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The study of non-locality is fundamental to the understanding of quantum mechanics. The past 50
years have seen a number of non-locality proofs, but its fundamental building blocks, and the exact
role it plays in quantum protocols, has remained elusive. In this paper, we focus on a particular
flavour of non-locality, generalising Mermin’s argument on the GHZ state. Using strongly comple-
mentary (aka canonically commuting) observables, we provide necessary and sufficient conditions
for Mermin non-locality in abstract process theories. We show that the existence of more phases than
classical points (aka eigenstates) is not sufficient, and that the key to Mermin non-locality lies in the
presence of certain algebraically non-trivial phases. This allows us to show that fRel, a favourite toy
model for categorical quantum mechanics, is Mermin local. By considering the role it plays in the
security of the HBB CQ (N,N) family of Quantum Secret Sharing protocols, we argue that Mermin
non-locality should be seen as a resource in quantum protocols. Finally, we challenge the unspoken
assumption that the measurements involved in Mermin-type scenarios should be complementary,
opening the doors to a much wider class of potential experimental setups than currently employed.

1 Introduction

Non-locality is a fundamental property of quantum mechanics. It impacts both foundations and appli-
cation, ruling out the existence of local hidden variable theories consistent with quantum theory [6],
and underpinning protocols like quantum key distribution [14] and quantum secret sharing [21]. The
importance of this property pushed the development of methods to characterise it both in general (e.g.
the sheaf-theoretic methods of [1]) and in specific extensions of quantum theory (e.g. the generalized
probabilistic theories of [5]).

We focus on a particular possibilistic class of non-locality arguments generalized from Mermin’s
argument [22] and related to the recent work on All-versus-Nothing arguments by Abramsky et al. [2].
These experiments produce possibilistic evidence for quantum mechanical non-locality, i.e. certain mea-
surement outcomes that can only be realized by non-local theories. Mermin scenarios are typically
described by triples (N,M,D) for N parties with M measurement choices for each party, each having
D classical outcomes. Current literature generalises from the original (3,2,2) scenario [22] to derive
non-locality proofs for the (D+1,2,D) [25], (N > D,2,D even) [23], and (odd N,2,even D) [18]. One
contribution of our work is to extend the work of [10] to cover all (N,M,D) scenarios.

In [10], Coecke et al. used strong complementarity to formulate Mermin arguments within the the
framework of Categorical Quantum Mechanics [3]. Not only does this approach help generalize non-
locality arguments within quantum theory, but this approach also paved the way towards an understanding
of Mermin non-locality in abstract process theories, aka dagger symmetric monoidal categories. As a
corollary, they are able to identify the difference between Stabilizer Quantum Mechanics (which is non-
local) and Spekken’s toy theory (which is local) in the structure of the respective phase groups [10, 11].

In Sections 3 and 4, we use strongly complementary structures to generalise Mermin measurements
to abstract process theories, defining Mermin non-locality as the existence of a Mermin measurement
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scenario not admitting a local hidden variable model.
In Section 4, we show that strong complementarity is not sufficient to characterise Mermin non-

locality. The phase group structure is shown to provide necessary algebraic conditions in abstract process
theories, as summarised by our first main result:

Theorem 1.1. 4.8. Let C be a †-SMC, and ( , ) be a strongly complementary pair of †-qSCFAs. If the
group of -phases is a trivial algebraic extension of the subgroup of -classical points, i.e. if there exist
no algebraically non-trivial -phases, then C is Mermin local.

Thus -phase groups which are trivial algebraic extensions of the respective subgroups of -classical
points always lead to local hidden variable models, irregardless of whether there are enough -classical
points to form a basis and/or strictly more -phases than -classical points. Indeed, we show that the
category fRel of finite sets and relations is Mermin local (despite it having arbitrarily many more -
phases than -classical points), and also confirm that Spekken’s toy theory is Mermin local (despite it
having enough -classical points to form a basis).

Also in Section 4, we show that the existence of algebraically non-trivial -phases is sufficient, under
mild additional assumptions, to formulate a non-locality argument. This leads to our second main result:

Theorem 1.2.4.7. Let C be a †-SMC, and ( , ) be a strongly complementary pair of †-qSCFAs. Suppose
further that the -classical points form a basis. If the group of -phases is a non-trivial algebraic
extension of the subgroup of -classical points, then C is Mermin non-local.

As a consequence, we confirm that Stabilizer Quantum Mechanics is Mermin non-local.
In Section 5, we argue that our concrete characterisation as the existence of algebraically non-trivial

phases can be used to see Mermin non-locality as a resource in the construction of quantum protocols.
We exemplify this by showing how the security of the HBB CQ (N,N) family of Quantum Secret Sharing
protocols from [20, 21] directly relates to the flavour of non-locality explored in this work.

In Section 6, we use our general framework to investigate Mermin non-locality in fdHilb, the his-
torical arena of quantum mechanics. The traditional formulation of Mermin arguments relies on sets of
complementary measurements, such as the X ( measurement with -phase 0) and Y ( measurement
with -phase π

2 ) measurements of the qubit in the original (3,2,2) Mermin argument. We show how,
even in the case of (N,2,D) scenarios, many more possible measurements exist than complementary
ones. This result opens the way to a wealth of novel experimental configurations for tests of Mermin
non-locality and, through results of Section 5, new configurations for quantum secret sharing protocols
as well.

2 Background

This section refers the reader to background literature on the mathematical concepts of abstract process
theories that we use in this work.

Classical structures, aka special commutative †-Frobenius algebras (†-SCFAs), play a central role in
Categorical Quantum Mechanics (CQM) [3] as the abstract incarnation of non-degenerate observables.
The operational aspect of †-SCFAs is extensively covered in [9], where they are interpreted as models
for the classical data operations of copy, deletion, and comparison. Their key connection with non-
degenerate observables in quantum mechanics is provided by [12], where it is proven that †-SCFAs in
fdHilb canonically correspond to orthonormal bases (their unique basis of copyable, or classical, states),
and can thus be used to model a basis of eigenstates; more generally, commutative †-Frobenius algebras
(†-CFAs) correspond to orthogonal bases.
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Strongly complementary pairs of classical structures appear in [7,10] to model non-locality in terms
of non-commutative non-degenerate observables of generalized Mermin arguments. The paper [19]
shows that they correspond to finite abelian groups in fdHilb and [15] specifies their connection to the
Fourier Transform. The notion of phase groups was explicitly introduced in [7, 13]. Their connection
to non-locality was first made in [11], where it was used to differentiate Spekkens toy theory from sta-
bilizer quantum mechanics. Finally, the upcoming [8] and [17] provide a comprehensive reference for
many structures and results used here. These are also good references for the diagrammatic notation used
throughout this literature.

3 Mermin measurements

Unlike Bell tests, which produce outcomes with probabilities that are forbidden to local hidden variable
theories, the Mermin argument produces outcomes which are impossible to observe in a local hidden vari-
able theory [22]. This section introduces the definitions necessary to generalise the Mermin argument to
abstract process theories. We make use of the standard definitions for strongly complementary observ-
ables, phase states and phases. We often refer to quasi-special †-Frobenius algebras as non-degenerate
observables and use the shorthand †-qSFA. The acronym †-qSCFA refers to a commutative †-qSFA.
Definitions of these concepts are reproduced in Appendix A.
Definition 3.1. A family (|ψ j〉) j of states of an object H in a †-SMC forms a basis if the following two
conditions hold:

1. 〈ψi|ψ j〉= 0 for i 6= j

2. for any f ,g : H →H ′ we have that ∀ j. f |ψ j〉= g|ψ j〉 implies f = g

In fdHilb, the objects are vector spaces and any vector space basis clearly obeys these conditions. The
above Definition allows us to extend the appropriate notion of a basis to an arbitrary †-SMC. Within the
context of Categorical Quantum Mechanics, a †-qSCFA with classical points forming a basis is said to
have enough classical points.
Theorem 3.2. Let and be strongly complementary †-qSFAs. Phase states (resp. phases) of form
group under the action of ( , ). This group of phase states is denoted the phase group P . The
classical points (resp. the induced phases) of are a subgroup, i.e. K ⊆P .

Proof. Proof that phases form a group can be found in [17]. Proof that classical points form a group can
be found in [10] (for †-SCFAs) and [15]. Statement follows from this.

As the phase group of a †-qSCFA is commutative, we use additive notation: given two -phase states
|α〉 and |β 〉, we denote by |α +β 〉 their addition in the phase group. From now on, we interchangeably
use phase states and phases, leaving disambiguation to context.

The GHZ states and Mermin measurements are the main ingredients needed in our argument. GHZ
states appear in the ZX calculus fragment of our framework in [7] and our was generalized to the defini-
tion we use here in [10].
Definition 3.3. Given a †-qSFA in a †-SMC, an N-partite GHZ state for is:

· · ·
n-systems

(3.1)

We follow [10] to build Mermin type scenarios out of them.
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Definition 3.4. Let and be a pair of strongly complementary †-qSFAs. An N-partite Mermin mea-
surement is obtained by applying N -phases α1, ...,αN to the N components of an N-partite GHZ state,
and then measuring each component in the structure:

−α1 α1 −αN αN

· · · (3.2)

We further require that ∑i αi, where the sum is taken in the group of phases, be a -classical point.

Lemma 3.5. The N-partite Mermin measurement shown in Equation 3.2 is equivalent to the following
state:

−∑αi +∑αi

· · ·

(3.3)

Proof. Pushing the phases down through the nodes and using strong complementarity. See [10].

While this defines a single Mermin experiment, the full non-locality argument requires the joint
outcomes of several Mermin measurements.

Definition 3.6. Let and be strongly complementary †-qSCFAs on a space H in a †-SMC. An N-
partite Mermin measurement scenario (for and ) is any non-empty, finite collection of Mermin
measurements αs = (αs

1, ...,α
s
N)s=1,...,S of the N-partite GHZ state in the form of Equation 3.5.

In the category fdHilb of finite-dimensional Hilbert spaces, an N-partite Mermin measurement sce-
nario where a1, ...,aM are the distinct -phases appearing in the scenario and H is D-dimensional is
exactly the usual (N,M,D) Mermin scenario. This correspondence is clarified in Section 4, where we
derive our generalized Mermin non-locality argument.

4 Mermin locality and non-locality

The last definitions we need for our main results, Theorems 4.7 and 4.8, are those of local hidden variable
models (following the construction of [10]) and non-trivial algebraic extensions.

Definition 4.1. Let and be strongly complementary †-qSCFAs on some system H . Consider an N-
partite Mermin measurement scenario (αs)s=1,...,S, and let a1, ...,aM be the distinct -phases appearing
in it. The local map for the scenario is the map H ⊗(M·N)→H ⊗(N·S) defined as follows:

a. we group the input wires in N groups of M wires: we say that the r-th wire of i-th group is the ar

input wire for system i

b. we group the output wires in S groups of N wires: we say that the j-th wire of r-th group is the
j-th output wire for measurement s

c. each input wire is connected to a node
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d. for all r, i, j and s, the node of each ar input wire for system i is connected to the j-th output wire
for measurement s if and only if i = j and αs

j = ar

The following diagram details the procedure:

...

a1

· · ·

System 1

...

aM

...

a1

· · ·
... ...

ar

System i

· · ·
...

aM

...

a1

· · ·

System N

...

aM

...

Measurement 1

α1
1 α1

N

Measurement s

αs
j... ...

αs
1 αs

N ...

Measurement S

αS
1 αS

N

Connected iff i = j and ar = αs
j

Local Map

(4.1)

A local hidden variable model for an N-partite Mermin measurement scenario is a state Λ of
H ⊗(N·S), obtained by applying the local map for the scenario to some state Λ′ of H ⊗(M·N). We fur-
ther require that for each s = 1, ...,S, the Mermin measurement αs is the same as the state obtained from
Λ by composing an with each output wires of each measurement t with t 6= s:

=· · · −αs
N +αs

N+αs
1−αs

1

αs
1

... αs
N

Λ′

· · · · · ·

Local Map

...
...

αs
1 αs

N ...

(4.2)

The definition of local hidden variables finally allows us to formulate our generalised notion of
Mermin non-locality.

Definition 4.2. We say a †-SMC C is Mermin non-local if there exists a Mermin scenario for some
strongly complementary pair ( , ) of †-qSCFAs which has no local hidden variable model. If for all
strongly complementary pairs no such measurement exists, then we say that C is Mermin local.

Mermin non-locality will shortly be shown to be equivalent to the following algebraic property of
the group of -phases. The following examples will be used later on to investigate some abstract process
theories of interest.

Definition 4.3. Let (G,+,0) be an abelian group and (H,+,0) be a subgroup. We say that G is a non-
trivial algebraic extension of H if there exists a finite system of equations (∑l

j=1 np
j · x j = hp)p, with

h f ∈ H and np
j ∈ Z, which has solutions in G but not in H. Otherwise, we say G is a trivial algebraic

extension of H.
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If G = P is a non-trivial algebraic extension of H = K , then the -phases involved in any solution
x j := α j to a system unsolvable in K will be called algebraically non-trivial phases.
Example 4.4. Let G = {0,π/2,π,−π/2}< R/2πZ and H = {0,π}< G. Then G is a non-trivial alge-
braic extension of H, because the single equation 2x = π has no solution in H but has solution(s) ±π/2
in G. It is in fact this example that yields the original argument in fdHilb from [10].
Lemma 4.5. Let (G,+,0) be an abelian group and (H,+,0) be a subgroup. Suppose that there is a
function Φ : G→ H such that for any equation ∑

l
j=1 n j · x j = h with h ∈ H and n j ∈ Z, if x j := g j is a

solution in G, x j := Φ(g j) is also a solution (in H). Then G is a trivial algebraic extension of H.

Proof. Consider a system with solution x j := g j in G. Then x j := Φ(g j) solves each individual equation
in H, and thus also the system.

Example 4.6. Let (K,+,0) be any finite abelian group, and G = K ×K′ for some finite non-trivial
abelian group (K′,+,0). Let H < G be the subgroup K×{0}. If h = (k,0) ∈ H, then any equation
∑

N
j=1 n j · x j = h is equivalent to the following pair of equations, where πK and πK′ are the quotient

projections onto K ∼= G/K′ and K′ ∼= G/K respectively:
a. ∑

N
j=1 n j ·πKx j = k in K

b. ∑
N
j=1 n j ·πK′x j = 0 in K′

If x j := g j = (πKg j,πK′g j) is a solution in G, then x j := (πKg j,0) is a solution in H. Define Φ to be the
map g j : G 7→ (πKg j,0) ∈ H and use Lemma 4.5 to conclude that G is a trivial algebraic extension of H.

We are now able to introduce our first main result:
Theorem 4.7 (Mermin Non-Locality). Let C be a †-SMC, and ( , ) be a strongly complementary pair
of †-qSCFAs. Suppose further that the -classical points form a basis. If the group of -phases is a
non-trivial algebraic extension of the subgroup of -classical points, then C is Mermin non-local.

Proof. For clarity, we present a proof where the system of equations that defines the phase group as a
non-trivial algebraic extension is composed of a single equation. The construction for general systems
of l equations consists of l copies of the construction we explicitly give.

Let a1, ...,aM be -phases and a 6= 0 be (the phase induced by) a -classical point such that the
following equation (in additive Z-module notation, for nr ∈ Z) has solution (xr := ar)r=1,...,M in the
group of -phases, but has no solution in the subgroup of (phases induced by) -classical points:

M

∑
r=1

nr ·ar = a (4.3)

This means that we are assuming the group of -phases are a non-trivial algebraic extension of the
subgroup of -classical points. Without loss of generality, assume that nr 6= 0 and ar 6= 0 for all r =
1, ...,M.

Let k be the exponent of the group of -classical points, and define the following Mermin measure-
ment, where each ar appears nr times and 0 appears n0 times, for some n0 such that V := ∑

M
r=0 nr ≡

1 (mod k)
α = (a1, ...,a1, ...,aM, ...,aM,0, ...,0) (4.4)

Define a V -partite Mermin measurement scenario with S := n0 +V and:

α
s := (0,0, ...,0,0) for s = 1, ...,n0

α
n0+v
i := α i+v (mod V ) for v = 1, ...,V (4.5)
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The scenario has n0 measurements with only 0 phases (the controls) and V measurements with cyclic
permutations of α (the variations). The following diagram depicts the scenario:

0 0 0 0

· · ·

· · ·

· · ·

0000 α1
N

· · ·

−αV
Nα1

1 −αV
1

· · ·

−α1
N−α1

1 · · · αV
1 αV

N

controls variations

(4.6)

To show that the scenario from Equation 4.6 does not admit a local hidden variable:
1a. we add up (in the group of -phases) all the components of each control, using Lemma 3.5, and

obtain 0 from each control

1b. we add up all the components of each variation, again using Lemma 3.5, and obtain a from each
variation

2a. we add up the result from all the controls, and obtain ΣC := n0 ·0 = 0

2b. we add up the result from all variations, and obtain ΣV :=V ·a = a , using the fact that a is in the
subgroup of (phases induced by) -classical points and V is congruent to 1 modulo the exponent
of the subgroup

3. we subtract ΣC from ΣV , using the antipode of the strongly complementary pair ( , ), and obtain
a−0 = a

4. we test the result against the -classical point 〈a|, and obtain the non-zero scalar 〈a|a〉
The procedure is summarised by the following diagram:

a

0...0 0...0 a1...am0...0 0a1...am0...0... ...

n0 controls V variations

... ... ... ...
0 0 a a

n0 ·0
V ·a

a
(4.7)

The same procedure applied to any local hidden variable model always yields the 0 scalar. A local
hidden variable model is nothing but the local map for the scenario applied to some state, so it is enough
to show that the above procedure yields the constant 0 function when composed with the local map:

a

Local Map

... ... ... ...

. . .α1 αM
System N

. . .α1 αM
System 1 . . . .

0 0 a a
n0 ·0

V ·a
a

(4.8)
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Since the -classical points form a basis, it is sufficient to show that the map from Diagram 4.8 always
yields 0 when applied to -classical points. In the following diagram, the nodes have been re-arranged
using the spider theorem, so that the wiring of the local map can be written down explicitly in a clean
way. The diagram also annotates the -classical values on the wires at each stage to aid in following the
argument:

1. the values b1
0, ...,b

V
0 for the 0 phases of systems 1 to V are each duplicated n0 +n0 times and then

added up to b0 := n0 ·∑ i = 1V bi
0 by the two nodes

2. the values bi
1, ...,b

i
m for the a1, ...,am phases of each system i = 1 (for i = 1, ...,V ) are each dupli-

cated nk times (for k = 1, ...,m) and added up to bi := ∑
m
r=1 nr ·bi

r by the respective nodes

3. the values b1, ...,bV are added up to b := ∑
V
i=1 bi

4. the value b0 is added up to b

5. finally, the value b0 is subtracted from b, and b is tested against the -classical point 〈a|, obtaining
the scalar 〈a|b〉 (which we want to be zero)

The steps are summarised by the following diagram:

a

b1
0 bV

0 b1
1 b1

M bV
1 bV

M

...

...n0... n0...n0... ...n1 ...nM ...n1 ...nM
...

b0

b0
b1 bV

b

−b0 b0 +b
b

(4.9)

The -classical points c that can be written as c = ∑
M
r=1 nr · cr for some -classical points c1, ...,cM

form a subgroup H of the group of -classical points. Indeed we have that 0 = ∑
m
r=1 nr · 0 and that

(∑M
r=1 nr · cr) + (∑M

r=1 nr · dr) = ∑
M
r=1 nr · (cr + dr). Furthermore, by assumption we have that H does

not contain a, and as a consequence 〈a|c〉 = 0 for all c ∈ H. Going back to Diagram 4.9, we see that
b1, ...,bV ∈ H (but b0 need not be in H, hence the need to subtract it before testing against a). We thus
conclude that b ∈ H (since H is closed under addition): hence the scalar 〈a|b〉 vanishes, concluding our
proof that no local hidden variable can exist for our chosen measurement scenario.

Theorem 4.8 (Mermin Locality). Let C be a †-SMC, and ( , ) be a strongly complementary pair of
†-qSCFAs. If the group of -phases is a trivial algebraic extension of the subgroup of -classical points,
then C is Mermin local.

Proof. Consider an N-partite Mermin measurement scenario αs = (αs
1, ...,α

s
N)s=1,...,S, and let a1, ...,aM

be the distinct -phases appearing in it. Consider the system of equations (∑M
r=1 ns

r · xr = cs)s=1,...,S,
where ns

r is the numer of times phase ar appears in measurement αs, and cs are the unique values making
xr := ar into a solution for the system. As the group of -phases is a trivial algebraic extension of the
subgroup of -classical points, there is a solution xr := br with (br)r=1,...,M -classical points. By using
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this, together with Lemma 3.5, we see that each measurement in the scenario is equal to the Mermin
measurement obtained by replacing ar with br for all r = 1, ...,M (say β s

i := br if αs
i = ar):

−αs
1 αs

1 −αs
N αs

N

· · · · · ·
−β s

1 β s
1 β s

N−β s
N= (4.10)

All phases are now induced by -classical points, and can thus be pushed up through the s:

=β s
1−β s

1

...

β s
N−β s

N

β s
1β s

N
...

(4.11)

Now that each measurement of the scenario amounts to performing some set of -classical operations on
the same state, it is no surprise that the following gives a local hidden variable model:

β1 βM β1 βM

Local Map

· · ·

· · ·... ...

· · · · · ·

system 1 system N

(4.12)

The abstract framework can now be applied to some particular examples of interest.

Corollary 4.9. The ZX calculus from [4, 7] (referred to as Stab in [10]) is Mermin non-local.

Proof. Take and to be the Z and X single-qubit observables in the ZX calculus. Then the group of
-phases is Z4 and the subgroup of -classical points is Z2. Conclude using Theorem 4.7 and Example

4.4.

Corollary 4.10. The toy theory Spekk from [10] is Mermin local.

Proof. Same setup as in the previous corollary, but the phase group is now Z2×Z2. Conclude using
Theorem 4.8 and Example 4.6 with d = 2.

Corollary 4.11. The category fRel of finite sets and relations is Mermin local.
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Proof. See [15, 17] for more details on strong complementarity in fRel. Any †-qSCFA on a set H
in fRel is a groupoid: we write it in the form ⊕h∈HGh, where H is a set, Gh are disjoint groups and
∪h∈HGh = H . Any strongly complementary pair , is in the form (⊕h∈HG,⊕g∈GH), where both G
and H are groups (seen as sets when indexing the groupoids), and we can w.l.o.g. write H as G×H.
Each -classical points is in the form {(g,h) s.t. h ∈ H} for some g ∈ G, while the -phases are in the
form {(gh,h) s.t. h ∈ H}, for some family (gh)h∈H of elements of G. Thus the group of -phases is the
group GH of H-indexed vectors with values in G, and the subgroup of -classical points, isomorphic to
G, is that of vectors with constant components. Conclude using Theorem 4.8 and Example 4.6.

This latter result is particularly interesting for the following reasons:

1. Almost no †-qSCFAs in fRel have enough classical points (exactly one per space, out of exponen-
tially many).

2. The family of arguments from [10] fails in fRel (partially as a consequence of the previous point).

3. There are plenty of strongly complementary pairs in fRel, and arbitrarily many more -phases than
classical points, but the lack of algebraically non-trivial phases results in fRel being Mermin

local.

4. As a consequence of 3, quantum protocols relying only on Mermin non-locality will show no
quantum advantage in fRel.

5 Quantum Secret Sharing: non-locality as a resource

The HBB CQ (N,N) family of Quantum Secret Sharing protocols originates in [20,21], and has been ab-
stractly formulated in Categorical Quantum Mechanics [24]. We generalise this construction to abstract
process theories, showing its connection with Mermin non-locality. The protocol’s implementation is
summarised in Diagram 5.1: the dealer measures its part of the shared (N + 1)-partite GHZ state with
phase α0 and uses the -classical result to encode the -classical secret; at a later stage, if all players
agree to measure their parts of the state and share the respective -classical results, the secret can be
decoded.

a

secret

+α0−α0

+α1−α1 +αN−αN

window of attack

(5.1)

Most of the operations are either done locally and privately (all the measurements and the secret encod-
ing), or broadcast by design on public channels. The security guarantee of the protocol is that it must
be impossible for an attacker to tamper with the shared state before the measurements (in the window of
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attack shown in 5.1) to gain full knowledge of the secret. It can be shown that this guarantee is equivalent
to the existence of algebraically non-trivial phases: indeed algebraically trivial phases (α0, ...,αN) can
be substituted with appropriate -classical points (β0, ...,βN) without altering the outcome of the pro-
tocol (the corresponding Mermin measurements are equal). The classicality allows an attacker to feed
an appropriate (N + 1)-partite state Λ, in place of the GHZ state, which guarantees certain knowledge
of the measurement outcomes and certain reconstruction of the secret as soon as the encoded secret is
broadcast. More details about the protocols and the attack can be found in Appendix B.

6 Mermin in fdHilb: beyond the complementary XY pair

We now focus on fdHilb and quantum mechanics. While in general we can have many different choices
of measurement on each subsystem (see Definition 3.4), we shall restrict to the case of only two dis-
tinct measurements, i.e. (N,M = 2,D) scenarios. In the case of qubits and (N,2,2) scenarios, these
complementary measurements happen to be the only choices that will lead to a non-locality argument.
One might then conjecture that this will be the case for any dimension. In this section we show that this
assumption is not the case. For (N,2,D) scenarios it is not necessary to have the two measurements be
complementary. There are many possible pairs in general.
Definition 6.1. A two-measurement Mermin scenario for N systems (each with D dimensions) and
strongly complementary GHZ observable with -phase group G is denoted G(N,2,D). Each system has
two possible measurement settings:

1. the first measurement observable is the D-dimensional X observable,

2. and the second measurement observable B is defined by a Z-phase gate applied to X .
In general, the form of B can be specified by the D-dimensional Z-phase applied to X . This Z-phase is of
the form (1,e1b1 , ...,eibD−1)T with D−1 degrees of freedom. A two-measurement Mermin scenario thus
consists of V variations each with n1 measurements of the B observable.
Example 6.2. For qubits there is only a single possible phase group: Z2. A Mermin argument for three
qubits (denoted Z2(3,2,2)) has measurements of the usual X observable and of the B observable that is a
phase applied to X , i.e. diag(1,eib1)X . In the traditional Mermin scenario Z2(3,2,2) from [22], we have
V = 3 and n1 = 2.

Lemma C.1 in Appendix C gives a necessary and sufficient condition on these measurements to
enable a Mermin non-locality test. Note that in Mermin’s original scenario measurement observables
were necessarily complementary, but that in general this is not the case. Proofs are given in Appendix C
for the following:
Theorem 6.3. In (3,2,2) three qubit Mermin scenarios, the two measurements must be complementary.
Theorem 6.4. For (N,2,D) scenarios the measurements need not be complementary.

Further we can exhibit numerical results that calculate the number of Mermin effective measurement
pairs available for a particular scenario. For a given number of parties N we have calculated the number
of effective pairs maximized over all viable variation choices. Typically these maximum values are
found for variations where n1 is maximized. Figure 1a shows pair counts for Z2(N,2,2) scenarios. Here
is appears that the number of effective measurement pairings grows approximately linearly with the
number of parties. Figure 1b shows pair counts for the more complex Z3(N,2,3) scenarios. It is clear
that there are many (in some cases thousands) more available measurement configurations than just those
given by complementary observables. This vastly expands the number of experimental setups that will
generate, with certainty, a non-locality violation. Indeed, combining this result with those of Section 5
opens up a large class of quantum secret sharing protocols based on non-complementary measurements.
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(a) (b)

Figure 1: (a) A plot of the number of Mermin effective measurement pairs P vs. the number of parties
in the Mermin scenario N for Z2(N,2,2) scenarios. (b) A plot of the number of effective pairs for
Z3(N,2,3) scenarios.

7 Conclusions and future work

By using few, simple ingredients — †-SMCs, strongly complementary pairs, GHZ states, phases and
classical points — we have generalised Mermin measurements to arbitrary abstract process theories. We
have defined Mermin non-locality, and we have proven that a necessary and sufficient1 condition for it
is the existence of algebraically non-trivial phases, i.e. of phases which satisfy equations that classical
points cannot. As a corollary, we have confirmed the well-known result that the ZX calculus (and there-
fore fdHilb) is Mermin non-local, and we have proven that fRel, a toy category of choice for Categorical
Quantum Mechanics, is Mermin local (despite its unboundedly large ratio of phases to classical points).
This characterisation as the existence of certain phases opens the way to the treatment of Mermin non-
locality as a resource in the abstract design of quantum protocols, as we have exemplified with the HBB
CQ family of Quantum Secret Sharing protocols. Finally, the application of our general framework to
Mermin-type experiment in quantum mechanics allows us to show that, even in the restricted case of two-
measurement scenarios, complementary measurements are not necessary, leading to many more potential
configurations than previously believed. We conclude with a few open questions for investigation:

1. What are the minimal conditions under which algebraically non-trivial phases lead to non-locality?

2. Is there a more informative group-theoretic formulation of the algebraic non-triviality used here?

3. Which other quantum algorithms depend on Mermin non-locality as a resource to transcend clas-
sicality? Which other abstract process theories show these characteristics?

Acknowledgements The authors would like to thank Bob Coecke and Aleks Kissinger for plenty of
comments and suggestions, as well as Sukrita Chatterji and Nicolò Chiappori for useful discussions and
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1Always necessary, sufficient under the assumption that classical points form a basis.
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A Preliminary definitions

Definition A.1. A quasi-special †-Frobenius algebra ( , , , ) in a †-SMC is a Frobenius algebra
that satisfies:

= N (A.1)

for some invertible scalar N.

We now define strong complementarity, the first fundamental ingredient of Mermin measurements.

Definition A.2. A pair of †-qSFAs ( , , , ) and ( , , , ) is strongly complementary if it
satisfies the following bialgebra equation (A.2) and coherence equations (A.3):

= (A.2)

= =

(A.3)

From now on we shall refer to the structures by their colour, i.e. by and . A more familiar presentation
of strongly complementary pairs can be given by observing that they correspond (when both structures
have enough classical points to form a basis) to pairs of non-degenerate observables obeying the finite-
dimensional Weyl form of the Canonical Commutation Relations [16]. Also, we have the following
characterisation of strong complementarity in terms of group actions on classical points.

Theorem A.3. Let and be a pair of †-qSFAs. If the pair is strongly complementary, then ( , ) acts
as a group on the classical points of . We denote this group as K Conversely, if the -classical points
form a basis and ( , ) acts as a group on them, then the pair is strongly complementary.

Proof. See [15].

Phases are the other fundamental ingredient of Mermin measurements.

Definition A.4. A phase state for a †-qSCFA is a pure state |α〉 such that:

αα

= (A.4)

A phase is a map in the following form, where |α〉 is a phase state for ( ):

α :=
α

(A.5)

In particular, elements of K are phase states, as Theorem 3.2 explains.
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B Quantum Secret Sharing: non-locality as a resource

This protocol requires a pair ( , ) of strongly complementary observables, and an (N +1)-partite GHZ
state shared by the dealer and the N players. The dealer (and nobody else) knows the (classical) secret,
in the form of a -classical point. The aim of the protocol is for the dealer to broadcast some information
to all players on a public classical channel, and for the secret to be decodeable only if all N players
cooperate. The implementation, graphically summarised in 5.1, is as follows:

1. the dealer and the players agree a set of -phases α0,α1, ...,αN such that ∑α j = a is a -classical
point. This operation is done on a public channel.

2. the dealer measures his part of the system of the system with phase α0, and uses the resulting
-classical data to encode the secret (multiplying the secret and the measurement data in K ,

generalising the original XOR operation). This operation is done locally and privately by the
dealer.

3. the dealer broadcasts the encoded secret on a public channel to the players.

4. at some later stage, when they all agree to unveil the secret, all players measure their part of the
system, each locally and privately.

5. all players broadcast the -classical results of their measurements on a public channel, which can
be added in K , multiplied by a and finally multiplied by the encoded secret to recover the original
secret.

Most of the operations are either done locally and privately (all the measurements and the secret encod-
ing), or broadcast by design on public channels: the security guarantee of the protocol is that it must
be impossible for an attacker to tamper with the shared state before the measurements (in the window
of attack shown in Diagram 5.1) to gain full knowledge of the secret. We argue that this guarantee is
equivalent to Mermin non-locality.

Assume that the -phases are an algebraically trivial extension of the -classical points. There are
then -classical points β0, ...,βN such that the Mermin measurements (α0, ...,αN) (used in 5.1) and
(β0, ...,βN) are the same. But the latter is equivalent, by Equation 4.11, to a single measurement of
the GHZ state in the structure on each system, followed by classical operation (multiplication of each
result by the corresponding β j -classical point). An attacker can measure the GHZ state, obtain -
classical data, and apply the classical operations to obtain a pure separable state Γ = γ0⊗ ...⊗ γN with

-classical components. They can then apply reverse phases (−α0, ...,−αN) and feed the resulting state
Λ to the dealer and players instead of the GHZ state. Upon their measuring, they will certainly obtain
the state Γ: once the dealer broadcasts the encoded secret on the public channel, the attacker can imme-
diately decode it without any need for the other players to even perform their measurements. The local
hidden variable model allows this kind of man-in-middle attack.

Conversely, assume that the -phases are an algebraically non-trivial extension of the -classical
points, and that (α0, ...,αN) satisfy an equation which has no -classical counterpart.2 Further assume
that there are enough -classical points. Now suppose that there is some (N +1)-partite state Λ which,
if substituted to the GHZ state, gets measured into a separable state Γ = γ0⊗ ...⊗ γN with γ0, ...,γN -
classical points, i.e. which guarantees the attacker full knowledge about the measurement outcomes for
all parties. Further suppose that every secret will be decoded by this state: then, since K is a group,

2The most general case, where the phases satisfy a system of equations without no classical counterpart, can be exploited by
a straightforward generalisation of the HBB CQ (N,N) protocols, employing as many shared GHZ states as there are equations
in the system.
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we necessarily have γ0 + ...+ γN = a, contradicting the assumption that α0 + ...+αN = a could not be
satisfied by -classical points.

C Mermin non-locality with non-complementary measurements

The state presented in Diagram 4.9 will be zero when the control point on the left is distinct from the
variations point on the right. We can characterize this as a condition on B in our two measurement
scenario with the following theorem.
Lemma C.1. Measurements X and B allow a (N,2,D) Mermin non-locality argument iff

D−1

∑
j=1

eic j =−1, where c j = n1b j

(
V⊕

l=1

1

)
, (C.1)

where the sum in c j is the group sum for the -phase group G.

Proof. Diagram 4.9 implies that the Mermin argument will succeed when the control point and variations
point are distinct classical points. In fdHilb this precisely means that they are orthogonal vectors. The
vector that represents the control point is given by the D-dimensional unit for the X observable, i.e.
1/
√

D(1,1, ...,1)T . The variations point is then given by the group sum of other classical points specified
by their phase. The phase for each classical point is given by the sum of phase accumulated by each B
measurement. As there are n1 such measurements in each variation, their sum is given by

1√
D


1

ein1b1

...
ein1bD−1


1

⊕


1

ein1b1

...
ein1bD−1


2

⊕ ...⊕


1

ein1b1

...
ein1bD−1


V

=
1√
D


1

eic1

...
eicD−1

 ,

where the constants c j are defined as in Equation C.1. Orthogonality between the control and variations
points then requires

(
1 1 ... 1

)


1
eic1

...
eicD−1

= 0 ⇒
D−1

∑
j=1

eic j =−1

This exactly recovers Equation C.1 and completes the proof.

Proof of Theorem 6.3. We have V = 3, n1 = 2, G = Z2 and D = 2. Thus

c j = n1b j

(
3⊕

l=1

1

)
= 2b j(3 mod 2) = 2b j

so that our condition on B becomes
D−1

∑
j=1

eic j = ei2b1 =−1⇒ b1 =
π

2

with only a single solution. This means that in this scenario there is only one measurement that could be
used with X . This is the Y observable and it is complementary to X .
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Proof of Theorem 6.4. We prove this by counterexample. Consider the three dimensional (D = 3) five
party Mermin scenario. The phase group of the non-local state is then given by G = Z3. The control
measurement is given by five systems all measured by the X observable, i.e. XXXXX . The variations are

BBBXX BBXBX BXBBX XBBBX XBXBB

BBXXB BXBXB XBBXB BXXBB XXBBB

so that V = 10 and n1 = 3. We calculate the coefficients

c j = n1b j

(
10⊕

l=1

1

)
= 3b j(10 mod 3) = 3b j

Observable B must then satisfy ei3b1 + ei3b2 = −1. Any B observable satisfies this condition if b2 =
− i

3 log
[
−1− e3ib1

]
. Consider b1 =

2π

9 ⇒ b2 =−2π

9 and calculate (for ω = e2πi/3):

B ::

 1 0 0
0 ei2π/9 0
0 0 e−i2π/9

 1√
3

 1 1 1
1 ω ω2

1 ω2 ω4

=
1√
3

 1 1 1
e2iπ/9 e8iπ/9 e−4iπ/9

e−2iπ/9 e−8iπ/9 e4iπ/4


Observable B is clearly not complementary to X by simply checking the dot products of their basis
vectors.
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