finally, STDIO and RND permit console I/O and
random number generation respectively. For example, a program with some integer state, which performs
console I/O and which could throw an exception carrying some error type Err would have the following
type:

example : Eff () [EXCEPTION Err, STDIO, STATE Int]

10.1.1 First example: State

In general, an effectful program implemented in the Eff structure has the look and feel of a monadic
program written with do-notation. To illustrate basic usage, let us implement a stateful function, which tags
each node in a binary tree with a unique integer, depth first, left to right. We declare trees as follows:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

To tag each node in the tree, we write an effectful program which, for each node, tags the left subtree, reads
and updates the state, tags the right subtree, then returns a new node with its value tagged. The type
expresses that the program requires an integer state:

tag : Tree a -> Eff (Tree (Int, a)) [STATE Int]

The implementation traverses the tree, using get and put to manipulate state:

tag Leaf = return Leaf
tag (Node l x r)

= do l’ <- tag l
lbl <- get; put (lbl + 1)
r’ <- tag r
return (Node l’ (lbl, x) r’)

The Effects system ensures, statically, that any effectful functions which are called (get and put here)
require no more effects than are available. The types of these functions are:

get : Eff x [STATE x]
put : x -> Eff () [STATE x]

A program in Eff can call any other function in Eff provided that the calling function supports at least the
effects required by the called function. In this case, it is valid for tag to call both get and put because all
three functions support the STATE Int effect.

To run a program in Eff, it is evaluated in an appropriate computation context, using the run or runPure
function. The computation context explains how each effectful operation, such as get and put here, are to
be executed in that context. Using runPure, which runs an effectful program in the identity context, we can
write a runTag function as follows, using put to initialise the state:

runTag : (i : Int) -> Tree a -> Tree (Int, a)
runTag i x = runPure (do put i

tag x)

42

10.1.2 Effects and Resources

Each effect is associate with a resource, which is initialised before an effectful program can be run. For
example, in the case of STATE Int the corresponding resource is the integer state itself. The types of
runPure and run show this (slightly simplified here for illustrative purposes):

runPure : {env : Env id xs} -> Eff a xs -> a
run : Applicative m =>

{env : Env m xs} -> Eff a xs -> m a

The env argument is implicit, and initialised automatically where possible using default values given by
instances of the following type class:

class Default a where
default : a

Instances of Default are defined for all primitive types, and many library types such as List, Vect, Maybe,
pairs, etc. However, where no default value exists for a resource type (for example, you may want a STATE
type for which there is no Default instance) the resource environment can be given explicitly using one of
the following functions:

runPureInit : Env id xs -> Eff a xs -> a
runInit : Applicative m =>

Env m xs -> Eff a xs -> a

To be well-typed, the environment must contain resources corresponding exactly to the effects in xs. For
example, we could also have implemented runTag by initialising the state as follows:

runTag : (i : Int) -> Tree a -> Tree (Int, a)
runTag i x = runPureInit [i] (tag x)

As we will see, the particular choice of computation context can be important. Programs with exceptions,
for example, can be run in the context of IO, Maybe or Either.

10.1.3 Labelled Effects

What if we have more than one state, especially more than one state of the same type? How would get
and put know which state they should be referring to? For example, how could we extend the tree tagging
example such that it additionally counts the number of leaves in the tree? One possibility would be to change
the state so that it captured both of these values, e.g.:

tag : Tree a ->
Eff (Tree (Int, a)) [STATE (Int, Int)]

Doing this, however, ties the two states together throughout (as well as not indicating which integer is
which). It would be nice to be able to call effectful programs which guaranteed only to access one of the
states, for example. In a larger application, this becomes particularly important.

The Effects library therefore allows effects in general to be labelled so that they can be referred to
explicitly by a particular name. This allows multiple effects of the same type to be included. We can count
leaves and update the tag separately, by labelling them as follows:

tag : Tree a -> Eff (Tree (Int, a)) [’Tag ::: STATE Int,
’Leaves ::: STATE Int]

The ::: operator allows an arbitrary label to be given to an effect. This label can be any type—it is simply
used to identify an effect uniquely. Here, we have used a symbol type. In general ’name introduces a new
symbol, the only purpose of which is to disambiguate values9.

9In practice, ’name simply introduces a new empty type

43

When an effect is labelled, its operations are also labelled using the :- operator. In this way, we can
say explicitly which state we mean when using get and put. The tree tagging program which also counts
leaves can be written as follows:

tag Leaf = do ’Leaves :- update (+1)
pure Leaf

tag (Node l x r)
= do l’ <- tag l

i <- ’Tag :- get
’Tag :- put (i + 1)
r’ <- tag r
pure (Node l’ (i, x) r’)

The update function here is a combination of get and put, applying a function to the current state.

update : (x -> x) -> Eff () [STATE x]

Finally, our top level runTag function now returns a pair of the number of leaves, and the new tree.
Resources for labelled effects are intialised using the := operator (reminisicent of assignment in an imperative
language):

runTag : (i : Int) -> Tree a -> (Int, Tree (Int, a))
runTag i x = runPureInit [’Tag := i, ’Leaves := 0]

(do x’ <- treeTagAux x
leaves <- ’Leaves :- get
pure (leaves, x’))

To summarise, we have:

• ::: to convert an effect to a labelled effect.

• :- to convert an effectful operation to a labelled effectful operation.

• := to initialise a resource for a labelled effect.

Or, more formally with their types (slightly simplified to account only for the situation where available
effects are not updated):

(:::) : lbl -> EFFECT -> EFFECT
(:-) : (l : lbl) -> Eff a [x] -> Eff a [l ::: x]
(:=) : (l : lbl) -> res -> LRes l res

Here, LRes is simply the resource type associated with a labelled effect. Note that labels are polymorphic in
the label type lbl. Hence, a label can be anything—a string, an integer, a type, etc.

10.1.4 !-notation

In many cases, using do-notation can make programs unnecessarily verbose, particularly in cases where the
value bound is used once, immediately. The following program returns the length of the String stored in
the state, for example:

stateLength : Eff Nat [STATE String]
stateLength = do x <- get

pure (length x)

This seems unnecessarily verbose, and it would be nice to program in a more direct style in these cases. Idris
provides !-notation to help with this. The above program can be written instead as:

44

stateLength : Eff Nat [STATE String]
stateLength = pure (length !get)

The notation !expr means that the expression expr should be evaluated and then implicitly bound.
Conceptually, we can think of ! as being a prefix function with the following type:

(!) : Eff a xs -> a

Note, however, that it is not really a function, merely syntax! In practice, a subexpression !expr will lift
expr as high as possible within its current scope, bind it to a fresh name x, and replace !expr with x.
Expressions are lifted depth first, left to right. In practice, !-notation allows us to program in a more direct
style, while still giving a notational clue as to which expressions are effectful.

For example, the expression. . .

let y = 42 in f !(g !(print y) !x)

. . . is lifted to:

let y = 42 in do y’ <- print y
x’ <- x
g’ <- g y’ x’
f g’

10.2 An Effectful Evaluator

Consider an evaluator for a simple expression language, supporting variables, integers, addition and random
number generation, declared as follows:

data Expr = Var String | Val Integer
| Add Expr Expr | Random Integer

In order to implement an evaluator for this language, we will need to carry a state, holding mappings from
variables to values, and support exceptions (to handle variable lookup failure) and random numbers. The
environment is simply a mapping from Strings representing variable names to Integers:

Vars : Type
Vars = List (String, Int)

The evaluator invokes supported effects where needed. We use the following effectful functions:

get : Eff x [STATE x]
raise : a -> Eff b [EXCEPTION a]
rndInt : Int -> Int -> Eff Int [RND]

The evaluator itself (Listing 9) is written as an instance of Eff, invoking the required effectful functions with
the Effects framework checking that they are available.

In order to run the evaluator, we must provide initial values for the resources associated with each effect.
Exceptions require the unit resource, random number generation requires an initial seed, and the state
requires an initial environment. We use Maybe as the computation context to be able to handle exceptions:

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env expr = runInit [(), 123456, env] (eval expr)

Extending the evaluator with a new effect, such as STDIO is a matter of extending the list of available effects
in its type. We could use this, for example, to print out the generated random numbers:

eval : Expr -> Eff t [EXCEPTION String, STDIO, RND, STATE Vars]
...
eval (Random upper) = do num <- rndInt 0 upper

putStrLn (show num)
return num

45

Listing 9: Effectful evaluator
eval : Expr -> Eff t [EXCEPTION String, RND, STATE Vars]
eval (Val x) = return x
eval (Var x) = do vs <- get

case lookup x vs of
Nothing => raise ("Error " ++ x)
Just val => return val

eval (Add l r) = [| eval l + eval r |]
eval (Random upper) = rndInt 0 upper

We can insert the STDIO effect anywhere in the list without difficulty. The only requirements are that its
initial resource is in the corresponding position in the call to runInit, and that runInit instantiates a
context which supports STDIO, such as IO:

runEval : List (String, Int) -> Expr -> IO Int
runEval env expr

= runInit [(), (), 123456, env] (eval expr)

10.3 Implementing effects

In order to implement a new effect, we define a new type (of kind Effect) and explain how that effect is
interpreted in some underlying context m. An Effect describes an effectful computation, parameterised
by the type of the computation t, an input resource res, and an output resource res’ computed from the
result of the operation.

Effect : Type
Effect = (t : Type) ->

(res : Type) -> (res’ : t -> Type) ->
Type

We describe effects as algebraic data types. To run an effect, we require an interpretation in a computation
context m. To achieve this, we make effects and contexts instances of a type class, Handler, which has a
method handle explaining this interpretation:

class Handler (e : Effect) (m : Type -> Type) where
handle : (r : res) -> (eff : e t res resk) ->

(k : ((x : t) -> resk x -> m a)) -> m a

Handlers are parameterised by the effect they handle, and the context in which they handle the effect.
This allows several different context-dependent handlers to be written, e.g. exceptions could be handled
differently in an IO setting than in a Maybe setting. When effects are combined, as in the evaluator example,
all effects must be handled in the context in which the program is run.

An effect e t res res’ updates a resource type res to a resource type res’, returning a value t. The
handler, therefore, implements this update in a context m which may support side effects. The handler is
written in continuation passing style. This is for two reasons: firstly, it returns two values, a new resource
and the result of the computation, which is more cleanly managed in a continuation than by returning a
tuple; secondly, and more importantly, it gives the handler the flexibility to invoke the continuation any
number of times (zero or more).

An Effect, which is the internal algebraic description of an effect, is promoted into a concrete EFFECT,
which is expected by the Eff structure, with the MkEff constructor:

data EFFECT : Type where

46

MkEff : Type -> Effect -> EFFECT

MkEff additionally records the resource state of an effect. In the remainder of this section, we describe
how several effects can be implemented in this way: mutable state; console I/O; exceptions; files; random
numbers, and non-determinism.

10.3.1 State

In general, effects are described algebraically in terms of the operations they support. In the case of State,
the supported effects are reading the state (Get) and writing the state (Put).

data State : Effect where
Get : State a a (\x => a)
Put : b -> State () a (\x => b)

The resource associated with a state corresponds to the state itself. So, the Get operation leaves this state
intact (with a resource type a on entry and exit) but the Put operation may update this state (with a resource
type a on entry and b on exit). That is, a Put may update the type of the stored value.

The effects library provides an overloaded function sig which can make effect signatures more
concise, particularly when the result has no effect on the resource type. For State, we can write:

data State : Effect where
Get : sig State a a
Put : b -> sig State () a b

There are four versions of sig, depending on whether we are interested in the resource type, and whether
we are updating the resource. Idris will infer the appropriate version from usage.

NoResourceEffect.sig : Effect -> Type -> Type
NoUpdateEffect.sig : Effect -> (ret : Type) ->

(resource : Type) -> Type
UpdateEffect.sig : Effect -> (ret : Type) ->

(resource_in : Type) ->
(resource_out : Type) -> Type

DepUpdateEffect.sig : Effect -> (ret : Type) ->
(resource_in : Type) ->
(resource_out : ret -> Type) -> Type

Here, Get returns a value of type a and leaves the resource type as a, using NoUpdateEffect.sig.
On the other hand, Put returns a value of unit type and updates the resource type from a to b using
UpdateEffect.sig. We can implement a handler for this effect, for all contexts m, as follows:

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k = k n ()

When running Get, the handler passes the current state to the continuation as both the return value (the
second argument of the continuation k) and the new resource value (the first argument of the continuation).
When running Put, the new state is passed to the continuation as the new resource value.

We then convert the algebraic effect State to a concrete effect usable in an Effects program using the
STATE function, to which we provide the initial state type as follows:

STATE : Type -> EFFECT
STATE t = MkEff t State

As a convention, algebraic effects, of type Effect, have an initial upper case letter. Concrete effects, of type
EFFECT, are correspondingly in all upper case.

Algebraic effects are promoted to Effects programs with concrete effects by using a coercion with an
implicit, automatically constructed, proof argument:

47

call : {e : Effect} ->
(eff : e t a b) -> {auto prf : EffElem e a xs} ->
Eff t xs (\v => updateResTy v xs prf eff)

How this function works and how the proof is calculated are beyond the scope of this tutorial. However, its
purpose is to allow a programmer to use an algebraic effect in an Effects program without any explicit
syntax. We can therefore define get and put as follows:

get : Eff x [STATE x]
get = call Get

put : x -> Eff () [STATE x]
put val = call (Put val)

We may also find it useful to mutate the type of a state, considering that states may themselves have
dependent types (we may, for example, add an element to a vector in a state). The Put constructor supports
this, so we can implement putM to update the state’s type:

putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)

Finally, it may be useful to combine get and put in a single update:

update : (x -> x) -> Eff () [STATE x]
update f = do val <- get; put (f val)

updateM : (x -> y) -> Eff () [STATE x] [STATE y]
updateM f = do val <- get; putM (f val)

10.3.2 Console I/O

Consider a simplified version of console I/O which supports reading and writing strings. There is no
associated resource, so Idris treats this as the unit type internally, although in an alternative implementation
we may associate it with an abstract world state, or a pair of handles for stdin/stdout. Algebraically we
describe console I/O as follows:

data StdIO : Effect where
PutStr : String -> sig StdIO ()
GetStr : sig StdIO String
PutCh : Char -> sig StdIO ()
GetCh : sig StdIO Char

STDIO : EFFECT
STDIO = MkEff () StdIO

The obvious way to handle StdIO is via the IO monad:

instance Handler StdIO IO where
handle () (PutStr s) k = do putStr s; k () ()
handle () GetStr k = do x <- getLine; k x ()
handle () (PutCh c) k = do putChar c; k () ()
handle () GetCh k = do x <- getChar; k x ()

Unlike the State effect, for which the handler worked in all contexts, this handler only applies to effectful
programs run in an IO context. We can implement alternative handlers, and indeed there is no reason that
effectful programs in StdIO must be evaluated in a monadic context. For example, we can define I/O stream
functions:

48

data IOStream a
= MkStream (List String -> (a, List String))

instance Handler StdIO IOStream where
...

A handler for StdIO in IOStream context generates a function from a list of strings (the input text) to a
value and the output text. We can build a pure function which simulates real console I/O:

mkStrFn : Env IOStream xs -> Eff IOStream xs a ->
List String -> (a, List String)

mkStrFn {a} env p input = case mkStrFn’ of
MkStream f => f input

where injStream : a -> IOStream a
injStream v = MkStream (\x => (v, []))
mkStrFn’ : IOStream a
mkStrFn’ = runWith injStream env p

This requires an alternative means of running effectful programs, runWith, which takes an additional
argument explaining how to inject the result of a computation into the appropriate computation context:

runWith : (a -> m a) ->
Env m xs -> Eff a xs xs’ -> m a

To illustrate this, we write a simple console I/O program:

name : Eff () [STDIO]
name = do putStr "Name? "

n <- getStr
putStrLn ("Hello " ++ show n)

Using mkStrFn, we can run this as a pure function which uses a list of strings as its input, and gives a list of
strings as its output. We can evaluate this at the Idris prompt:

*name> show $ mkStrFn [()] name ["Edwin"]
((), ["Name?" , "Hello Edwin\n"])

This suggests that alternative, pure, handlers for console I/O, or any I/O effect, can be used for unit testing
and reasoning about I/O programs without executing any real I/O.

10.3.3 Exceptions

The exception effect supports only one operation, Raise. Exceptions are parameterised over an error type e,
so Raise takes a single argument to represent the error. The associated resource is of unit type, and since
raising an exception causes computation to abort, raising an exception can return a value of any type.

data Exception : Type -> Effect where
Raise : a -> sig (Exception a) b

EXCEPTION : Type -> EFFECT
EXCEPTION e = MkEff () (Exception e)

The semantics of Raise is to abort computation, therefore handlers of exception effects do not call the
continuation k. In any case, this should be impossible since passing the result to the continuation would
require the ability to invent a value in any arbitrary type b! The simplest handler runs in a Maybe context:

instance Handler (Exception a) Maybe where
handle _ (Raise e) k = Nothing

49

Exceptions can be handled in any context which supports some representation of failed computations. In an
Either e context, for example, we can use Left to represent the error case:

instance Handler (Exception e) (Either e) where
handle _ (Raise e) k = Left err

10.3.4 Random numbers

Random number generation can be implemented as an effect, with the resource tracking the seed from which
the next number will be generated. The Random effect supports one operation, getRandom, which requires
an Integer resource and returns the next number:

data Random : Type -> Type -> Type -> Type where
GetRandom : sig Random Integer Integer
SetSeed : Integer -> sig Random () Integer

RND : EFFECT
RND = MkEff Integer Random

Handling random number generation shows that it is a state effect in disguise, where the effect updates the
seed. This is a simple linear congruential pseudo-random number generator:

instance Handler Random m where
handle seed GetRandom k

= let seed’ = 1664525 * seed + 1013904223 in
k seed’ seed’

handle seed (SetSeed n) k = k () n

Alternative handlers could use a different, possibly more secure approach. In any case, we can implement a
function which returns a random number between a lower and upper bound as follows:

rndInt : Int -> Int -> Eff Int [RND]
rndInt lower upper

= do v <- GetRandom
return (v ‘mod‘ (upper - lower) + lower)

10.3.5 Non-determinism

Non-determinism can be implemented as an effect Selection, in which a Select operation chooses one
value non-deterministically from a list of possible values:

data Selection : Effect where
Select : List a -> sig Selection a

We can handle this effect in a Maybe context, trying every choice in a list given to Select until the
computation succeeds:

instance Handler Selection Maybe where
handle _ (Select xs) k = tryAll xs where

tryAll [] = Nothing
tryAll (x :: xs) = case k x () of

Nothing => tryAll xs
Just v => Just v

50

The handler for Maybe produces at most one result, effectively performing a depth first search of the values
passed to Select. The handler runs the continuation for every element of the list until the result of running
the continuation succeeds.

Alternatively, we can find every possible result by handling selection in a List context:

instance Handler Selection List where
handle r (Select xs) k = concatMap (\x => k x r) xs

We can use the Selection effect to implement search problems by non-deterministically choosing from a
list of candidate solutions. For example, a solution to the n-queens problem can be implemented as follows.
First, we write a function which checks whether a point on a chess board attacks another if occupied by a
queen:

no_attack : (Int, Int) -> (Int, Int) -> Bool
no_attack (x, y) (x’, y’)

= x /= x’ && y /= y’ && abs (x - x’) /= abs (y - y’)

Then, given a column and a list of queen positions, we find the rows on which a queen may safely be placed
in that column:

rowsIn : Int -> List (Int, Int) -> List Int
rowsIn col qs

= [x | x <- [1..8], all (no_attack (x, col)) qs]

Finally, we compute a solution by accumulating a set of queen positions, column by column, non-deterministically
choosing a position for a queen in each column.

addQueens : Int -> List (Int, Int) ->
Eff (List (Int, Int)) [SELECT]

addQueens 0 qs = return qs
addQueens col qs

= do row <- select (rowsIn col qs)
addQueens (col - 1) ((row, col) :: qs)

We can run this in Maybe context, to retrieve one solution, or in List context, to retrieve all solutions. In a
Maybe context, for example, we can define:

getQueens : Maybe (List (Int, Int))
getQueens = run [()] (addQueens 8 [])

Then to find the first solution, we run getQueens at the REPL:

*Queens> show getQueens
"Just [(4, 1), (2, 2), (7, 3), (3, 4),

(6, 5), (8, 6), (5, 7), (1, 8)]" : String

10.4 Dependent Effects

In the programs we have seen so far, the available effects have remained constant. Sometimes, however,
an operation can change the available effects. The simplest example occurs when we have a state with a
dependent type—adding an element to a vector also changes its type, for example, since its length is explicit
in the type. In this section, we will see how Effects supports this. Firstly, we will see how states with
dependent types can be implemented. Secondly, we will see how the effects can depend on the result of an
effectful operation. Finally, we will see how this can be used to implement a type-safe and resource-safe
protocol for file management.

51

10.4.1 Dependent States

Suppose we have a function which reads input from the console, converts it to an integer, and adds it to a
list which is stored in a STATE. It might look something like the following:

readInt : Eff () [STATE (List Int), STDIO]
readInt = do let x = trim !getStr

put (cast x :: !get)

But what if, instead of a list of integers, we would like to store a Vect, maintaining the length in the type?

readInt : Eff () [STATE (Vect n Int), STDIO]
readInt = do let x = trim !getStr

put (cast x :: !get)

This will not type check! Although the vector has length n on entry to readInt, it has length S n on exit.
The Effects DSL allows us to express this as follows:

readInt : Eff () [STATE (Vect n Int), STDIO]
[STATE (Vect (S n) Int), STDIO]

readInt = do let x = trim !getStr
putM (cast x :: !get)

Since the type is updated, we have used putM to update the state.

10.4.2 Result-dependent Effects

Often, whether a state is updated could depend on the success or otherwise of an operation. In the readInt
example, we might wish to update the vector only if the input is a valid integer (i.e. all digits). As a first
attempt, we could try the following, returning a Bool which indicates success:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
[STATE (Vect (S n) Int), STDIO]

readInt = do let x = trim !getStr
case all isDigit (unpack x) of

False => pure False
True => do putM (cast x :: !get)

pure True

Unfortunately, this will not type check because the vector does not get extended in both branches of the
case!

MutState.idr:18:19:When elaborating right hand side
of Main.case block in readInt:
Unifying n and S n would lead to infinite value

Clearly, the size of the resulting vector depends on whether or not the value read from the user was valid.
We can express this in the type:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
(\ok => if ok

then [STATE (Vect (S n) Int), STDIO]
else [STATE (Vect n Int), STDIO])

readInt = do let x = trim !getStr
case all isDigit (unpack x) of

False => with_val False (pure ())
True => do putM (cast x :: !get)

pureM True

52

Using pureM, rather than pure, allows the output effects to be calculated from the value given. Its type is:

pureM : (val : a) -> Eff a (xs val) xs

When using readInt, we will have to check its return value in order to know what the new set of effects is.
For example, to read a set number of values into a vector, we could write the following:

readN : (n : Nat) ->
Eff IO [STATE (Vect m Int), STDIO]

[STATE (Vect (n + m) Int), STDIO]
readN Z = pure ()
readN {m} (S k)

= case !readInt of
True => rewrite plusSuccRightSucc k m in

readN k
False => readN (S k)

The case analysis on the result of readInt means that we know in each branch whether reading the integer
succeeded, and therefore how many values still need to be read into the vector. What this means in practice
is that the type system has verified that a necessary dynamic check (i.e. whether reading a value succeeded)
has indeed been done.

Aside: Only case will work here. We cannot use if/then/else because the then and else branches
must have the same type. The case construct, however, abstracts over the value being inspected in the type
of each branch.

10.4.3 File Management

A practical use for dependent effects is in specifying resource usage protocols and verifying that they are
executed correctly. For example, file management follows a resource usage protocol with the following
(informally specified) requirements:

• It is necessary to open a file for reading before reading it

• Opening may fail, so the programmer should check whether opening was successful

• A file which is open for reading must not be written to, and vice versa

• When finished, an open file handle should be closed

• When a file is closed, its handle should no longer be used

These requirements can be expressed formally in Effects, by creating a FILE_IO effect parameterised
over a file handle state, which is either empty, open for reading, or open for writing. The FILE_IO effect’s
definition is given in Listing 10. Note that this effect is mainly for illustrative purposes—typically we would
also like to support random access files and better reporting of error conditions.

In particular, consider the type of open:

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]

(\res => [FILE_IO (case res of
True => OpenFile m
False => ())])

This returns a Bool which indicates whether opening the file was successful. The resulting state depends on
whether the operation was successful; if so, we have a file handle open for the stated purpose, and if not, we
have no file handle. By case analysis on the result, we continue the protocol accordingly.

53

Listing 10: File I/O Effect
FILE_IO : Type -> EFFECT

data OpenFile : Mode -> Type

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]

(\res => [FILE_IO (case res of
True => OpenFile m
False => ())])

close : Eff () [FILE_IO (OpenFile m)] [FILE_IO ()]

readLine : Eff String [FILE_IO (OpenFile Read)]
writeLine : String -> Eff () [FILE_IO (OpenFile Write)]
eof : Eff Bool [FILE_IO (OpenFile Read)]

instance Handler FileIO IO

Listing 11: Reading a File
readFile : Eff (List String) [FILE_IO (OpenFile Read)]
readFile = readAcc [] where

readAcc : List String -> Eff (List String) [FILE_IO (OpenFile Read)]
readAcc acc = if (not !eof)

then readAcc (!readLine :: acc)
else pure (reverse acc)

Given a function readFile (Listing 11) which reads from an open file until reaching the end, we can
write a program which opens a file, reads it, then displays the contents and closes it, as follows, correctly
following the protocol:

dumpFile : String -> Eff () [FILE_IO (), STDIO]
dumpFile name = case !(open name Read) of

True => do putStrLn (show !readFile)
close

False => putStrLn ("Error!")

The type of dumpFile, with FILE_IO () in its effect list, indicates that any use of the file resource will
follow the protocol correctly (i.e. it both begins and ends with an empty resource). If we fail to follow the
protocol correctly (perhaps by forgetting to close the file, failing to check that open succeeded, or opening
the file for writing) then we will get a compile-time error. For example, changing open name Read to
open name Write yields a compile-time error of the following form:

FileTest.idr:16:18:When elaborating right hand side
of Main.case block in testFile:
Can’t solve goal

SubList [(FILE_IO (OpenFile Read))]
[(FILE_IO (OpenFile Write)), STDIO]

In other words: when reading a file, we need a file which is open for reading, but the effect list contains a
FILE_IO effect carrying a file open for writing.

54

Exercise

Consider the interpreter you implemented in the Section 8 exercises. How could you use Effects to
improve this? For example:

1. What should be the type of interp?

2. Can you separate the imperative parts from the evaluation? What are the effects required by each?

11 Conclusion

In this tutorial, we have covered the fundamentals of dependently typed programming in Idris, and
particularly those features which support embedded domain specific language implementation (EDSL). We
have seen several examples of EDSLs in Idris:

• A well-typed interpreter for the simply typed λ-calculus, which shows how to implement an EDSL
where the type-correctness of programs in the object language is verified by the host language’s type
system.

• An interpreter for a resource-safe EDSL, capturing the state of resources such as file handles at particular
points during program execution, ensuring, at compile time, that a program can only execute operations
which are valid at those points.

• An EDSL for managing side-effecting programs, which generalises the resource-safe EDSL and allows
several effects and resource to be managed simultaneously.

11.1 Further Reading

Further information about Idris programming, and programming with dependent types in general, can be
obtained from various sources:

• The Idris web site (http://idris-lang.org/), which includes links to tutorials, some lectures
and the mailing list. In particular, the Idris tutorial [5] describes the language in full, including many
features not discussed here such as type providers [9], the foreign function interface, and compiling
via Javascript.

• The IRC channel #idris, on chat.freenode.net.

• Examining the prelude and exploring the samples in the distribution.

• Various papers (e.g. [2, 7, 8, 3]), which describe implementation techniques and programming idioms.

Acknowledgements

I am grateful to the Scottish Informatics and Computer Science Alliance (SICSA) for funding this research. I
would also like to thank the many contributors to the Idris system and libraries, as well as the reviewers for
their helpful and constructive suggestions.

55

References

[1] A. Bauer and M. Pretnar. Programming with Algebraic Effects and Handlers, 2012. Available from
http://arxiv.org/abs/1203.1539.

[2] E. Brady. Idris — systems programming meets full dependent types. In Programming Languages meets
Program Verification (PLPV 2011), pages 43–54, 2011.

[3] E. Brady. Idris, a general-purpose dependently typed programming language: Design and implementa-
tion. Journal of Functional Programming, 23:552–593, 9 2013.

[4] E. Brady. Programming and Reasoning with Algebraic Effects and Dependent Types. In ICFP ’13:
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming. ACM, 2013.

[5] E. Brady. Programming in Idris : a tutorial, 2013.

[6] E. Brady and K. Hammond. Correct-by-construction concurrency: Using dependent types to verify
implementations of effectful resource usage protocols. Fundamenta Informaticae, 102(2):145–176, 2010.

[7] E. Brady and K. Hammond. Scrapping your inefficient engine: using partial evaluation to improve
domain-specific language implementation. In ICFP ’10: Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 297–308, New York, NY, USA, 2010. ACM.

[8] E. Brady and K. Hammond. Resource-safe systems programming with embedded domain specific
languages. In Practical Applications of Declarative Languages 2012, LNCS. Springer, 2012. To appear.

[9] D. Christiansen. Dependent type providers. In WGP ’13: Proceedings of the 9th ACM SIGPLAN workshop
on Generic programming. ACM, 2013.

[10] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors,
To H.B.Curry: Essays on combinatory logic, lambda calculus and formalism. Academic Press, 1980. A reprint
of an unpublished manuscript from 1969.

[11] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 14(1):69–111,
2004.

[12] C. McBride and R. Paterson. Applicative programming with effects. J. Funct. Program., 18:1–13, January
2008.

[13] S. Peyton Jones et al. Haskell 98 language and libraries — the revised report. Available from
http://www.haskell.org/, December 2002.

56

