
ADWH 1

ADWH + 2

Overview

1. functional programming

equational reasoning for algorithm design

2. greedy algorithms

simple examples of program calculation

3. nondeterminism

a linguistic novelty

4. thinning

an algorithmic novelty

ADWH 3

1. Why functional programming matters

• programs are values, not commands

• supports good old-fashioned equational reasoning

• . . . with program texts, without needing a distinct language

• calculate efficient implementations from clear specifications

• using Haskell

• a plea for simplicity : no GADTs, no Monads, no Traversables. . .

ADWH + 4

Fusion

Consider the standard foldr function, eg sum = foldr (+) 0:

foldr :: (↵! �! �)! �! [↵]! �
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

The fusion law for foldr states

h · foldr f e = foldr f 0 e0 (= 8x y . h (f x y) = f 0 x (h y) ^ h e = e0

For example,

double · sum = foldr twicePlus 0 where twicePlus x y = 2⇥ x + y

because double (x + y) = twicePlus x (double y) and double 0 = 0.

ADWH � 5

Fusion as the driving force

Many problems have a simple specification written with standard components:

algorithm = aggregate · test · generate

eg

mcst = minWith cost · filter spanning · trees

Aggregation is often selection. Generation of candidates often as a fold or until:

• perms (permutations)
• segs (segments)
• parts (partitions), subseqs (subsequences)
• trees (trees)

etc. Then the problem is to fuse the aggregation and testing with generation.

ADWH 6

Questions? (1/4)

1. functional programming

2. greedy algorithms

3. nondeterminism

4. thinning

ADWH + 7

2. Greedy algorithms

Selecting a single optimal candidate constructed from some components:

• eg shortest encoding (constructed from symbols)

• eg lightest spanning tree (constructed from edges)

• eg least wasteful paragraph (constructed from words)

Greedy algorithm assembles optimal candidate step by step from components,
maintaining just a single partial candidate throughout.

Often leads to a simple algorithm, but with a tricky proof of correctness.

ADWH 7

2. Greedy algorithms

Selecting a single optimal candidate constructed from some components:

• eg shortest encoding (constructed from symbols)

• eg lightest spanning tree (constructed from edges)

• eg least wasteful paragraph (constructed from words)

Greedy algorithm assembles optimal candidate step by step from components,
maintaining just a

“think globally, act locally”

single partial candidate throughout.

Often leads to a simple algorithm, but with a tricky proof of correctness.

ADWH + 8

A generic greedy algorithm

Computing a minimum-cost Candidate from some Components:

mcc :: [Component]! Candidate
mcc = minWith cost · candidates

Here, minWith selects (leftmost) minimal element from a non-empty list:

minWith :: Ord b) (a ! b)! [a]! a
minWith f = foldr1 (minBy f) where minBy f x y = if f x 6 f y then x else y

and candidates constructs a finite non-empty list of Candidates:

candidates :: [Component]! [Candidate]
candidates = foldr step [c0] where step x cs = concat (map (extend x) cs)

where c0 :: Candidate and extend :: Component ! Candidate! [Candidate].

ADWH 9

Greedy sorting

For sorting strings,

type Candidate = String
type Component = Char

The empty partial candidate is c0 = "", and candidates are permutations:

extend x c = [c1 ++ [x] ++ c2 | n [0 . . length c], let (c1, c2) = splitAt n c]

ie extend ’a’ "bcd" = ["abcd", "bacd", "bcad", "bcda"].

The cost to minimize is the inversion count:

ic xs = length [(x, y) | x : ys tails xs, y : zs tails ys, x > y]

ADWH 10

Fusion

Recall fusion law

h · foldr f e = foldr f 0 e0 (= 8x y . h (f x y) = f 0 x (h y) ^ h e = e0

For greedy algorithm, h = minWith cost, f = step, e = [c0], e0 = c0,
and we have to find f 0 = gstep—the greedy step—such that:

minWith cost (step x cs) = gstep x (minWith cost cs)

Let us calculate!

ADWH + 11

Calculating gstep

minWith cost (step x cs)
= [[definition of step]]

minWith cost (concat (map (extend x) cs))
= [[distributive law]]

minWith cost (map (minWith cost · extend x) cs)
= [[define gstep x = minWith cost · extend x]]

minWith cost (map (gstep x) cs)
= [[greedy condition]]

gstep x (minWith cost cs)

So provided the greedy condition holds, we have the greedy algorithm:

mcc = foldr gstep c0 where gstep x = minWith cost · extend x

ADWH + 11

Calculating gstep

minWith cost (step x cs)
= [[definition of step]]

minWith cost (concat (map (extend x) cs))
= [[distributive law]]

minWith cost (map (minWith cost · extend x) cs)
= [[define gstep x = minWith cost · extend x]]

minWith cost (map (gstep x) cs)
= [[greedy condition]]

gstep x (minWith cost cs)

So provided the greedy condition holds, we have the greedy algorithm:minWith f (concat xss) = minWith f (map (minWith f) xss)

mcc = foldr gstep c0 where gstep x = minWith cost · extend x

ADWH 11

Calculating gstep

minWith cost (step x cs)
= [[definition of step]]

minWith cost (concat (map (extend x) cs))
= [[distributive law]]

minWith cost (map (minWith cost · extend x) cs)
= [[define gstep x = minWith cost · extend x]]

minWith cost (map (gstep x) cs)
= [[greedy condition]]

gstep x (minWith cost cs)

So provided the greedy condition holds, we have the greedy algorithm:

minWith cost (map (gstep x) cs) = gstep x (minWith cost cs)

mcc = foldr gstep c0 where gstep x = minWith cost · extend x

ADWH 11

Calculating gstep

minWith cost (step x cs)
= [[definition of step]]

minWith cost (concat (map (extend x) cs))
= [[distributive law]]

minWith cost (map (minWith cost · extend x) cs)
= [[define gstep x = minWith cost · extend x]]

minWith cost (map (gstep x) cs)
= [[greedy condition]]

gstep x (minWith cost cs)

So provided the greedy condition holds, we have the greedy algorithm:

mcc = foldr gstep c0 where gstep x = minWith cost · extend x

ADWH + 12

Does greedy sorting work?

Sadly, no—the greedy condition fails for sorting:

[7, 1, 2, 3]3

[3, 2, 1, 7]3

map (gstep 6) //

minWith ic

✏✏

[7, 1, 2, 3, 6]4

[3, 2, 1, 6, 7]3

minWith ic

✏✏

[7, 1, 2, 3]3
gstep 6

// [7, 1, 2, 3, 6]4 6= [3, 2, 1, 6, 7]3

In a nutshell, ordering by ic is not linear, because not antisymmetric. Fixes?

• context-sensitive fusion (unique optimum on range of perms)

• refine the cost function (from ic to id, which is a linear order)

• nondeterminism (keep all optimal candidates—more shortly)

ADWH + 12

Does greedy sorting work?

Sadly, no—the greedy condition fails for sorting:

[7, 1, 2, 3]3

[3, 2, 1, 7]3

map (gstep 6) //

minWith ic

✏✏

[7, 1, 2, 3, 6]4

[3, 2, 1, 6, 7]3

inversion count

minWith ic

✏✏

[7, 1, 2, 3]3
gstep 6

// [7, 1, 2, 3, 6]4 6= [3, 2, 1, 6, 7]3

In a nutshell, ordering by ic is not linear, because not antisymmetric. Fixes?

• context-sensitive fusion (unique optimum on range of perms)

• refine the cost function (from ic to id, which is a linear order)

• nondeterminism (keep all optimal candidates—more shortly)

ADWH 13

Making change

UK coins , , , , , , , :

ukds = [1, 2, 5, 10, 20, 50, 100, 200] -- smallest assumed to be 1

type Tuple = [Nat] is lists of counts, of same length as denominations:

count :: Tuple! Nat
count = sum

Then fewest coins given by change ds n = minWith count (tuples n ds), where

tuples n = finish · foldr step [([], n)] where
step d = concat · map (extend d)
extend d (cs, r) = [(c : cs, r � c ⇥ d) | c [0 . . r div d]]
finish = map fst · filter ((0 ==) · snd)

ADWH + 14

Making change, greedily

Obvious greedy algorithm: most coins possible, largest first.

But greedy condition doesn’t hold, because again the ordering is not linear:

1 1 3 7 7 7 7 7 7 7 = 54 = 3 3 3 3 7 7 7 7 7 7

—‘obvious algorithm’ chooses former, but change computes latter.
Desired implementation is not equal to specification.

Refine to a linear ordering: use maxWith reverse (ie lexically greatest, in reverse).

For UK decimal currency, greedy condition now holds; greedy algorithm emerges.

But for other currencies (eg UK pre-decimal), greedy algorithm doesn’t work. . .

ADWH 15

Questions? (2/4)

1. functional programming

2. greedy algorithms

3. nondeterminism

4. thinning

ADWH 16

3. Nondeterminism

Refining to linear order is cheating: ad hoc, prejudicial, sometimes impossible.

But without it, establishing greedy condition for fusion

minWith cost (map (gstep x) cs) = gstep x (minWith cost cs)

entails proving the equivalence

cost c 6 cost c0 () cost (gstep x c) 6 cost (gstep x c0)

which rarely holds in practice. We need fusion to work given only monotonicity:

cost c 6 cost c0 =) cost (gstep x c) 6 cost (gstep x c0)

ADWH + 17

Relations

Optimization problems are often underdetermined:
multiple distinct minimal solutions.

Specification should admit any optimal solution,
not pre-commit to one.

But implementation must choose one:
should be optimal, but need not reach them all.

That is, implementation must refine specification.

ADWH � 18

Algebra of Programming

Theorem 7.2 If S is monotonic on a preorder R�, then

([min R · ”S]) ✓min R · ”([S])

Proof. We reason:

([min R · ”S]) ✓min R · ”([S])
⌘ {universal property of min }

([min R · ”S]) ✓ ([S]) and ([min R · ”S]) · ([S])� ✓ R
⌘ {since min R · ”S ✓ S }

([min R · ”S]) · ([S])� ✓ R
({hylomorphism theorem }

min R · ”S · F R · S� ✓ R
({monotonicity: F R · S� ✓ S� · R }

min R · ”S · S� · R ✓ R
({since min R · ”S ✓ R / S�; division }

R · R ✓ R
⌘ {transitivity of R }

true

ADWH + 19

A gentler approach

It suffices to extend the development language slightly, with MinWith and ;:

x ;MinWith f xs () x 2 xs ^ 8y 2 xs : f x 6 f y

For example, distributive law

MinWith cost (concat xss) = MinWith cost (map (MinWith cost) xss)

means

x ;MinWith f (concat xss)
() x ;MinWith f (map (MinWith f) xss)
() 9xs . xs ;map (MinWith f) xss ^ x ;MinWith f xs

Just for specifications; no change to implementation language.

ADWH 19

A gentler approach

It suffices to extend the development language slightly, with MinWith and ;:

x ;MinWith f xs () x 2 xs ^ 8y 2 xs : f x 6 f y

For example, distributive law

MinWith cost (concat xss) = MinWith cost (map (MinWith cost) xss)

means

x ;MinWith f (concat xss)
() x ;MinWith f (map (MinWith f) xss)
() 9xs . xs ;map (MinWith f) xss ^ x ;MinWith f xs

Just for specifications; no change to implementation language.

see Bird & Rabe,
How to Calculate with

Nondeterministic Functions,
MPC 2019

ADWH + 20

Laws of nondeterministic functions

Fusion:

foldr f 0 e0 xs ;H (foldr f e xs) (= 8x y . f 0 x (H y) ;H (f x y) ^ e0 ;H e

Then the greedy calculation goes through needing only refinement

gstep x (MinWith cost cs) ;MinWith cost (map (gstep x) cs)

as a premise rather than equality, where

gstep x ;MinWith cost · extend x

Now nondeterministic greedy condition holds for changing coins, with cost = count.

ADWH 21

Questions? (3/4)

1. functional programming

2. greedy algorithms

3. nondeterminism

4. thinning

ADWH + 22

4. Thinning

• greedy algorithm maintains a single candidate

• exhaustive search considers all possible candidates

• thinning is in between, maintaining some candidates

• some partial candidates dominate others, which may be discarded

• thinning not traditionally seen as a distinct algorithm design technique

• relevant problems often presented using dynamic programming

• the thinning presentation may lead to a more effective solution

• dynamic programming is better seen as a generalization of divide & conquer

ADWH + 23

Paths in a layered network

Directed, acyclic, layered, edge-weighted.

Find shortest path from top to bottom.

Dijkstra’s algorithm takes “(n2) steps.
We can do better.

Greedy algorithm doesn’t work.

But from given source vertex,
a shorter path dominates a longer one.

A B C D

E F G H

I J K L

M N O P

7

8

8 5 3

4 2

3 7

2 1 5 3

5 9 2 1

4 2 6 7

ADWH 23

Paths in a layered network

Directed, acyclic, layered, edge-weighted.

Find shortest path from top to bottom.

Dijkstra’s algorithm takes “(n2) steps.
We can do better.

Greedy algorithm doesn’t work.

But from given source vertex,
a shorter path dominates a longer one.

A B C D

E F G H

I J K L

M N O P

7

8

8 5 3

4 2

3 7

2 1 5 3

5 9 2 1

4 2 6 7

ADWH � 24

Thinning

Another nondeterministic function

ThinBy :: (a ! a ! Bool)! [a]! [a]

returning some dominating subsequence under given preorder �:

ys ;ThinBy (�) xs () ys v xs ^ 8x 2 xs . 9y 2 ys . y � x

Computing a shortest thinning takes quadratic time. Linear-time approximation:

thinBy (�) = foldr bump [] where bump x [] = [x]
bump x (y : ys) | x � y = x : ys

| y � x = y : ys
| otherwise = x : y : ys

still useful if the candidates are generated in a convenient order.

ADWH � 25

Laws of thinning

MinWith cost = MinWith cost · ThinBy (�) (= x � y) cost x 6 cost y
-- thin introduction

wrap · MinWith cost ;ThinBy (�) (= cost x 6 cost y) x � y
-- thin elimination

ThinBy (�) · concat = ThinBy (�) · concatMap (ThinBy (�))
-- distributivity

map f · ThinBy (�) ;ThinBy (�) · map f (= x � y) f x � f y
-- thin–map

ThinBy (�) · map f ;map f · ThinBy (�) (= f x � f y) x � y
-- thin–map

ThinBy (�) · filter p = filter p · ThinBy (�) (= (x � y ^ p y)) p x
-- thin–filter

ADWH � 26

Specifying the problem

data Edge = E {source :: Vertex, target :: Vertex, weight :: Weight }
mcp :: [[Edge]]! [Edge] -- network to path
mcp ;MinWith cost · paths

cost :: [Edge]! Weight
cost = sum · map weight

paths :: [[Edge]]! [[Edge]] -- network to set of paths
paths = foldr step [[]] where

step es ps = concat [cons e ps | e es]
cons e ps = [e : p | p ps, linked e p]
linked e p = null p _ (target e == source (head p))

ADWH + 27

Introducing thinning

Thin introduction lets us refine the specification to

mcp ;MinWith cost · ThinBy (�) · paths

provided that p � q) cost p 6 cost q. Choose

p � q = (source (head p) == source (head q)) ^ (cost p 6 cost q)

Aim now to fuse ThinBy (�) and paths: find tstep satisfying fusion condition

tstep es (ThinBy (�) ps) ;ThinBy (�) (step es ps)

Let us calculate!

ADWH � 28

Calculating the thinning step

ThinBy (�) (step es ps)
= [[definition of step]]

ThinBy (�) (concat [cons e ps | e es])
= [[distributivity]]

ThinBy (�) (concat [ThinBy (�) (cons e ps) | e es])
= [[claim (see book)]]

ThinBy (�) (concat [cons e (ThinBy (�) ps) | e es])
= [[definition of step]]

ThinBy (�) (step es (ThinBy (�) ps))
; [[defining tstep es ps ;ThinBy (�) (step es ps)]]

tstep es (ThinBy (�) ps)

ADWH � 29

The resulting algorithm

We have calculated

mcp = minWith cost · foldr tstep [[]] where
tstep es ps = thinBy (�) (step es ps)
step es ps = [e : p | e es, p ps, linked e p]

where minWith and thinBy implement MinWith and ThinBy.

Optimization: tuple paths with their costs, to avoid recomputation.

Optimization: sort layers and candidates by source vertex:  1 path per vertex.

With d layers of k vertices, thinning takes O(d3 k), whereas Dijkstra’s algorithm
takes O(d2 k2), so better when d > k. Using arrays, comes down to O(d2 k).

ADWH 30

Thinning coins

Greedy algorithm does not work for all currencies, eg 48d in UK pre-decimal:

(1/2d), (1d), (3d), (6d), (12d), (24d), (30d).

But thinning works. Partial candidates (cs, r) with counts cs and residue r , and

cost (cs, r) = (r, count cs)

Thin by some � such that x � y) cost x 6 cost y; choose

(cs, r) � (cs0, r 0) = (r == r 0) ^ (count cs 6 count cs0)

—of two candidates with same residue, smaller count dominates larger.

(It is also a layered network problem. And susceptible to dynamic programming.)

ADWH 31

Summary

1. functional programming

equational reasoning for algorithm design

2. greedy algorithms

simple examples of program calculation

3. nondeterminism

a linguistic novelty

4. thinning

an algorithmic novelty

CUP, out now!

ADWH 32

Questions? (4/4)

@jer_gib

jeremy.gibbons@cs.ox.ac.uk

www.cambridge.org/core/books/algorithm-design-with-haskell/
824BE0319E3762CE8BA5B1D91EEA3F52

£ drop me a line for 20% discount voucher

