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Our paper is about generalized theories of probability that allow us to analyze the non-locality and
contextuality paradoxes from quantum theory. Informally, these paradoxes have to do with the idea that it
might not be possible to explain the outcomes of measurements in a classical way. We use now-standard
techniques for local reasoning in computer science. Partial monoids play a crucial role in ‘separation
logic’ which is a basic framework of locality especially relevant to memory locality and presheaves on
natural numbers have already been used to study local memory and contexts in abstract syntax.

The paper is in two parts. In the first we establish new relationships between two generalized theories
of probability. In the second we analyze the paradoxes of contextuality using our theories of probability,
and we use this to recover earlier formulations of them in different frameworks.

1 Generalized probability measures

We start from the idea that a probability distribution on a finite measurable space (X ,Ω), where Ω ⊆
P(X) is a sub-Boolean algebra of the powerset of X , is a function p : Ω→ [0,1] such that p(X) = 1 and
if A1 . . .An are disjoint sets in Ω, then ∑

n
i=1 p(Ai) = p(

⋃n
i=1 Ai). In analyzing this we notice there is no

actual reference to the surrounding space P(X). All we use is the disjoint structure of Ω. This leads us
to consider two general notions of probability measure.

Partial monoids. Our first generalization involves partial monoids. More generally, we use a pointed
partial commutative monoid (PPCM), which is a structure (E,>,0,1) where E is a set and 1 ∈ E a dis-
tinguished point. The partial operation > : E×E → E is commutative, associative and has a unit 0. A
morphism of PPCMs preserves 0,1 and the sum whenever it exists. Now (Ω,], /0,X) and the interval
([0,1],+,0,1) are PPCMs, and a probability distribution is now the same thing as a PPCM homomor-
phism, (Ω,], /0,X)→ ([0,1],+,0,1). Thus PPCMs are a candidate for a generalized probability theory.

Functors. Our second generalization goes as follows. Every finite Boolean algebra Ω is isomorphic
to one of the form P(N) for a finite set N, called the atoms of Ω. Now, a probability distribution
p : Ω→ [0,1] is equivalently given by a function q : N→ [0,1] such that ∑a∈N q(a) = 1. Let

D(N) = {q : N→ [0,1] | ∑a∈N q(a) = 1} (1)

be the set of all distributions on a finite set N. It is well-known that D extends to a functor D :
Setf → Set. The Yoneda lemma gives a bijection between distributions in D(N) and natural transfor-
mations Setf(N,−)→ D. Thus we are led to say that a generalized finite measurable space is a functor
F : Setf→ Set (aka presheaf), and a probability distribution on F is a natural transformation F → D.
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Relationship. There is an adjunction between the two kinds of generalized measurable spaces: PPCMs,
and presheaves Setf→ Set. Given a PPCM E we obtain a functor T (E) : Setf→ Set, where, whenever
N is an n-element set, T (E)(N) is the set of all n-tests on E. That is, the space of n-tuples (e1, . . . ,en)
such that e1 > . . .>en = 1. ‘Effect algebras’ are a special class of PPCMs which additionally have an or-
thocomplement. The adjunction restricts to a reflection from effect algebras into presheaves Setf→ Set,
which gives us a slogan that ‘effect algebras are well-behaved generalized finite measurable spaces’.

2 Relating non-locality and contextuality arguments

In the second part of the paper we investigate three paradoxes from quantum theory, attributed to Bell,
Hardy and Kochen-Specker. We justified our use of effect algebras and presheaves by establishing rela-
tionships with earlier work by Abramsky and Brandenburger [1] and Hamilton, Isham and Butterfield [2].

We suppose a simple framework where Alice and Bob each have a measurement device with two
settings which can emit 0 or 1, as the outcome of a measurement. To model this in classical probability
theory we would consider a sample space SA for Alice whose elements are functions {a0,a1} → {0,1},
i.e., assignments of outcomes to measurements. Similarly we have a sample space SB for Bob. We would
then consider a joint probability distribution on SA and SB.

While we implicitly assume in this model that Alice and Bob cannot signal to each other, the classi-
cal model does include an assumption: Alice is able to record the outcome of the measurement in both
settings. In reality, and in quantum physics, once Alice has recorded an outcome using one measure-
ment setting, she cannot then know what the outcome would have been using the other setting. Effect
algebras provide a way to describe a kind of probability distribution that takes this measure-only-once
phenomenon into account. To this end, we define effect algebras EA and EB for Alice and Bob, which
embed in their free Boolean completion BA and BB. The tensor product EA⊗EB is then the object of
interest, since a map EA⊗EB→ [0,1] is a probability distribution on the different measurement contexts.

The non-locality ‘paradox’ is as follows: there are probability distributions in this effect algebraic
sense, which are physically realizable, but cannot be explained in a classical probability theory without
signaling.

The Bell paradox in terms of effect algebras and presheaves. As we show, the Bell scenario can
be understood as a morphism of effect algebras E t−→ [0,1], i.e., a generalized probability distribution.
The paradox is that although this has a quantum realization, i.e., is physically realizable, in that it factors
through Proj(H ), the projections on a Hilbert space H , it has no explanation in classical probability
theory, in that there it does not factor through a given Boolean algebra Ω. Informally:
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Relationship with earlier sheaf-theoretic work on the Bell paradox. In [1], Abramsky and Bran-
denburger have studied Bell-type scenarios in terms of presheaves. We recover their results from our
analysis in terms of generalized probability theory by noticing the embedding of effect algebras in the
functor category [Setf→ Set]. Using the fact that T ([0,1]) = D : Setf→ Set and BA⊗BB ∼= P(OX), the
powerset of all functions from measurements to outcomes, so that in our example OX = 24 = 16, we find
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T (BA⊗BB) = TP(16) = Setf(16,−). This leads to the diagram

T (EA⊗EB)

Ti
++

Tt // D

Setf(16,−)
|
55 in the functor category [Setf→ Set]. (3)

We can thus phrase Bell’s paradox in the language of Grothendieck’s sheaf theory. Since i : (EA⊗
EB)→ (BA⊗BB) is a subalgebra and T preserves monos, T (EA⊗EB) is a subpresheaf of Setf(16,−),
aka a ‘sieve’ on 16. A map T (EA⊗EB)→ D out of a sieve is called a ‘compatible family’, and a map
Setf(16,−)→ D amounts to a distribution in D(16) (by the Yoneda lemma). Bell’s paradox now states:
“the compatible family T (t) has no amalgamation”.

We step even closer by recalling the slice category construction. This is a standard technique of
categorical logic for working relative to a particular object. As we explain in the paper, the slice category
[Setf → Set]/Ω is again a presheaf category. It is more-or-less the category used in [1]. Moreover,
our non-factorization (2) transports to the slice category: Ω becomes terminal, and E is a subterminal
object. Thus the non-factorization in diagram (2) can again be phrased in the sheaf-theoretic language of
Abramsky and Brandenburger: ‘the family t has no global section’.

Other paradoxes Alongside the Bell paradox we study two other paradoxes:
• The Hardy paradox is similar to the Bell paradox, except that it uses possibility rather than prob-

ability. We analyze this by replacing the unit interval ([0,1],+,0,1) by the PPCM ({0,1},∨,0,1)
where ∨ is bitwise-or. Although this monoid is not an effect algebra, everything still works and
we are able to recover the analysis of the Hardy paradox by Abramsky and Brandenburger.

• The Kochen-Specker paradox can be understood as saying that there is no PPCM morphism

Proj(H )→ ({0,1},>,0,1) (4)

with dim. H ≥ 3 and where > is like bitwise-or, except that 1 > 1 is undefined. Now, the slice
category [Setf→ Set]/Proj(H ) is again a presheaf category, and it is more-or-less the presheaf
category used by Hamilton, Isham and Butterfield. The non-existence of a homomorphism (4)
transports to this slice category: Proj(H ) becomes the terminal object, and ({0,1},>,0,1) be-
comes the so-called ‘spectral presheaf’. We are thus able to rephrase the non-existence of a homo-
morphism (4) in the same way as Hamilton, Isham and Butterfield [2]: ‘the spectral presheaf does
not have a global section’.

Summary. We have exhibited a crucial adjunction between two general approaches to finite probability
theory: effect algebras and presheaves. We have used this to analyze paradoxes of non-locality and
contextuality. There are simple algebraic statements of these paradoxes in terms of partial commutative
monoids, but these transport across the adjunction to statements about presheaves on Setf. By taking
different slices of this presheaf category, we recover earlier analyses of the paradoxes.
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