v x_,pcms.aﬁ.xwwxu@_v_ am_._z

5

>

9 X
s o S O
T X 25
= W S 2
MnquuM > 0
VU W C m.N
LE.._H rn
<0 =2 2 S

Overview

1. functional programming

equational reasoning for algorithm design

2. greedy algorithms

simple examples of program calculation

3. nondeterminism

a linguistic novelty

4. thinning

an algorithmic novelty

1. Why functional programming matters

e programs are values, not commands
e supports good old-fashioned equational reasoning
e ... with program texts, without needing a distinct language

e calculate efficient implementations from clear specifications

e using Haskell

e a plea for simplicity: no GADTs, no Monads, no Traversables. ..

Fusion

Consider the standard foldr function, eg sum = foldr (+) O:

foldr::(a-B-B)-B-[a] -PB
foldr f e[] =e
foldr f e (x:xs) =T x (foldr f e xs)

The fusion law for foldr states

h-foldrfe=foldrf'e"Y =1 XM . h(fxy)=f"x(hy) [Che=¢"

For example,
double - sum = foldr twicePlus O where twicePlus Xy =2 xx +vy

because double (x +y) = twicePlus x (double y) and double 0 = 0.

Fusion as the driving force

Many problems have a simple specification written with standard components:

algorithm = aggregate - test - generate

€g
mcst = minWith cost - filter spanning - trees

Aggregation is often selection. Generation of candidates often as a fold or until:

e perms (permutations)

e Segs (segments)

e parts (partitions), subseqgs (subsequences)
e trees (trees)

etc. Then the problem is to fuse the aggregation and testing with generation.

ADWH

Questions? (1/74)

. functional programming
. greedy algorithms

nondeterminism

A w N R

. thinning

2. Greedy algorithms

Selecting a single optimal candidate constructed from some components:
e eg shortest encoding (constructed from symbols)
e eg lightest spanning tree (constructed from edges)
e eg least wasteful paragraph (constructed from words)

Greedy algorithm assembles optimal candidate step by step from components,
maintaining just a single partial candidate throughout.

Often leads to a simple algorithm, but with a tricky proof of correctness.

“think globally, act locally”

some components:

2. Greedy algorithms

Selecting a single optimal candidate constructed fro

S)

e eg lightest spanning tree (constructed from £dges)

e eg shortest encoding (constructed from symbg

e eg least wasteful paragraph (constructeg/from words)

Greedy algorithm assclaldes=aiaba agldidate step by step from components,

maintaining just g single partial candidate ghroughout.

Often leads to a simple algorithm, but with a tricky proof of correctness.

A generic greedy algorithm

Computing a minimum-cost Candidate from some Components:

mcc ;. [Component] - Candidate
mcc = minWith cost - candidates

Here, minWith selects (leftmost) minimal element from a non-empty list:

minWith::Ord b [(@- b) - [a] - a
minWith f = foldrl (minBy f) whereminBy f xy =iff x <f y then x elsey

and candidates constructs a finite non-empty list of Candidates:

candidates :: [Component] - [Candidate]
candidates = foldr step [co] where step x cs = concat (map (extend x) cs)

where cq :: Candidate and extend :: Component - Candidate - [Candidate].

Greedy sorting

For sorting strings,

type Candidate = String
type Component = Char

The empty partial candidate is cog = """, and candidates are permutations:
extend xc =[cy H [x]Hco|Nn < [O..lengthc],let (cq,co) =splitAt nc]

le extend a” ""bcd' = ["abcd', ""bacd', ""bcad"’, ""bcda’"].

The cost to minimize is the inversion count:

Ic xs = length [(X,y) | X:ys « tails xs,y :zs « tailsys,x>y]

Fusion

Recall fusion law

h-foldr fe=foldr f'e" =1 XM . h(f xy)=ftk(hy) [Che=¢e

For greedy algorithm, h = minWith cost, f = step, e = [cg], e"= co,
and we have to find f“= gstep—the greedy step—such that:

minWith cost (step x cs) = gstep x (minWith cost cs)

Let us calculate!

Calculating gstep

minWith cost (step x cs)
= |I definition of step]
minWith cost (concat (map (extend x) cs))
= |[distributive law]
minWith cost (map (minWith cost - extend Xx) cs)
= |I define gstep x = minWith cost - extend x]
minWith cost (map (gstep x) cs)
= | greedy condition]
gstep x (minWith cost cs)

Calculating gstep

minWith cost (step x cs)
= |I definition of step]

minWithcg gncat (map (extend x) cs))
= |K distributive law)]
MIiNWITN Co ap (MminWith cost - extend X) cs)

= | define gktep x = minWith cost - extend x]|
minWith cost (Nap (gstep x) cs)

= | greedy conMtion]
gstep X (minWith coN

minWith f (concat xss) = minWith f (map (minWith f) xss)

Calculating gstep

— | minWith cost (map (gstep x) cs) = gstep x (minWith cost cs)

(IVVILU 0 Ol Cc T1AdpP (EeXLENU X
[[distributive law]
minWith cost (map (minWith gost - extend x) cs)
= | define gstep x = min\Jth cost - extend x]
minWith cg nap (gsi#d x) cs)
gstep T JSL CS)

Calculating gstep

minWith cost (step x cs)
= |I definition of step]
minWith cost (concat (map (extend x) cs))
= |[distributive law]
minWith cost (map (minWith cost - extend Xx) cs)
= |I define gstep x = minWith cost - extend x]
minWith cost (map (gstep x) cs)
= | greedy condition]
gstep x (minWith cost cs)

So provided the greedy condition holds, we have the greedy algorithm:

mcc = foldr gstep cog where gstep x = minWith cost - extend x

Does greedy sorting work?

Sadly, no—the greedy condition fails for sorting:

[7,1,2,3]° map (gstep 6) [7,1,2,3,6]°

[3,2,1,7]3 [3,2,1,6,7]3
minWith icl lminWith ic

[7,1,2,3]3 [7,1,2,3,6]4 = [3,2,1,6,7]3

gstep 6
In a nutshell, ordering by ic is not linear, because not antisymmetric. Fixes?
e context-sensitive fusion (unique optimum on range of perms)
e refine the cost function (from ic to id, which is a linear order)

e nondeterminism (keep all optimal candidates—more shortly)

Does greedy sorting work?

Sadly, no—the greedy condition fails for sorting:

[7, 1,2,3]3 map (gstep 6) [7,1,2,3,6 e
[3,2,1,7]3 [3,2,1,6,7]3
minWith icl lminWith ic
[7,1,2,3]3 [7,1,2,3,6]4 = [3,2,1,6,7]3

gstep 6
In a nutshell, ordering by ic is not linear, because not antisymmetric. Fixes?
e context-sensitive fusion (unique optimum on range of perms)
e refine the cost function (from ic to id, which is a linear order)

e nondeterminism (keep all optimal candidates—more shortly)

ADWH

Making change

UK coins s e
ukds =[1, 2,5, 10, 20, 50, 100, 200] -- smallest assumed to be 1

type Tuple = [Nat] is lists of counts, of same length as denominations:

count :: Tuple - Nat
count = sum

Then fewest coins given by change ds n = minWith count (tuples n ds), where

tuples n = finish - foldr step [([],n)] where
step d = concat - map (extend d)
extend d (cs,r) =[(c:cs,r—cxd)|c « [O0..r divd]]
finish map fst - filter ((O ==) - snd)

13

Making change, greedily

Obvious greedy algorithm: most coins possible, largest first.

But greedy condition doesn’t hold, because again the ordering is not linear:

061010000 00OR -0 0001000000

—*'obvious algorithm’ chooses former, but change computes latter.
Desired implementation is not equal to specification.

Refine to a linear ordering: use maxWith reverse (ie lexically greatest, in reverse).
For UK decimal currency, greedy condition now holds; greedy algorithm emerges.

But for other currencies (eg UK pre-decimal), greedy algorithm doesn’t work. ..

Questions? (2/4)

1. functional programming

2. greedy algorithms

3. Nondeterminism

Refining to linear order is cheating: ad hoc, prejudicial, sometimes impossible.

But without it, establishing greedy condition for fusion
minWith cost (map (gstep x) cs) = gstep x (mMinWith cost cs)
entails proving the equivalence
cost ¢ < cost c' [I_Ttost (gstep x ¢) < cost (gstep x cY
which rarely holds in practice. We need fusion to work given only monotonicity:

cost ¢ < cost c' =L[__tost (gstep x ¢) < cost (gstep x cY

ADWH +

Relations

Optimization problems are often underdetermined:
multiple distinct minimal solutions.

Specification should admit any optimal solution,
not pre-commit to one.

But implementation must choose one:
should be optimal, but need not reach them all.

That is, implementation must refine specification.

17

~ Oege de Moor

Richard Bird

Programming

Algebra of Programming

Theorem 7.2 If S is monotonic on a preorder R, then
IminR -AS) [Lmlin R - A(S)
Proof. We reason:

IminR-AS) [Lmlin R - A(S)
= {universal property of min }
C(min R - AS]D C([FD and (minR - AS]D - (S) L[RI
= {sinceminR-AS LS1}
C(minR-AS]D - (S]) L[RI
[fhylomorphism theorem }
MINR-AS-FR-S° LRI
[fmonotonicity: FR-S° [S1-R }
MINR-AS -S°-R [RI

7.2 / Monotonic algebras 173

{converse; relators}
j-F(minR-3)-f°CR

{since min R -3 = R if R is reflexive}
f-FR-f°CR.

a

In this chapter the main result about monotonicity is the following, which we will
refer to subsequently as the greedy theorem.

Theorem 7.2 If § is monotonic on a preorder R°, then
(minR-AS) C minR-A(S).
Proof. We reason:

(min R - AS) C min R - A(S)
{universal property of min}
(minR-AS)C (S) and (minR-AS)-(S)°CR
{since min R- AS C S}
(minB-AS)-(S)°C R
< {hylomorphism theorem (see below)}
minR-AS-FR-S°CR
< {monotonicity: FR-5° C 5°. R}
minR-AS-5°-RCR
<« {since min R-AS C R/S°; division}
R-RCR
= {transitivity of R}
true.

1] 1]

Recall that the hylomorphism theorem (Theorem 6.2) expressed a hylomorphism
as a least fixed point of a certain r i ion; thus by Knaster-Tarski, the
hylomorphism (min R - AS)) - (S)° is included in R if R satisfies the associated
recursion inequation.

For an alternative formulation of the greedy theorem see Exercise 7.37. For probl
involving max rather than min, the relevant condition of the greedy theorem is that
S should be monotonic on R, not R°. Note also that we can always bring in context
if we need to, and show that $ is monotonic on R° N ({S) - {5)°).

A gentler approach

It suffices to extend the development language slightly, with MinWith and «-:

X «~ MInWith f xs [T Tk Cx9d CIIy Ix3:fx<fy

For example, distributive law

MinWith cost (concat xss) = MinWith cost (map (MinWith cost) xss)

means

X «~ MinWith f (concat xss)
[T 1Tk« MinWith f (map (MinWith f) xss)
[I_11xdl. xs «~map (MinWith f) xss [Xk~ MinWith f xs

Just for specifications; no change to implementation language.

A gentler approach

It suffices to extend the development language slightly, with MinWith and «-:

X« ~MNWithf xs L[1Tk [xd [Iy I x9:fx<fy

For example, distributive law see Bird & Rabe,

o o How to Calculate with
MinWith cost (concat xss) = MinWith cost (map (

Nondeterministic Functions,
means MPC 2019

X «~ MinWith f (concat xss)
[Tk« MinWith f (map (MinWith f) xss)
[I _T1xsl. xs «~ map (MinWith f) xss [LxXk~MinWith f xs

Just for specifications; no change to implementation language.

Laws of nhondeterministic functions

Fusion:

foldr f~efks «~H (foldr fexs) [Ed XM . f"x (Hy)«H (f xy) Cel«He

Then the greedy calculation goes through needing only refinement
gstep x (MinWith cost cs) «~ MinWith cost (map (gstep x) cs)
as a premise rather than equality, where
gstep x «~ MinWith cost - extend X

Now nondeterministic greedy condition holds for changing coins, with cost = count.

Questions? (374)

1. functional programming
2. greedy algorithms

3. nondeterminism

4. Thinning

e greedy algorithm maintains a single candidate
e exhaustive search considers all possible candidates
e thinning is in between, maintaining some candidates

e some partial candidates dominate others, which may be discarded

e thinning not traditionally seen as a distinct algorithm design technique
e relevant problems often presented using dynamic programming
e the thinning presentation may lead to a more effective solution

e dynamic programming is better seen as a generalization of divide & conquer

ADWH +

Paths in a layered network

Directed, acyclic, layered, edge-weighted.

Find shortest path from top to bottom.

Dijkstra’s algorithm takes ©(n?) steps.
We can do better.

Greedy algorithm doesn’t work.

But from given source vertex,
a shorter path dominates a longer one.

23

Paths in a layered network

Directed, acyclic, layered, edge-weighted.

Find shortest path from top to bottom.

Dijkstra’s algorithm takes ©(n?) steps.
We can do better.

Greedy algorithm doesn’t work.

But from given source vertex,
a shorter path dominates a longer one.

Thinning
Another nondeterministic function
ThinBy ::(a - a - Bool) - [a] - [a]
returning some dominating subsequence under given preorder [_1

yS«~ThinBy (Dxs [T T¥s [x9 [Ik ITx9d. [yllyd.y [XI

Computing a shortest thinning takes quadratic time. Linear-time approximation:

thinBy (D= foldr bump [] where bump x [] = [x]
bump x (y:ys) | x [yl =X:VYS
y [x1 =VY:.VyS
otherwise = X .y :ys

still useful if the candidates are generated in a convenient order.

Laws of thinning

MinWith cost = MinWith cost - ThinBy ()1 [=1x [yll[cakt x < cost y
-- thin introduction
wrap - MinWith cost «~ ThinBy (D1 [= Jlcostx<costy [X1yl

-- thin elimination
ThinBy (D_concat = ThinBy (L)_-lconcatMap (ThinBy (L)1
-- distributivity

map f - ThinBy ()3~ ThinBy (D_Imap f = Ix LylL T X [Tk
-- thin-map
ThinBy (D-lmap f «~map f - ThinBy (D1 = 1fx LTl [X1yl
-- thin-map
ThinBy (D_Ifilter p = filter p - ThinBy (D1 = 1 (x Lyl ply) [pkXk

-- thin-filter

ADWH —

Specifying the problem

data Edge

= E {source :: Vertex, target :: Vertex, weight :: Weight }

mcp :: [[Edge]] - [Edge] -- network to path

mcp «~ MinWith cost - paths

cost ;. [Edge] - Weight

cost = sum - map weight

paths ::[[Edge]] - [[Edge]] -- network to set of paths

paths = foldr step [[]] where
step es ps = concat [conseps | e ~ es]

cons e ps
linked e p

[e:p|p < ps,linked e p]
null p C(fThrget e == source (head p))

26

Introducing thinning

Thin introduction lets us refine the specification to

mcp «~ MinWith cost - ThinBy (D)_-Ipaths

provided that p [gl _cobkt p < cost . Choose

p Lgl = (source (head p) == source (head q)) [(dost p < cost q)

Aim now to fuse ThinBy (L)_dnd paths: find tstep satisfying fusion condition

tstep es (ThinBy (D) _ds) «~ ThinBy (L) _(step es ps)

Let us calculate!

ADWH —

Calculating the thinning step

ThinBy (D _(ktep es ps)
= |I definition of step]

ThinBy (D_(concat [conseps|e — es])
= |[distributivity]

ThinBy (D_(concat [ThinBy ([)_(conseps) | e - es])
= [[claim (see book) 1]

ThinBy (D_(concat [cons e (ThinBy (D) ds) | e « es])
= [[definition of step]

ThinBy (D _(ktep es (ThinBy (L) _(ds))
~> [[defining tstep es ps «~ ThinBy (L)_(ktep es ps) 1]

tstep es (ThinBy (L)_@ds)

28

The resulting algorithm

We have calculated

mcp = minWith cost - foldr tstep [[]] where

tstep es ps = thinBy (L) _(lstep es ps)
stepesps =[e:p|e «~ es,p ~ ps,linked e p]

where minWith and thinBy implement MinWith and ThinBy.

Optimization: tuple paths with their costs, to avoid recomputation.
Optimization: sort layers and candidates by source vertex: < 1 path per vertex.

With d layers of k vertices, thinning takes O(d®k), whereas Dijkstra’s algorithm
takes O(d?k?), so better when d > k. Using arrays, comes down to O(d?k).

ADWH

Thinning coins

Greedy algorlthm does not work for all currencies, eg 48d in UK pre-decimal:

(30d).

But thinning works. Partial candidates (cs, r) with counts cs and residue r, and

cost (cs,r) = (r,count cs)

Thin by some [suich that x [y 1l _caokt x < cost y; choose

(cs,r) C(a@s5rY = rY [(dount cs < count csY

—of two candidates with same residue, smaller count dominates larger.

(It is also a layered network problem. And susceptible to dynamic programming.)

30

ADWH 31

summary

1. functional programming

equational reasoning for algorithm design

2. greedy algorithms

simple examples of program calculation

3. nondeterminism

a linguistic novelty , DESIGN;
4. thinning with HASKELL

RICHARD BIRD and JEREMY GIBBONS

an algorithmic novelty
CUP, out now!

Questions? (4/4)

@jer_gib
K jeremy.gibbons@cs.ox.ac.uk

www .cambridge.org/core/books/algorithm-design-with-haskell/
824BEO319E3762CESBASB1D91EEA3F52

£ drop me a line for 20% discount voucher

