
Submitted to:
QPL 2015

c© John C. Baez and Jason Erbele
This work is licensed under the
Creative Commons Attribution License.

Categories in Control

John C. Baez
Department of Mathematics

University of California
Riverside CA 92521

USA
Centre for Quantum Technologies
National University of Singapore

Singapore 117543
baez@math.ucr.edu

Jason Erbele
Department of Mathematics

University of California
Riverside CA 92521

USA
erbele@math.ucr.edu

Control theory uses ‘signal-flow diagrams’ to describe processes where real-valued functions of time
are added, multiplied by scalars, differentiated and integrated, duplicated and deleted. These di-
agrams can be seen as string diagrams for the symmetric monoidal category FinVectk of finite-
dimensional vector spaces over the field of rational functions k = R(s), where the variable s acts
as differentiation and the monoidal structure is direct sum rather than the usual tensor product of
vector spaces. For any field k we give a presentation of FinVectk in terms of the generators used
in signal-flow diagrams. A broader class of signal-flow diagrams also includes ‘caps’ and ‘cups’ to
model feedback. We show these diagrams can be seen as string diagrams for the symmetric monoidal
category FinRelk, where objects are still finite-dimensional vector spaces but the morphisms are lin-
ear relations. We also give a presentation for FinRelk. The relations say, among other things, that
the 1-dimensional vector space k has two special commutative †-Frobenius structures, such that the
multiplication and unit of either one and the comultiplication and counit of the other fit together to
form a bimonoid. This sort of structure, but with tensor product replacing direct sum, is familiar from
the ‘ZX-calculus’ obeyed by a finite-dimensional Hilbert space with two mutually unbiased bases.

1 Introduction

Control theory is the branch of engineering that focuses on manipulating ‘open systems’—systems with
inputs and outputs—to achieve desired goals. In control theory, ‘signal-flow diagrams’ are used to de-
scribe linear ways of manipulating signals, which we will take here to be smooth real-valued functions
of time [11]. For a category theorist, at least, it is natural to treat signal-flow diagrams as string diagrams
in a symmetric monoidal category [12, 13]. This forces some small changes of perspective, which we
discuss below, but more important is the question: which symmetric monoidal category?

In [3] we argue that the answer is: the category FinRelk of finite-dimensional vector spaces over
a certain field k, but with linear relations rather than linear maps as morphisms, and direct sum rather
than tensor product providing the symmetric monoidal structure. This current paper is a summary of
those results. We use the field k = R(s) consisting of rational functions in one real variable s. This
variable has the meaning of differentation. A linear relation from km to kn is thus a system of linear
constant-coefficient ordinary differential equations relating m ‘input’ signals and n ‘output’ signals.

We provide a complete ‘generators and relations’ picture of this symmetric monoidal category, with
the generators being familiar components of signal-flow diagrams. Filippo Bonchi, Paweł Sobociński and
Fabio Zanasi [5] independently gave an equivalent presentation using a different approach of composing
PROPs. The answer is connected to ideas familiar in the diagrammatic approach to quantum theory in a
beautiful way. Quantum theory also involves linear algebra, but uses linear maps between Hilbert spaces
as morphisms, and the tensor product of Hilbert spaces provides the symmetric monoidal structure.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Categories in control

2 Signal-flow diagrams

There are several basic operations that one wants to perform when manipulating signals. The simplest is
multiplying a signal by a scalar. A signal can be amplified by a constant factor:

f 7→ c f

where c ∈R. We can write this as a string diagram as in Figure 1. The labels f and c f on top and bottom
are just for explanatory purposes and not really part of the diagram. Control theorists often draw arrows
on the wires to indicate which carries the input f and which the output c f , but this goes against the
convention for arrows on wires of string diagrams to distinguish objects from their duals. Fortunately we
can avoid confusion by dropping all the arrows: we will obtain a compact closed category where each
object is its own dual, and the triangular shape of multiplication distinguishes f from c f .

A signal can also be integrated with respect to the time variable:

f 7→
∫

f .

Mathematicians typically take differentiation as fundamental, but engineers sometimes prefer integration,
because it is more robust against small perturbations. In the end it will not matter much here. We
again draw integration as a string diagram in Figure 1. Since this looks like the diagram for scalar

f

c

c f

f

∫
∫

f

Figure 1: Scalar multiplication and integration

multiplication, it is natural to extend R to R(s), the field of rational functions of a variable s which
stands for differentiation. Then differentiation becomes a special case of scalar multiplication, namely
multiplication by s, and integration becomes multiplication by 1/s. Engineers accomplish the same
effect with Laplace transforms, since differentiating a signal f is equivalent to multiplying its Laplace
transform

(L f)(s) =
∫

∞

0
f (t)e−st dt

by the variable s. Another option is to use the Fourier transform: differentiating f is equivalent to
multiplying its Fourier transform

(F f)(ω) =
∫

∞

−∞

f (t)e−iωt dt

by iω . Of course, the function f needs to be sufficiently well-behaved to justify calculations involving
its Laplace or Fourier transform. At a more basic level, it also requires some work to treat integration as
the two-sided inverse of differentiation. Engineers do this by considering signals that vanish for t < 0,
and choosing the antiderivative that vanishes under the same condition. Luckily all these issues can be
side-stepped in a formal treatment of signal-flow diagrams: we can simply treat signals as living in an
unspecified vector space over the field R(s), or more generally over an arbitrary field k.

John C. Baez and Jason Erbele 3

The simplest possible signal processor is a rock, which takes the ‘input’ given by the force F on the
rock and produces as ‘output’ the rock’s position q. Thanks to Newton’s second law F = ma, we can
describe this using a signal-flow diagram:

q

∫
v

∫
a

1
m

F

Here composition of morphisms is drawn in the usual way, by attaching the output wire of one morphism
to the input wire of the next.

To build more interesting machines we need more building blocks, such as addition and duplication:

+ : (f ,g) 7→ f +g

∆ : f 7→ (f , f).

When these linear maps are written as matrices, their matrices are transposes of each other. This is re-
flected in the string diagrams for addition and duplication, as seen in Figure 2a. The second is essentially

f g

f +g f f

f

(a) Addition and duplication

0

f

(b) Zero and deletion

Figure 2

an upside-down version of the first. However, we draw addition as a dark triangle and duplication as
a light one because we will later want another way to ‘turn addition upside-down’ that does not give
duplication. As an added bonus, a light upside-down triangle resembles the Greek letter ∆, the usual
symbol for duplication.

While they are typically not considered worthy of mention in control theory, for completeness we
must include two other building blocks. One is the zero map from {0} to our field k, which we denote as
0 and draw with a black dot. The other is the zero map from k to {0}, sometimes called ‘deletion’, which
we denote as ! and draw as a light circle, as in Figure 2b. Addition and zero make k into a commutative
monoid, meaning that the following relations hold:

= = =

4 Categories in control

The equation at right is the commutative law, and the crossing of strands is the ‘braiding’

B : (f ,g) 7→ (g, f)

by which we switch two signals. In fact this braiding is a ‘symmetry’, so it does not matter which strand
goes over which:

f

f

g

g

=

f

f

g

g

Dually, duplication and deletion make k into a cocommutative comonoid. This means that if we
reflect the equations obeyed by addition and zero across the horizontal axis and turn dark operations into
light ones, we obtain another set of valid equations:

= = =

There are also relations between the monoid and comonoid operations. For example, adding two signals
then duplicating the result gives the same output as duplicating each signal and then adding the results.

f g

f +g f +g

=

f g

f +g f +g 0 0

=

0 0

f g

=

f g

=

These diagrams are familiar in the theory of Hopf algebras, or more generally bialgebras. Here they
demonstrate that the monoid operations on k are comonoid homomorphisms—or equivalently, that the
comonoid operations are monoid homomorphisms. We summarize this by saying that k is a bimonoid.

So far all our string diagrams denote linear maps. We can treat these as morphisms in the category
FinVectk, where objects are finite-dimensional vector spaces over a field k and morphisms are linear
maps. This category is equivalent to a skeleton where the only objects are vector spaces kn for n≥ 0, and
then morphisms can be seen as n×m matrices. The space of signals is a vector space V over k which
may not be finite-dimensional, but this does not cause a problem: an n×m matrix with entries in k still
defines a linear map from V n to V m in a functorial way.

In applications of string diagrams to quantum theory [4, 9], we make FinVectk into a symmetric
monoidal category using the tensor product of vector spaces. In control theory, we instead make FinVectk
into a symmetric monoidal category using the direct sum of vector spaces. In Lemma 1 of [3] we prove
that for any field k, FinVectk with direct sum is generated as a symmetric monoidal category by the one
object k together with these morphisms:

c

John C. Baez and Jason Erbele 5

where c ∈ k is arbitrary.
However, these generating morphisms obey some unexpected relations! For example, we have:

=

−1

−1

Figure 3

Thus, it is important to find a complete set of relations obeyed by these generating morphisms, thus
obtaining a presentation of FinVectk as a symmetric monoidal category. We do this in Theorem 2 of [3].
In brief, these relations say:

1. (k,+,0,∆, !) is a bicommutative bimonoid;

2. the rig operations of k can be recovered from the generating morphisms;

3. all the generating morphisms commute with scalar multiplication.

Item (2) means that +, ·, 0 and 1 in the field k can be expressed in terms of signal-flow diagrams as:

b+c = b c

c

b
=bc 1 = 0 =

Multiplicative inverses cannot be so expressed, so our signal-flow diagrams so far do not know that k is
a field. Additive inverses also cannot be expressed in this way. So, we expect that a version of Theorem
2 will hold whenever k is a mere rig: that is, a ‘ring without negatives’, like N. The one change is that
instead of working with vector spaces, we should work with finitely presented free k-modules. Since
Figure 3 gives a way to write the braiding using other generating morphisms, we should expect FinVectk
can be presented as merely a monoidal category without explicitly including the braiding. Lafont [16]
proved this for the case where k is the field with two elements and stated the result for a general field.

While we have made a step towards understanding the category-theoretic underpinnings of control
theory with Theorem 2, it does not treat signal-flow diagrams that include ‘feedback’. Feedback is one
of the most fundamental concepts in control theory because a control system without feedback may be
highly sensitive to disturbances or unmodeled behavior. Feedback allows these uncontrolled behaviors
to be mollified. As a string diagram, a basic feedback system might look schematically like this:

6 Categories in control

reference

a controller

measured error

system input

b system

system output

csensor

measured output

−1

The user inputs a ‘reference’ signal, which is fed into a controller, whose output is fed into a system, or
‘plant’, which in turn produces its own output. But then the system’s output is duplicated, and one copy
is fed into a sensor, whose output is subtracted (or if we prefer, added) from the reference signal.

In string diagrams—unlike in the usual thinking on control theory—it is essential to be able to read
any diagram from top to bottom as a composite of tensor products of generating morphisms. Thus, to
incorporate the idea of feedback, we need two more generating morphisms. These are the ‘cup’ and
‘cap’. These are not maps: they are relations. The cup imposes the relation that its two inputs be equal,

f = g

f g

f = g

f g

Figure 4: cup and cap

while the cap does the same for its two outputs. This describes the way signals flow around a bend in a
wire.

To make this precise, we use a category called FinRelk. An object of this category is a finite-
dimensional vector space over k, while a morphism from U to V , denoted L : U 9V , is a linear relation,
meaning a linear subspace

L⊆U⊕V.

In particular, when k = R(s), a linear relation L : km 9 kn is just an arbitrary system of constant-
coefficient linear ordinary differential equations relating m input variables and n output variables.

Since the direct sum U ⊕V is also the cartesian product of U and V , a linear relation is indeed a
relation in the usual sense, but with the property that if u ∈U is related to v ∈ V and u′ ∈U is related
to v′ ∈V then cu+ c′u′ is related to cv+ c′v′ whenever c,c′ ∈ k. We compose linear relations L : U 9V
and L′ : V 9W as follows:

L′L = {(u,w) : ∃ v ∈V (u,v) ∈ L and (v,w) ∈ L′}.

John C. Baez and Jason Erbele 7

Any linear map f : U →V gives a linear relation F : U 9V , namely the graph of that map:

F = {(u, f (u)) : u ∈U}.

Composing linear maps thus becomes a special case of composing linear relations, so FinVectk becomes
a subcategory of FinRelk. Furthermore, we can make FinRelk into a monoidal category using direct
sums, and it becomes symmetric monoidal using the braiding already present in FinVectk.

In these terms, the cup is the linear relation

∪ : k2 9 {0}

given by
∪ = {(x,x,0) : x ∈ k} ⊆ k2⊕{0},

while the cap is the linear relation
∩ : {0}9 k2

given by
∩ = {(0,x,x) : x ∈ k} ⊆ {0}⊕ k2.

These obey the zigzag relations:

= =

Thus, they make FinRelk into a compact closed category where k, and thus every object, is its own dual.
Besides feedback, one of the things that make the cap and cup useful is that they allow any mor-

phism L : U 9 V to be ‘plugged in backwards’ and thus ‘turned around’. For instance, turning around
integration, we obtain differentiation, denoted as ‘integration pointing up’:

∫
:=∫

In general, using caps and cups we can turn around any linear relation L : U 9 V and obtain a linear
relation L† : V 9U , called the adjoint of L, which turns out to given by

L† = {(v,u) : (u,v) ∈ L}.

For example, if c ∈ k is nonzero, the adjoint of scalar multiplication by c is multiplication by c−1:

c = c−1:=c

Thus, caps and cups allow us to express multiplicative inverses in terms of signal-flow diagrams! One
might think that a problem arises when when c = 0, but no: the adjoint of scalar multiplication by 0 is

{(0,x) : x ∈ k} ⊆ k⊕ k,

8 Categories in control

which is not a linear map anymore, but is still a linear relation. In fact, when k is replaced by a ring, the
adjoint of scalar multiplication by c is just a linear relation whenever c is a zero-divisor.

In Lemma 3 of [3] we show that FinRelk is generated, as a symmetric monoidal category, by these
morphisms:

c

where c ∈ k is arbitrary.
We follow that with Theorem 4, which provides a complete set of relations obeyed by these gener-

ating morphisms, thus giving a presentation of FinRelk as a symmetric monoidal category. To describe
these relations, it is useful to work with adjoints of the generating morphisms. We have already seen
that the adjoint of scalar multiplication by c is scalar multiplication by c−1, except when c = 0. Taking
adjoints of the other four generating morphisms of FinVectk, we obtain four important but perhaps unfa-
miliar linear relations. We draw these as ‘turned around’ versions of the original generating morphisms:

• Coaddition is a linear relation from k to k2 that holds when the two outputs sum to the input:

+† : k 9 k2

+† = {(x,y,z) : x = y+ z} ⊆ k⊕ k2

:=

• Cozero is a linear relation from k to {0} that holds when the input is zero:

0† : k 9 {0}

0† = {(0,0)} ⊆ k⊕{0}

:=

• Coduplication is a linear relation from k2 to k that holds when the two inputs both equal the
output:

∆
† : k2 9 k

∆
† = {(x,y,z) : x = y = z} ⊆ k2⊕ k

:=

• Codeletion is a linear relation from {0} to k that holds always:

!† : {0}9 k

!† = {(0,x)} ⊆ {0}⊕ k

John C. Baez and Jason Erbele 9

:=

Since +†,0†,∆† and !† automatically obey turned-around versions of the relations obeyed by +,0,∆ and
!, we see that k acquires a second bicommutative bimonoid structure when considered as an object in
FinRelk.

Moreover, the four dark operations make k into a Frobenius monoid. This means that (k,+,0) is a
monoid, (k,+†,0†) is a comonoid, and the Frobenius relation holds:

= =

All three expressions in this equation are linear relations saying that the sum of the two inputs equal the
sum of the two outputs.

The operation sending each linear relation to its adjoint extends to a contravariant functor

† : FinRelk → FinRelk,

which obeys a list of properties that are summarized by saying that FinRelk is a ‘†-compact’ category
[1, 18]. Because two of the operations in the Frobenius monoid (k,+,0,+†,0†) are adjoints of the other
two, it is a †-Frobenius monoid. This Frobenius monoid is also special, meaning that comultiplication
(in this case +†) followed by multiplication (in this case +) equals the identity:

=

It is also commutative—and cocommutative, but for Frobenius monoids this follows from commutativity.
Starting around 2008, commutative special †-Frobenius monoids have become important in the cat-

egorical foundations of quantum theory, where they can be understood as ‘classical structures’ for quan-
tum systems [10, 19]. The category FinHilb of finite-dimensional Hilbert spaces and linear maps is a
†-compact category, where any linear map f : H→ K has an adjoint f † : K→ H given by

〈 f †
φ ,ψ〉= 〈φ , f ψ〉

for all ψ ∈ H,φ ∈ K. A commutative special †-Frobenius monoid in FinHilb is then the same as a
Hilbert space with a chosen orthonormal basis. The reason is that given an orthonormal basis ψi for a
finite-dimensional Hilbert space H, we can make H into a commutative special †-Frobenius monoid with
multiplication m : H⊗H→ H given by

m(ψi⊗ψ j) =

{
ψi i = j
0 i 6= j

and unit i : C→ H given by
i(1) = ∑

i
ψi.

The comultiplication m† duplicates basis states:

m†(ψi) = ψi⊗ψi.

10 Categories in control

Conversely, any commutative special †-Frobenius monoid in FinHilb arises this way.
Considerably earlier, around 1995, commutative Frobenius monoids were recognized as important in

topological quantum field theory. The reason, ultimately, is that the free symmetric monoidal category
on a commutative Frobenius monoid is 2Cob, the category with 2-dimensional oriented cobordisms as
morphisms: see Kock’s textbook [14] and the many references therein. But the free symmetric monoidal
category on a commutative special Frobenius monoid was worked out long before the rise of topological
quantum field theory [7, 15, 17]: it is the category with finite sets as objects, where a morphism f : X→Y
is an isomorphism class of cospans

X −→ S←− Y.

This category can be made into a †-compact category in an obvious way, and then the 1-element set
becomes a commutative special †-Frobenius monoid.

For all these reasons, it is interesting to find a commutative special †-Frobenius monoid lurking at
the heart of control theory! However, the Frobenius monoid here has yet another property, which is more
unusual. Namely, the unit 0 : {0}9 k followed by the counit 0† : k 9 {0} is the identity:

=

We call a special Frobenius monoid that also obeys this extra law extra-special. One can check that
the free symmetric monoidal category on a commutative extra-special Frobenius monoid is the category
with finite sets as objects, where a morphism f : X → Y is an equivalence relation on the disjoint union
X tY , and we compose f : X → Y and g : Y → Z by letting f and g generate an equivalence relation on
X tY tZ and then restricting this to X tZ.

As if this were not enough, the light operations share many properties with the dark ones. In partic-
ular, these operations make k into a commutative extra-special †-Frobenius monoid in a second way. In
summary:
• (k,+,0,∆, !) is a bicommutative bimonoid;

• (k,∆†, !†,+†,0†) is a bicommutative bimonoid;

• (k,+,0,+†,0†) is a commutative extra-special †-Frobenius monoid;

• (k,∆†, !†,∆, !) is a commutative extra-special †-Frobenius monoid.
It should be no surprise that with all these structures built in, signal-flow diagrams are a powerful method
of designing processes.

However, it is surprising that most of these structures are present in a seemingly very different con-
text: the so-called ‘ZX calculus’, a diagrammatic formalism for working with complementary observ-
ables in quantum theory [8]. This arises naturally when one has an n-dimensional Hilbert space H with
two orthonormal bases ψi,φi that are ‘mutually unbiased’, meaning that for all 1≤ i, j ≤ n,

|〈ψi,φ j〉|2 =
1
n
.

Each orthonormal basis makes H into commutative special †-Frobenius monoid in FinHilb. Moreover,
the multiplication and unit of either one of these Frobenius monoids fits together with the comultiplica-
tion and counit of the other to form a bicommutative bimonoid. So, we have all the structure present in
the list above—except that these Frobenius monoids are only extra-special if H is 1-dimensional.

The field k is also a 1-dimensional vector space, but this is a red herring: in FinRelk every finite-
dimensional vector space naturally acquires all four structures listed above, since addition, zero, dupli-
cation and deletion are well-defined and obey all the relations we have discussed. We focus on k in this
paper simply because it generates all the objects FinRelk via direct sum.

John C. Baez and Jason Erbele 11

Finally, in FinRelk the cap and cup are related to the light and dark operations as follows:

= −1 =

Note the curious factor of −1 in the second equation, which breaks some of the symmetry we have seen
so far. This equation says that two elements x,y ∈ k sum to zero if and only if −x = y. Using the zigzag
relations, the two equations above give

= −1

We thus see that in FinRelk, both additive and multiplicative inverses can be expressed in terms of the
generating morphisms used in signal-flow diagrams.

In Theorem 4 of [3] we give a presentation of FinRelk based on the ideas just discussed. In brief,
FinRelk is equivalent to the symmetric monoidal category generated by an object k and these morphisms:

1. addition + : k2 9 k

2. zero 0: {0}9 k

3. duplication ∆ : k 9 k2

4. deletion ! : k 9 0

5. scalar multiplication c : k 9 k for any c ∈ k

6. cup ∪ : k2 9 {0}

7. cap ∩ : {0}9 k2

obeying these relations:

1. (k,+,0,∆, !) is a bicommutative bimonoid;

2. ∩ and ∪ obey the zigzag equations;

3. (k,+,0,+†,0†) is a commutative extra-special †-Frobenius monoid;

4. (k,∆†, !†,∆, !) is a commutative extra-special †-Frobenius monoid;

5. the field operations of k can be recovered from the generating morphisms;

6. the generating morphisms (1)-(4) commute with scalar multiplication.

Note that item (2) makes FinRelk into a †-compact category, allowing us to mention the adjoints of
generating morphisms in the subsequent relations. Item (5) means that +, ·,0,1 and also additive and
multiplicative inverses in the field k can be expressed in terms of signal-flow diagrams in the manner we
have explained.

12 Categories in control

3 An example

A famous example in control theory is the ‘inverted pendulum’: an upside-down pendulum on a cart [11].
The pendulum naturally tends to fall over, but we can stabilize it by setting up a feedback loop where
we observe its position and move the cart back and forth in a suitable way based on this observation.
Without introducing this feedback loop, let us see how signal-flow diagrams can be used to describe
the pendulum and the cart. We shall see that the diagram for a system made of parts is built from the
diagrams for the parts, not merely by composing and tensoring, but also with the help of duplication and
coduplication, which give additional ways to set variables equal to one another.

Suppose the cart has mass M and can only move back and forth in one direction, so its position is
described by a function x(t). If it is acted on by a total force Fnet(t) then Newton’s second law says

Fnet(t) = Mẍ(t).

We can thus write a signal-flow diagram with the force as input and the cart’s position as output, as in
Figure 5a.

The inverted pendulum is a rod of length ` with a mass m at its end, mounted on the cart and only
able to swing back and forth in one direction, parallel to the cart’s movement. If its angle from vertical,
θ(t), is small, then its equation of motion is approximately linear:

`θ̈(t) = gθ(t)− ẍ(t)

where g is the gravitational constant. We can turn this equation into a signal-flow diagram with ẍ as
input and θ as output, as in Figure 5b. Note that this already includes a kind of feedback loop, since the
pendulum’s angle affects the force on the pendulum.

x

∫ ẋ

∫ ẍ

1
M

Fnet

(a) The cart alone

−1
`

∫
−g

` ∫

ẍ

θ

(b) The pendulum alone

mg

Fnet θ

F

(c) The pendulum–cart interface

Figure 5

Finally, there is an equation describing the total force on the cart:

Fnet(t) = F(t)−mgθ(t)

John C. Baez and Jason Erbele 13

where F(t) is an externally applied force and−mgθ(t) is the force due to the pendulum. It will be useful
to express this as the signal-flow diagram in Figure 5c. Here we are treating θ as an output rather than
an input, implicitly using a cap.

These three signal-flow diagrams above describe the following linear relations:

x =
∫ ∫ 1

M
Fnet (1)

θ =
∫ ∫ (g

`
θ − 1

`
ẍ
)

(2)

Fnet +mgθ = F (3)

where we treat (1) as a relation with Fnet as input and x as output, (2) as a relation with ẍ as input and θ

as output, and (3) as a relation with F as input and (Fnet,θ) as output.

mg
1
M

F

∫

∫

x

−1
`

∫
−g

` ∫

θ

(a) Our inverted pendulum

F

1
M

−1
M`

∫
∫

x

∫
∫

mg
M

(M+m)g
M`

θ

(b) Friedland’s inverted pendulum

Figure 6

To understand how the external force affects the position of the cart and the angle of the pendulum,
we wish to combine all three diagrams to form a signal-flow diagram that has the external force F as
input and the pair (x,θ) as output. This is not just a simple matter of composing and tensoring the three
diagrams. We can take Fnet, which is an output of (3), and use it as an input for (1). But we also need to

14 Categories in control

duplicate ẍ, which appears as an intermediate variable in (1) since ẍ = 1
M Fnet, and use it as an input for

(2). Finally, we need to take the variable θ , which appears as an output of both (2) and (3), and identify
the two copies of this variable using coduplication. The result is the signal-flow diagram in Figure 6a.

This is not the signal-flow diagram for the inverted pendulum that one sees in Friedland’s textbook on
control theory [11]. We leave it as an exercise to the reader to rewrite our diagram using the rules given
in this paper, obtaining Friedland’s diagram in Figure 6b. As a start, one can use Theorem 4 to prove that
it is indeed possible to do this rewriting. To do this, simply check that both signal-flow diagrams define
the same linear relation. The proof of the theorem in [3] gives a method to actually do the rewriting—but
not necessarily the fastest method.

Acknowledgements

We thank Jamie Vicary for pointing out the relevance of the ZX calculus when the first author gave a talk
on this material at Oxford in February 2014 [2]. Discussions with Brendan Fong have also been useful.
On April 30 of that year, after much of [3] was written, Paweł Sobociński told the first author about some
closely related and very interesting papers that he wrote with Filippo Bonchi and Fabio Zanasi [5, 6].

References

[1] Samson Abramsky and Bob Coecke, A categorical semantics of quantum protocols, Proceedings of the 19th
IEEE Conference on Logic in Computer Science (LiCS’04), IEEE Computer Science Press, 2004, pp. 415–
425, doi:10.1109/LICS.2004.1319636. Available as arXiv:quant-ph/0402130.

[2] John Baez, Network theory I: electrical circuits and signal-flow graphs, lecture at the Depart-
ment of Computer Science, University of Oxford, February 25, 2014. Slides and video available at
http://math.ucr.edu/home/baez/networks oxford/.

[3] John Baez and Jason Erbele, Categories in control. Available as arXiv:1405.6881.

[4] John Baez and Mike Stay, Physics, topology, logic and computation: a Rosetta Stone, in New Structures
for Physics, ed. Bob Coecke, Lecture Notes in Physics vol. 813, Springer, Berlin, 2011, pp. 95–172,
doi:10.1007/978-3-642-12821-9 2. Available as arXiv:0903.0340.

[5] Filippo Bonchi, Paweł Sobociński and Fabio Zanasi, Interacting Hopf algebras. Available as
arXiv:1403.7048.

[6] Filippo Bonchi, Paweł Sobociński and Fabio Zanasi, A categorical semantics of signal flow graphs, in
CONCUR 2014–Concurrency Theory, eds. P. Baldan and D. Gorla, Lecture Notes in Computer Sci-
ence vol. 8704, Springer, Berlin, 2014 pp. 435–450, doi:10.1007/978-3-662-44584-6 30. Also available at
http://users.ecs.soton.ac.uk/ps/papers/sfg.pdf.

[7] Aurelio Carboni and Robert F. C. Walters, Cartesian bicategories I, J. Pure Appl. Alg. 49 (1987), 11–32,
doi:10.1016/0022-4049(87)90121-6.

[8] Bob Coecke and Ross Duncan, Interacting quantum observables: categorical algebra and diagrammatics,
New J. Phys. 13 (2011), 043016, doi:10.1088/1367-2630/13/4/043016. Available as arXiv:0906.4725.

[9] Bob Coecke and Eric Oliver Paquette, Categories for the practising physicist, in New Structures for Physics,
ed. Bob Coecke, Lecture Notes in Physics vol. 813, Springer, Berlin, 2011, pp. 173–286, doi:10.1007/978-
3-642-12821-9 3. Available as arXiv:0905.3010.

[10] Bob Coecke, Dusko Pavlovic and Jamie Vicary, A new description of orthogonal bases, Math. Str. Comp.
Sci. 23 (2013), 555–567, doi:10.1017/S0960129512000047. Available as arXiv:0810.0812.

[11] Bernard Friedland, Control System Design: An Introduction to State-Space Methods, Courier Dover Publi-
cations, 2012.

http://dx.doi.org/10.1109/LICS.2004.1319636
http://arxiv.org/abs/quant-ph/0402130
http://math.ucr.edu/home/baez/networks_oxford/
http://arxiv.org/abs/1405.6881
http://dx.doi.org/10.1007/978-3-642-12821-9_2
http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/1403.7048
http://dx.doi.org/10.1007/978-3-662-44584-6_30
http://users.ecs.soton.ac.uk/ps/papers/sfg.pdf
http://dx.doi.org/10.1016/0022-4049(87)90121-6
http://dx.doi.org/10.1088/1367-2630/13/4/043016
http://arxiv.org/abs/0906.4725
http://dx.doi.org/10.1007/978-3-642-12821-9_3
http://dx.doi.org/10.1007/978-3-642-12821-9_3
http://arxiv.org/abs/0905.3010
http://dx.doi.org/10.1017/S0960129512000047
http://arxiv.org/abs/0810.0812

John C. Baez and Jason Erbele 15

[12] André Joyal and Ross Street, The geometry of tensor calculus I, Adv. Math. 88 (1991), 55-113,
doi:10.1016/0001-8708(91)90003-P.

[13] André Joyal and Ross Street, The geometry of tensor calculus II. Draft available at
http://maths.mq.edu.au/∼street/GTCII.pdf.

[14] Joachim Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, Cam-
bridge U. Press, Cambridge, 2003, doi:10.1017/CBO9780511615443. Short version available at
http://mat.uab.es/∼kock/TQFT/FS.pdf.

[15] Joachim Kock, Remarks on the origin of the Frobenius equation, available at
http://mat.uab.es/∼kock/TQFT.html#history.

[16] Yves Lafont, Towards an algebraic theory of Boolean circuits, J. Pure Appl. Alg. 184 (2003), 257–310,
doi:10.1016/S0022-4049(03)00069-0. Available at http://iml.univ-mrs.fr/∼lafont/pub/circuits.pdf.

[17] Robert Rosebrugh, Nicoletta Sabadini and Robert F. C. Walters, Generic commutative sepa-
rable algebras and cospans of graphs, Th. Appl. Cat. 15 (2005), 264–277. Available at
http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html.

[18] Peter Selinger, Dagger compact closed categories and completely positive maps, Elec. Notes Theor. Comp.
Sci. 170 (2007), 139–163, doi:10.1016/j.entcs.2006.12.018.

[19] Jamie Vicary, Categorical formulations of finite-dimensional quantum algebras, Comm. Math. Phys. 304
(2011), 765–796, doi:10.1007/s00220-010-1138-0. Available as arXiv:0805.0432.

http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://maths.mq.edu.au/~street/GTCII.pdf
http://dx.doi.org/10.1017/CBO9780511615443
http://mat.uab.es/~kock/TQFT/FS.pdf
http://mat.uab.es/~kock/TQFT.html#history
http://dx.doi.org/10.1016/S0022-4049(03)00069-0
http://iml.univ-mrs.fr/~lafont/pub/circuits.pdf
http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html
http://dx.doi.org/10.1016/j.entcs.2006.12.018
http://dx.doi.org/10.1007/s00220-010-1138-0
http://arxiv.org/abs/0805.0432

	Introduction
	Signal-flow diagrams
	An example

