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We consider possible non-signaling composites of probabilistic models based on euclidean Jordan
algebras. Subject to some reasonable constraints, we show that no such composite exists having the
exceptional Jordan algebra as a direct summand. We then construct several dagger compact cate-
gories of such Jordan-algebraic models. One of these neatly unifies real, complex and quaternionic
mixed-state quantum mechanics, with the possible exception of the quaternionic “bit”. Another is
similar, except in that (i) it excludes the quaternionic bit, and (ii) the composite of two complex
quantum systems comes with an extra classical bit. A no-go theorem forecloses any possibility of
such a category including higher-dimensional spin factors.

1 Introduction

A series of recent papers [15, [11} [16} 14} 5] have shown that any of various packages of probabilistic
or information-theoretic axioms force the state spaces of a finite-dimensional probabilistic theory to be
those of formally real, or euclidean, Jordan algebras. Thus, euclidean Jordan algebras (hereafter, EJAs)
form a natural class of probabilistic models. Moreover, it is one that keeps us in the general neighbor-
hood of standard quantum mechanics, owing to the classification of simple EJAs as self-adjoint parts of
real, complex and quaternionic matrix algebras (corresponding to real, complex and quaternionic quan-
tum systems), the exceptional Jordan algebra of self-adjoint 3 x 3 matrices over the octonions, and one
further class, the so-called spin factors. The latter are essentially “bits”: their state-spaces are balls of
arbitrary dimension, with antipodal points representing sharply distinguishable statesE]

This raises the question of whether one can construct probabilistic theories (as opposed to a collection
of models of individual systems) in which finite-dimensional complex quantum systems can be accom-
modated together with several — perhaps all — of the other basic types of EJAs listed above. Ideally,
these would be symmetric monoidal categories; even better, we might hope to obtain compact closed, or
still better, dagger-compact, categories of EJAs [[1]]. Also, one would like the resulting theory to embrace
mixed states and CP mappings.

In this paper, we exhibit two dagger-compact categories of EJAs — called URUE and URSE, acronyms
that will be explained below — that include all real, complex and quaternionic matrix algebras, with one
conspicuous (and interesting) exception: the quaternionic bit, or “quabit”, represented by M, (H)sa, the
Jordan algebra of self-adjoint 2 x 2 quaternionic matrices. We are able to show that this cannot be added
to URUE without destroying compact closure; whether URSE can be extended to include it remains open

'Where this ball has dimension 2, 3 or 5, these are just the state spaces of real, complex and quaternionic quantum bits.
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at present. URSE includes a faithful copy of finite-dimensional complex quantum mechanics, while in
URUE, composites of complex quantum systems come with an extra classical bit — that is, a {0,1}
valued superselection rule.

We also show that there is scant hope of including more exotic Jordan algebras in a satisfactory cate-
gorical scheme. Even allowing for a very liberal definition of composite (our Definition 1 below), the
exceptional Jordan algebra is ruled out altogether (Corollary 1), while non-quantum spin factors are ruled
out if we want to regard states as morphisms — in particular, if we demand compact closure (see Example
1). Combined with the results of (any of) the papers cited above that derive a euclidean Jordan-algebraic
structure from information-theoretic assumptions, these results provide a compelling motivation for a
kind of unified quantum theory that accommodates real, complex and quaternionic quantum systems
(possibly modulo the quabit) and permits the formation of composites of these.

A condition frequently invoked to rule out real and quaternionic QM is local tomography: the doctrine
that the state of a composite of two systems should depend only on the joint probabilities it assigns to
measurement outcomes on the component systems. Indeed, it can be shown [7] that standard complex
QM with superselection rules is the only dagger-compact category of EJAs that includes the qubit. Ac-
cordingly, URUE and URSE are not locally tomographic. In our view, the very existence of these quite
reasonable, well-behaved categories suggests that local tomography is not as well-motivated as is some-
times supposed.

Remark: A broadly similar proposal is advanced by Baez [3], who points out that one can view real
and quaternionic quantum systems as pairs (H,J), where H is a complex Hilbert space and J is an anti-
unitary satisfying J? = 1 (the real case) or J> = —1 (the quaternionic case). This yields a symmetric
monoidal category in which objects are such pairs, morphisms (Hy,J;) — (Hy,J>) are linear mappings
intertwining J; and J, and (H;,J;) ® (Hy,J2) = (H; @ Hp,J; ®J3). The precise connection between this
approach and ours is still under study.

2 [Euclidean Jordan algebras

We begin with a concise review of some basic Jordan-algebraic background. References for this section
are [2]] and [8]]. A euclidean Jordan algebra (hereafter: EJA) is a finite-dimensional commutative real
algebra (A, -) with a multiplicative unit element u, satisfying the Jordan identity

a@-(a-b)=a-(a*-b)
for all a,b € A, and equipped with an inner product satisfying
(a-ble) = (bla-c)

for all a,b,c € A. The basic example is the self-adjoint part Mg, of a real, complex or quaternionic matrix
algebra M, with a- b = (ab+ ba)/2 and with (a|b) = tr(ab). Any Jordan subalgebra of an EJA is also an
EJA. So, too, is the spin factor V,, = R x R", with the obvious inner product and with

(1) - (5,3) = (£ + {xly) ty+-5%) :
this can be embedded in M:(C)sy. Moreover, one can show that

Vo >~ Mp(R)sa, V3 = M>(C)sa, and Vs ~ My (H)sa.
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Classification Direct sums of EJAs are also EJAs, so we can obtain more examples by forming direct
sums of the EJAs of the types mentioned above. The Jordan-von Neumann-Wigner Classification Theo-
rem (see [8]] Chapter IV) provides a converse: every euclidean Jordan algebra is a direct sum of simple
EJAs, each of which is isomorphic to a spin factor V,, or to the self-adjoint part of a matrix algebra
M, (K) where K is one of the classical division rings R, C or H, or, if n = 3, to the Octonions, O. This
last example, which is not embeddable into the self-adjoint part of a complex matrix algebra, is called
the exceptional Jordan algebra, or the Albert algebra. A Jordan algebra that is embeddable in M, (C)sa
for some n, is said to be special. It follows from the classification theorem that any EJA decomposes as
a direct sum Agp ® Aex where Agp is special and Agy is a direct sum of copies of the exceptional Jordan
algebra.

Projections and the Spectral Theorem A projection in an EJA A is an element p € A with p> = p. If
p,q are projections with p-g = 0, we say that p and ¢ are orthogonal. In this case, p + ¢ is another pro-
jection. A projection not representable as a sum of other projections is said to be minimal or primitive.
A Jordan frame is a set E C A of pairwise orthogonal minimal projections that sum to the Jordan unit.
The Spectral Theorem (cf. e.g. [8ll, Theorem III.1.1) for EJAs asserts that every element a € A can be
expanded as a linear combination a = } g t,x where E is some Jordan frame.

One can show that all Jordan frames for a given Euclidean Jordan algebra A have the same number of
elements. This number is called the rank of A. By the Classification Theorem, all simple Jordan algebras
having rank 4 or higher are special.

Order Structure Any EJA A is at the same time an ordered real vector space, with positive cone
A, ={d’lac A}; fora,b€ A, a<biff b—acA,. This allows us to interpret A as a probabilistic
model: an effect (measurement-outcome) in A is an element a € A, with a < u. A state on A is a positive
linear mapping o : A — R with a(u) = 1. If a is an effect, we interpret a(a) as the probability that a
will be observed (if tested) in the state o.

The cone A is self-dual with respect to the given inner product on A: an element a € V belongs to A
iff (a|b) > O for all b € A. Every state a then corresponds to a unique b € A, with a(a) = (a|b).

Remark: Besides being self-dual, the cone A is homogeneous: any element of the interior of Ay can
be obtained from any other by an order-automorphism of A, that is, a linear automorphism ¢ : A — A
with ¢ (A1) = A. The Koecher-Vinberg Theorem ([10}[13]; see [8] for a modern proof) identifies EJAs
as precisely the finite-dimensional ordered linear spaces having homogeneous, self-dual positive cones.
This fact underwrites the derivations in several of the papers cited above [15,[16, 14]E]

Reversible and universally reversible EJAs A Jordan subalgebra of Mgy, where M is a complex -
algebra, is reversible iff

ap,...,ay €A = ayay---ar+ai---ara; €A,

where juxtaposition indicates multiplication in M. Note that with k = 2, this is just closure under the
Jordan product on Msy. An abstract EJA A is reversible iff it has a representation as a reversible Jordan
subalgebra of some complex *-algebra. A reversible EJA is universally reversible (UR) iff it has only
reversible representations.

Universal reversibility will play a large role in what follows. Of the four basic types of special Euclidean

2 A different characterization of EJAs, in terms of projections associated with faces of the state space, is invoked in [3].
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Jordan algebra considered above, the only ones that are not UR are the spin factors V; with k > 4. For
k=4 and k > 5, V} is not even reversible; Vs — equivalently, M, (H)sa — has a reversible representation,
but also non-reversible ones. Thus, if we adopt the shorthand

Rn = Mn(R)Saa Cn = Mn(c)sa, and Qn = Mn(H)Saa

we have R,,,C,, UR for all n, and Q,, UR for n > 2.

3 Composites of EJAs

A probabilistic theory must allow for some device for describing composite systems. Given EJAs A and
B, understood as models for two physical systems, we’d like to construct an EJA AB that models the two
systems considered together as a single entity. Is there any satisfactory way to do this? If so, how much
latitude does one have?

The first question is answered affirmatively by a construction due to H. Hanche-Olsen [9], which we now
review.

The universal tensor product A representation of a Jordan algebra A is a Jordan homomorphism 7 :
A — Mgy, where M is a complex x-algebra. For any EJA A, there exists a (possibly trivial) x-algebra
C*(A) and a representation Wy : A — C*(A)sa with the universal property that any representation 7 : A —
Msa, where M is a C*-algebra, decomposes uniquely as 7 = o yy, 7 : C*(A) — M a x-homomorphism.
Evidently, (C*(A), wy) is unique up to a canonical #-isomorphism. Since y°P : A — C*(A)°P provides
another solution to the same universal problem, there exists a canonical anti-automorphism ®4 on C*(A),
fixing every point of y4(A).

We refer to (C*(A), ya) as the universal representation of A. A is exceptional iff C*(A) = {0}. If A has
no exceptional factors, then yy is an injective. In this case, we will routinely identify A with its image
va(A) < C*(A).

In [9], Hanche-Olsen defines the universal tensor product of two special EJAs A and B to be the Jordan
subalgebra of C*(A) ® C*(B) generated by A ® B. This is denoted A®B. It can be shown that
C*(A®B) = C*(A)®C*(B) and @z, = Py @ Pp.

Some further important facts about the universal tensor product are the following:
Proposition 1 Let A, B and C denote EJAs.

(@) If ¢ :A— C, y: B— C are unital Jordan homomorphisms with operator-commuting rangeﬂ then
there exists a unique Jordan homomorphism A®B — C taking a ® b to ¢(a) - w(b) for all a € A,
beB.

(b) A®B is UR unless one of the factors has a one-dimensional summand and the other has a repre-
sentation onto a spin factor V,, with n > 4.

(c) If Ais UR, then AQM,,(C)ga = (C*(A) ® M,(C))sa.
These are Propositions 5.2, 5.3 and 5.4, respectively, in [9].
Note that part (b) implies that if A and B are irreducible and non-trivial, A®B will always be UR, hence,

3Elements x,y € C operator commute iff x- (y-z) = y- (x-z) for all z € C.
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the fixed-point set of &4 ® ®p. Using this one can compute A®B for irreducible, universally reversible A
and B [9]. Below, and for the balance of this paper, we use the shorthand R, := M,,(R)sa, C;, = M,,(C)sa
and Q, = M,,(H)sa (noting that Q,, is UR only for n > 2):

® | R Cn Om
Ry | Rum Com Onm
Co | Com Cun®Cum  Coum
Qn Qnm Can R4nm

Figure 2

For 0>»®Q>, a bit more work is required, but one can show that Q,®Q> is the direct sum of four copies
of Rig = M16(R)sa [4].

General composites of EJAs The universal tensor product is an instance of the following (as it proves,
only slightly) more general scheme. Recall that an order-automorphism of an EJA A is a linear bijection
¢ : A — A taking A, onto itself. These form a Lie group, whose identity component we denote by G(A).

Definition 1: A composite of EJAs A and B is a pair (AB, ) where ABis an EJA and 7 : A®Q B — AB is
a linear mapping such that

(a) face A, and b € By, then T(a®Db) € (AB), with m(u® u) the Jordan unit of AB;

(b) for all states @ on A, 3 on B, there exists a state ¥ on AB such that Y(w(a ® b)) = a(a)B(D);

(c) for all automorphisms ¢ € G(A) and y € G(B), there exists a preferred automorphism ¢ ® y €
G(AB) with (¢ @ y)(w(a®@b)) = n(¢(a) ® y(b)). Moreover, we require that

(91 @y1)o(2@y2) = (910¢2) @ (Y10yn)

and . ‘
by =o'y
forall ¢,¢; € G(A) and y, y; € G(B).

It follows from (b) that 7 is injective (if 7#(T') = 0, then for any states ¢, 3, there’s a state y of AB with
(a®B)(T)=y(x(T)) = 0; it follows that T = 0). Henceforth, we’ll simply regard A ® B as a subspace
of AB.

Condition (c) calls for further comment. The dynamics of a physical system modeled by a Euclidean Jor-
dan algebra A will naturally be represented by a one-parameter group ¢ — ¢, of order automorphisms of
A. As order-automorphisms in G(A) are precisely the elements of such one-parameter groups, condition
(c) is equivalent to the condition that, given dynamics t — ¢, and ¢ — y; on A and B, respectively, there
is a preferred dynamics on AB under which pure tensors a ® b evolve according to a® b — ¢ (a) @ y;(b).
In other words, there is a dynamics on AB under which A and B evolve independently.

Theorem 1: If A and B are simple EJAs, then any composite AB is special, and an ideal in AQB.

The basic idea of the proof is to show that if py, ..., p, is a Jordan frame in an irreducible summand of A,
and q1,...,¢m is a Jordan frame in an irreducible summand of B, then {p; ® ¢;|li=1,...,n,j=1,....m} isa
pairwise orthogonal set of projections in AB, whence, the latter has rank at least four, and must therefore
be special. For the details, we refer to [4]].

Corollary 1: If A is simple and B is exceptional, then no composite AB exists.
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In particular, if B is the exceptional factor, there exists no composite of B with itself.
Corollary 2: If AQB is simple, then AB = A®B is the only possible composite of A and B.

There are cases in which A®B isn’t simple, even where A and B are: namely, the cases in which A and B
are both hermitian parts of complex matrix algebras. From table (2), we see that if A = C, and B = C,,,,
then A®B = Cpyp @ Cpp. In this case, Proposition 1 gives us two choices for AB: either the entire direct
sum above, or one of its isomorphic summands, i.e., the “obvious” composite AB = C,,.

4 Embedded EJAs

Corollary 1 above justifies restricting our attention to special EJAs (often called Euclidean JC-algebras).
In fact, it will be helpful to consider embedded EJAs, that is, Jordan subalgebras of specified (finite-
dimensional) C* algebras.

Definition 2: An embedded JC algebra, or EJC, is a pair (A,M4) where A is a Jordan subalgebra of a
finite-dimensional complex *-algebra My.

The notation My is intended to emphasise that the embedding A — My is part of the structure of interest.
Given A, there is always a canonical choice for M, namely the universal enveloping *-algebra C*(A) of
A[9].

Definition 3: The canonical product of EJCs (A,M,) and (B,Mj) is the pair (A ® B,M4 ® M) where
A ® B is the Jordan subalgebra of (M4 ® Mp)sa generated by the subspace A ® B.

Note that, as a matter of definition, Mo = Mg @ Mp. If My = C*(A) and Mg = C*(B), then A® B is
the Hanche-Olsen tensor product.

One would like to know that A ® B is in fact a composite of A and B in the sense of Definition 1. Using
a result of Upmeier [12], we can show that this is the case for reversible EJAs A and B. (that is, real,
complex and quaternionic systems, and direct sums of these). Whether A © B is a composite in the sense
of Definition 1 when A or B is non-reversible spin factor remains an open question.

We can now form a category:

Definition 4: EJC is the category consisting of EJCs (A,My) and completely positive maps ¢ : My —
M; with ¢ (A) C B. We refer to such maps as Jordan preserving.

Proposition 2: The canonical product ® is associative on EJC. More precisely, the associator mapping
o:My®(MpeMc) = (Mg @Mp) @Me
takes A® (BOC) to (A®B)©C.

(Note that since the associator mapping is CP, this means that o is a morphism in EJC.) The proof is
somewhat lengthy, so we refer the reader to the forthcoming paper [4]].

Proposition 2 suggests that EJC might be symmetric monoidal under ®. There is certainly a natural
choice for the monoidal unit, namely / = (R, C). But the following example shows that tensor products
of EJC morphisms are generally not morphisms:

Example 1: Let (A,C*(A)) and (B,C*(B)) be simple, universally embedded EJCs, and suppose that B is
not UR (e.g., a spin factor V,, with n > 3). Let B be the set of fixed points of the canonical involution ®p.
Then by Corollary 2, A®B = A®B, the set of fixed points of ®4 ® ®p. In particular, us ® B is contained
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in A® B. Now let f be a state on C*(A): this is CP, and trivially Jordan-preserving, and so, a morphism
in EJC. But
(f ©idp)(us @ B) = f(ua)B = B,

which isn’t contained in B. So f ®idg isn’t Jordan-preserving.

5 Reversible and universally reversible EJCs

It seems that the category EJC is simply too large. We can try to obtain a better-behaved category by
restricting the set of morphisms, or by restricting the set of objects, or both.

As a first pass, we might try this:

Definition 5: Let (A,My) and (B,Mp) be EJCs. A linear mapping ¢ : My — Mp is completely Jordan
preserving (CJP) iff ¢ ® 1¢ takes A©C to BOC for all (C,Mc).

It is not hard to verify the following
Proposition 3: If ¢ : My — Mp and v : M¢c — Mp are CJP, then so is

ORY:Myoc =My @Mp — Mp@Mc =Mpop.

Thus, the category of EJC algebras and CJP mappings is symmetric monoidalf_f]

There are many examples: Jordan homomorphisms are CJP maps. If a € A, the mapping
U,:A—A

given by U, = 2L, — lel, where L,(b) = ab, is also CJP. On the other hand, by Example 1 above,
CJP(A,I) is empty for universally embedded simple A!

So not all CP maps are CJP; for instance, states are never CJP. More seriously, we can’t interpret states as
morphisms in this category. The problem is the non-UR spin factors in CJP. If we remove these, things
are much better.

Definition 6: Let % be a subclass of embedded EJC algebras, closed under ® and containing /. A linear
mapping ¢ : My — Mg is CJP relative to € iff ¢4 ® idc is Jordan preserving for all C in €. CJPy is the
category having objects elements of %', mappings relatively CJP mappings.

Example 2: URUE is the class of universally reversible, universally embedded EJC algebras. URSE
is the category of universally reversible, standardly embedded EJC algebras, and RSE is the category
of reversible, standardly embedded EJC algebras. Equipped with relatively CJP mappings, both are
symmetric monoidal categories.

Note that RSE consists of direct sums of real, complex and quaternionic quantum systems. URSE and
URUE contain all real and complex quantum systems, and all quaternionic quantum systems except the
“quabit”, i.e., the quaternionic bit Oy := M (H)sa.

4Notice that scalars of this category are real numbers. It is sometimes suggested that quaternionic Hilbert spaces can’t be
accommodated in a symmetric monoidal category owing to the noncommutativity of H, as the scalars in a symmetric monoidal
category must always be commutative. As we are representing quaternionic quantum systems in terms of the associated real
vector spaces of hermitian operators, this issue doesn’t arise here.
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In both of the categories URUE and URSE, states are morphisms. In fact, we are going to see that URUE
and URSE inherit compact closure from the category *x-ALG of finite-dimensional, complex *-algebras
and CP maps, in which they are embedded.

It’s worth taking a moment to review this compact structure. If M is a finite-dimensional complex *-
algebra, let Tr denote the canonical trace on M, regarded as acting on itself by left multiplication (so that
Tr(a) =tr(L,), Ly : M — M being L,(b) = ab for all b € M). This induces an inner product on M, given
by (a|b)m = Tr(ab* | Note that this inner product is self-dualizing, i.e,. @ € M. iff (a|b) > 0 for all
b € M. Now let M be the conjugate algebra, writing @ for @ € M when regarded as belonging to M (so
that ¢a = ¢ @ for scalars ¢ € C and @b = ab for a,b € M). Note that (a|b) = (b|a). Now define

fm=) evecMaM
eck

where E is any orthonormal basis for M with respect to ( | )p. Then a computation shows that

((a®b) fulfm)ment = (alb)m-

Since the left-hand side defines a positive linear functional on M ® M, so does the right (remembering
here that pure tensors generate M @ M, as we’re working in finite dimensions). Call this functional M.
That is,

v :M®M — C is given by nym(a®b) = (a|b) = Tr(ab*)

and is, up to normalization, a state on M ® M. A further computation now shows that

(a@b|fm)yent = N(a®Db).

It follows that fy; belongs to the positive cone of M ® M, by self-duality of the latter. A final computation
shows that, for any states & and @ on M and M, respectively, and any a € M,a € M, we have

(Mu e a)(a® fy) = a(a) and (@@ nm)(fi®a) = o(a).

Thus, v and fi7 define a compact structure on *x-ALG, for which the dual object of M is given by M.

Definition 7: The conjugate of a EJC algebra (A,My) is (A,My), where A = {ala € A}. We write 14
for nm, and fu for fum,.

5.1 Universally-embedded, universally reversible EJAs

Now consider the category URUE of universally reversible, universally embedded EJAs A, i.e., pairs
(A,My) with A UR and My = C*(A). Let ®4 be the canonical involution on C*(A).

Lemma 1: Let (A,My) belong to URUE. Then
(a) fa EAGA;
(b) Nao(Ps@P;) = Na.

Proof: (a) follows from the fact that ®4 is unitary, so that if £ is an orthonormal basis, then so is
{®a4(e)|e € E}. Since f4 is independent of the choice of orthonormal basis, it follows that f is invariant
under &, ® P, hence, an element of A®A. Now (b) follows from part (a) of the previous lemma. [J

5We are following the convention that complex inner products are conjugate linear in the second argument.
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Define y4 : C*(A) — C*(A) by y(a) = ®4(a*). This is a *-isomorphism, and intertwines ®4 and ®,;
hence, y4 ®idp : C*(A®B) — C*(A ® B) intertwines O @ Pp = Pyz 5 and Py @ Pp = D, 5, — whence,
takes A®B to A®B. In particular, y; is CJP relative to the class of UR, universally embedded EJCs.

Lemma 2: Let A be a universally embedded UR EJC. Then for all oo € CJP(A,I), there exists a € A with
o(b) = (bla) forall b € A.

Proof: Since oo € C*(A)*, there is certainly some a € C*(A) with o = |a). We need to show that a € A.
Since « is CJP,
MR CA)RC(A)=C* (AR A) — C*(A)

is Jordan-preserving. In particular, (& ® ¥1)(fa) € A. But

(@@n)(fa) = Y (a@n)(ee)

ecE

= ) (ela)(e)

eckE

= ®() (ela)e”)

ecE

= (Y lale)e)’) = P(a”) = n(@).

eckE

Hence, 14 (@) € A, whence, @ € A, whence, a € A. (Alternatively: ®4(a*) € A implies a* € A, whence, a
is self-adjoint, whence, a € A.) [J

It follows that 14 and f4 belong, as morphisms, to URUE. Hence, URUE inherits the compact structure
from *-ALG, as promised.

The same holds for URSE. Specifically, we want to show that f; belongs to A ® A whenever A is a
standardly embedded UR EJC.

Suppose that E is an orthonormal basis for My: then so is {e*|e € E}; thus, since f4 is independent of
the choice of basis, we have
fi=) e =) e =/
ecE e*cE*
Thus, if A @X is the self-adjoint part of M4 ® My, then f4 € A ®A. This covers the case where A = C,,.
We also have, by the results above, that f4 € A©A whenever the latter equals A®A. This covers A = R,
and A = Q, forn > 2.

In fact, we can do a bit better. If M and N are finite-dimensional *-algebras and ¢ : M — N is a linear
mapping, let ¢ denote the adjoint of ¢ with respect to the natural trace inner products on M and N. It
is not difficult to show that, for any M in *x-ALG, fl\T/I = Mm and vice versa; indeed, x-ALG is dagger-
compact.

Definition 8: Let (A,M,) and (B,Mp) be EJCs. A linear mapping ¢ : My — Mp is T-CJP iff both ¢ and
¢ are CIP. If € is a category of EJCs and CJP mappings, we write €' for the category having the same
objects, but with morphisms restricted to -CJP mappings in €.

If A belongs to URUE or URSE, then f4 and n4 are both CJP and, hence, are both -CJP with respect
to the indicated category. Hence,

Theorem 2: The categories URUE' and URSE' are dagger-compact.
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6 Conclusion

We have found two theories — the categories URSE and URUE — that, in slightly different ways, unify
finite-dimensional real, complex and (almost all of) quaternionic quantum mechanics. By virtue of being
compact closed, both theories continues to enjoy many of the information-processing properties of stan-
dard complex QM, e.g., the existence of conclusive teleportation and entanglement-swapping protocols

[LL].

It is worth pointing out that the composites in our categories are not “locally tomographic”, i.e, a state @
on A ® B is not generally determined by the joint probability assignment a,b — ®(a ® b), where a and b
are effects of A and B, respectively. Another way to put it is that A ® B is generally much larger than the
vector-space tensor product A ® B. (As local tomography is well known to separate complex QM from
its real and quaternionic variants, this is hardly surprising.)

Neither theory includes the quabit, Q,. Example 1 shows that the O, can’t be added to URUE without a
violation of compact closure. On the other hand, if fjp, belongs to the canonical composite Q> ® O, then
the slightly larger category RSE, which consists of all finite-dimensional real, complex and quaternionic
quantum systems, will be compact closed (indeed, dagger compact)E]

The categories URSE and URUE contain interesting compact closed subcategories. In particular, real
and quaternionic quantum systems (less the quabit), taken together, form a sub-theory, closed under com-
posites. We conjecture that this is exactly what one gets by applying the CPM construction to Baez’ (im-
plicit) category of pairs (H,J), H a finite-dimensional Hilbert space and J an anti-unitary with J> = 41
— and, again, excluding the quabit. Should RSE prove to be compact closed, we could entertain the
stronger conjecture that this is exactly what one obtains by applying CPM to Baez’ category.

Complex quantum systems also form a monoidal subcategory of URSE, which we might call CQM:
indeed, one that functions as an “ideal”, in that if A € URSE and B € CQM, then A ® B € CQM as well.
This is provocative, as it suggests that a universe initially consisting of many systems of all three types,
would eventually evolve into one in which complex systems greatly predominate.

The category URUE is somewhat mysterious. Like URSE, this encompasses real, complex and quater-
nionic quantum systems, excepting the quabit. In this theory, the composite of complex quantum systems
comes with an extra classical bit — equivalently, a {0, 1}-valued superselection rule. This functions to
make the transpose operation — which is a Jordan automorphism of M,,(C)sa, but an antiautomorphism
of M,,(C) — count as a morphism. The precise physical significance of this is a subject for further study.
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6Since this Abstract was first submitted, we believe we have settled this question in the affirmative. The details will appear
elsewhere.
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