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From the general difficulty of simulating quantum systems using classical systems, and in particular
the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is
intrinsically more powerful than classical computation. At present, the best upper bound known for
the power of quantum computation is that BQP ⊆ AWPP, where AWPP is a classical complexity
class (known to be included in PP, hence PSPACE). This work investigates limits on computational
power that are imposed by simple physical, or information theoretic, principles. To this end, we
define a circuit-based model of computation in a class of operationally-defined theories more gen-
eral than quantum theory, and ask: what is the minimal set of physical assumptions under which
the above inclusions still hold? We show that given only an assumption of tomographic locality
(roughly, that multipartite states and transformations can be characterised by local measurements),
efficient computations are contained in AWPP. This inclusion still holds even without assuming a
basic notion of causality (where the notion is, roughly, that probabilities for outcomes cannot depend
on future measurement choices). Following Aaronson, we extend the computational model by al-
lowing post-selection on measurement outcomes. Aaronson showed that the corresponding quantum
complexity class, PostBQP, is equal to PP. Given only the assumption of tomographic locality, the
inclusion in PP still holds for post-selected computation in general theories. Hence in a world with
post-selection, quantum theory is optimal for computation in the space of all operational theories.
We then consider whether one can obtain relativised complexity results for general theories. It is
not obvious how to define a sensible notion of a computational oracle in the general framework that
reduces to the standard notion in the quantum case. Nevertheless, it is possible to define computa-
tion relative to a ‘classical oracle’. Then, we show there exists a classical oracle relative to which
efficient computation in any theory satisfying the causality assumption does not include NP. This
provides some degree of evidence that NP-complete problems cannot be solved efficiently in any
theory satisfying tomographic locality and causality.

Description of results

The following is an extended abstract of the paper [Lee, C. M., & Barrett, J. (2014). Computation in
generalised probabilistic theories. arXiv preprint arXiv:1412.8671].

Quantum theory offers dramatic new advantages for various information theoretic tasks [1]. This
raises the general question of what broad relationships exist between physical principles, which a theory
like quantum theory may or may not satisfy, and information theoretic advantages. Much progress has
already been made in understanding the connections between physical principles and some tasks, such
as cryptography and communication complexity problems. It is now known that the degree of non-
locality in a theory is related to its ability to solve communication complexity problems [2] and to its
ability to perform super-dense coding, teleportation and entanglement swapping [3]. Teleportation and
no-broadcasting are now better understood than they were when investigated solely from the viewpoint of
quantum theory [4, 5]. Cryptographic protocols have been developed whose security relies not on aspects
of the quantum formalism, but on general physical principles. For example, device-independent key
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distribution schemes have been developed that are secure against attacks by post-quantum eavesdroppers
limited only by the no-signalling principle [6].

By comparison, relatively little has been learned about the connections between physical principles
and computation. It was shown in [7] that a maximally non-local theory has no non-trivial reversible
dynamics and, thus, any reversible computation in such a theory can be efficiently simulated on a clas-
sical computer. Aside from this result, most previous investigations into computation beyond the usual
quantum formalism have centred around non-standard theories involving modifications of quantum the-
ory. These theories often appear to have immense computational power and entail unreasonable physical
consequences. For example, non-linear quantum theory appears to be able to solve NP-complete prob-
lems in polynomial time [8], as does quantum theory in the presence of closed timelike curves [9, 17].
Aaronson has considered other modifications of quantum theory, such as a hidden variable model in
which the history of hidden states can be read out by the observer [11], and these have also been shown
to entail computational speedups over the usual quantum formalism.

This work considers computation in a framework suitable for describing essentially arbitrary oper-
ational theories, where an operational theory specifies a set of laboratory devices that can be connected
together in different ways, and assigns probabilities to experimental outcomes. Theories within this
framework can be described that are different from classical or quantum theories, but which nonetheless
make good operational sense and do not involve peculiarities like closed timelike curves. We work in
the circuit framework for operationally defined theories 1 theories developed by Hardy in [15, 16] and
Chiribella, D’Ariano and Perinotti in [12, 13]. This framework suggests a natural model of computation,
analogous to the classical and quantum circuit models, which we define rigorously in the arXiv version
of this work.

The strongest known non-relativised upper bound for the power of quantum computation is that
the class BQP of problems efficiently solvable by a quantum computer is contained in the classical
complexity class AWPP, this was proved by Fortnow and Rogers in [18]. The class AWPP has a slightly
obscure definition, but is well known to be contained in PP, hence PSPACE. It is shown in the arXiv
version of this work that the same result holds for any theory in the operational framework that satisfies
the principle of tomographic locality, where this means, roughly, that transformations can be completely
characterised by product states and effects. That is, if the complexity class of problems that can be
efficiently solved by a specific theory G is denoted schematically BGP, then for tomographically local
theories, BGP ⊆ AWPP. Once suitable definitions are in place, the proof is essentially the same as the
proof for the quantum case: the idea is that this proof can be cast in a theory-independent manner, and
be seen to follow from a very minimal set of assumptions on the structure of a physical theory. In fact,
the containment BGP ⊆ AWPP still holds even in the absence of a basic principle of causality (which,
if it does hold, ensures that there can be no signalling from future to past).

One possible interpretation of that fact that the best known upper bounds on efficient computation
in quantum theory follow from very weak assumptions on any operationally defined theory is that we
should in principle be able to derive stronger upper bounds for the class BQP. Thus our results point out
that the ‘quantum’ proofs of these upper bounds do not exploit any of the structure unique to quantum
theory.

It was suggested in [14] that quantum theory achieves, in some sense, an optimal balance between its
set of states and its dynamics, and that this balance entails that quantum theory is powerful for compu-
tation by comparison with most theories in the space of operational theories. Although the status of this
suggestion is unknown, it turns out to be exactly correct in the context of a world allowing post-selection

1called generalised probabilistic theories in the literature.
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of measurement outcomes. Aaronson showed that the class of problems efficiently solvable by a quan-
tum computer with the ability to post-select measurement outcomes is equal to the class PP [10]. In
the full paper we extend the idea of computation with post-selection to general theories, and shows that
given (as always) tomographic locality, problems efficiently solvable by any theory with post-selection
are contained in PP. In other words: any problem efficiently solvable in a tomographically local theory
with post-selection, is also efficiently solvable by a quantum computer with post-selection.

Finally, oracles play a special role in quantum computation, forming the basis of most known com-
putational speed-ups over classical computation. The last section of the full paper discusses the problem
of defining a sensible notion of oracle in the general framework, that reduces to the standard definition
in quantum theory. This problem may not have a solution that is completely general, hence we introduce
instead a notion of ‘classical oracle’ that can be defined in any theory that satisfies the causality princi-
ple. Given this definition, we show that there exists a classical oracle such that relative to this oracle,
NP is not contained in BGP for any theory G satisfying tomographic locality and causality . This might
be seen as some kind of evidence that NP-complete problems cannot be solved efficiently by general
theories satisfying these two constraints.
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