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Building on established literature and recent developments in the graph-theoretic characterisation of
its CPM category, we provide a treatment of pure state and mixed state quantum mechanics in the
category fRel of finite sets and relations. On the way, we highlight the wealth of exotic beasts that
hide amongst the extensive operational and structural similarities that the theory shares with more
traditional arenas of categorical quantum mechanics, such as the category fdHilb. We conclude our
journey by proving that fRel is local, but not without some unexpected twists.

1 Introduction

The Categorical Quantum Mechanics programme [3] [7] [16] is concerned with the understanding,
through the language of dagger symmetric monoidal categories, of the structural and operational fea-
tures of quantum theory. The investigation of classical-quantum duality goes through the definition of
classical structures, [8] [10] a.k.a. special commutative †-Frobenius algebras, which play a central role
as the abstract incarnation of non-degenerate observables, and lie at the very heart of the paradigm. The
dagger allows for an abstract definition of unitarity, while the CPM construction from [20] can be lever-
aged to rigorously define [11] [7] [9] discarding maps, mixed states, decoherence and measurements.

The extreme versatility of the approach has given birth, in the years, to many a toy model of quantum
theory, a particularly interesting one being the category fRel of finite sets and relations The apparent
classicality-by-construction of fRel contrasts starkly with the presence of many trademarks of quantum
theory: superposition, entanglement, plenty of classical structures and phases. The full characterisation
of classical structures in terms of abelian groupoids is known [18] [12] (and generalised in [15] to ar-
bitrary groupoids and special †-Frobenius algebras), and provides a stimulating playground in which to
stress-test several operational features [21] [13] [5] [4] [8] taken for granted in more the traditional arenas
of quantum mechanics. fRel has recently found application in Natural Language Processing [19], where
it relates to Montague Semantics; also in the context of NLP, its CPM category has been shown [17] to
have a particularly handy graph-theoretic characterisation.

In this work, we give an overview of fRel as a model of categorical quantum mechanics: compar-
ing and contrasting with the category fdHilb of Hilbert spaces and linear maps, we highlight the many
similarities with the traditional framework, and a number of fairly traits unique to fRel. Using the newly
developed [17] graph-theoretic characterisation of CPM[fRel], we explore the exotic landscape of mixed
state quantum mechanics in fRel: we characterise decoherence maps and demolition measurements, and
we manage to show that, despite the significant differences from traditional frameworks, the theory is
local. This proof of locality, done with respect to operationally defined demolition measurements, ex-
tends and completes the one presented in [1], which only applies to measurements valued in the discrete
classical structure (the only one with enough classical points). In order to improve the flow, we have
omitted the proofs of results well established in the literature provided and/or straightforward to check if
necessary. Relevant proofs and attribution can be found in the Appendix at Section 6.
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2 Pure state quantum mechanics in fRel

The category fRel is defined as having finite sets as its objects, relations R⊆ X×Y as morphisms X→Y
and relational composition. As fdHilb, it is a † symmetric monoidal category (henceforth †-SMC), with
the cartesian product × of sets/relations as tensor, the singleton set 1 := {?} as tensor unit and a dagger
defined by:

R† := {(y,x) | (x,y) ∈ R} (2.1)

The scalars of fRel are {⊥,>}, with the tensor and unitors inducing multiplication × (or equivalently
inf) on them. As fdHilb, the category fRel is enriched over finite monoids, with the tensor distributing
over a superposition operation ∨, the union of relations.1 The scalars form a semiring ({⊥,>},∨,×),
which opens up the doors for the application of methods from sheaf-theoretic non-locality. [2]

Morphisms R : X → Y , seen as subsets R⊆ X ×Y , form a sup-semilattice under ∨.2 This applies in
particular to states, which can be seen as subsets ψ ⊆ X : their hierarchical superposition structure, with
|X〉 as maximum and the elements |x〉 for x ∈ X as atoms, is the first significant difference from fdHilb.
From now on, we will denote the elements of X by x ∈ X , and the states/subsets of X equivalently by
ψ ⊆ X or |ψ〉 : 1→ X .

Just as in fdHilb, the tensor of fRel is not a cartesian tensor in the categorical sense:3 it is sufficient to
observe that fRel has lots of entangled states (letting X and Y have n and m elements respectively, there
are 2n+m−2+1 separable states of X×Y , out of 2nm states). The central role in CQM, however, is played
by classical structures, rather than states, and we now move to their characterisation in fRel as abelian
groupoids.

Definition 2.1. An abelian groupoid on a finite set X is a disjoint family (Gλ ,+λ ,0λ )λ∈Λ of abelian
groups such that ∨λ∈ΛGλ = X .

We will use notation ⊕λ∈ΛGλ to denote one such abelian groupoid. Notice that any groupoid induces a
partition of X into states Gλ ⊆ X : when one such groupoid (and hence partition) is understood, we will
label the elements of X by gλ , with λ ranging over Λ and gλ ranging over Gλ . Now we can turn our
attention to classical structures.

Theorem 2.2. Classical structures in fRel coincide with abelian groupoids, in the sense that if ( , , , )

is a classical structure on X, then there exists a unique abelian groupoid ⊕λ∈ΛGλ such that:

=
{
((gλ ,g

′
λ
),gλ +g′

λ
)
∣∣g,g′ ∈ Gλ ,λ ∈ Λ

}
(2.2)

= {(?,0λ ) |λ ∈ Λ} (2.3)

=
{
(gλ ,(g

′
λ
,g′′

λ
))
∣∣g,g′,g′′ ∈ Gλ ,λ ∈ Λ and g′

λ
+g′′

λ
= gλ

}
(2.4)

= {(0λ ,?) |λ ∈ Λ} (2.5)

Furthermore, the classical points of ( , , , ) are exactly the states |Gλ 〉 : 1→ X. The phases of

( , , , ) are exactly the states in the form {(?,gλ ) |λ ∈ λ } with gλ ∈ Gλ for all λ (so there are a
lot more phases than classical points).

1We will denote union and intersections of subets/relations by ∨ and ∧, to avoid confusion with the cup ∪ and cap ∩ of the
compact structure defined later. It also bodes well with potential generalisations from booleans to semirings or locales.

2In fact, they form a complete distributive boolean lattice, with intersection of relations ∧ and complement of relations ¬.
3Despite being called the cartesian product of relations.
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Proof. Proof of the classical structure / abelian groupoid connection is originally presented in [18]. The
classical points are classified in [12]. To the best of our knowledge, the phase structure in fRel is first
discussed in [14].

We see that is a partial function acting as the group operation of Gλ whenever its two arguments both
belong to the same group Gλ , and being undefined otherwise. In the case of strongly complementary
structures things get particularly interesting: we present the result here (from [12]) for sake of com-
pleteness, but we will not concern ourselves with strong complementarity any further in this work, even
though it is possible to use strong complementarity to implement Fourier transforms in fRel (as shown
in [13]).

Theorem 2.3. Let ( , ) be a pair of strongly complementary classical structures4 in fRel. Then there
exist unique groups G,H such that corresponds to the groupoid ⊕h∈HGh with Gh ∼= G for all h ∈ H
and corresponds to the groupoid ⊕g∈GHg with Hg ∼= H for all g ∈ G.

By morphisms of classical structures we will mean homomorphisms of the comultiplications and
counits. In any †-SMC, they act as functions on the sets of classical points, and just as in fdHilb there
is a canonical way of seeing functions of the sets of classical points as morphisms of classical structures
in fRel. Given a pair of classical structures on sets X and Y corresponding to groupoids ⊕λ∈ΛGλ and
⊕γ∈ΓHγ , and a partial function f : Λ ⇀ Γ of sets, we can construct the following morphism R f : X → Y
in fRel which is a morphism of the given classical structures and acts as the required partial function on
the classical points:

R f :=
∨

λ∈dom f

Gλ ×H f (λ ) (2.6)

This is the equivalent of the following morphism in fdHilb:

R f := ∑
λ∈dom f

| f (λ )〉〈λ | (2.7)

So in fRel, exactly as in fdHilb, there is a natural way of doing classical computation by fixing classical
structures and using the R f above to construct the required morphisms. But unlike fdHilb, fRel has

a lot more morphisms of classical structures than that. For example, if f : Λ
Set−→ Γ is as before and

Φλ : Gλ

Ab−→ H f (λ ) is a family of group isomorphisms, then the following relation (which is a partial
function X →Y ) acts exactly as the relation R f (which is, in general, not a function at all) on the desired
classical points:

gλ 7→Φλ (gλ ) (2.8)

This is a consequence of another, more fundamental difference between fRel and fdHilb: most classical
structures do not have enough classical points. In fact there is a unique classical structure on each set
X that does: it is the the discrete structure, given by the discrete groupoid ⊕x∈X 0x and having the
singletons |x〉 := {x} of X as its classical points. Indeed, the classical points of the discrete structure
yield a resolution of the identity: ∨

x∈X

|x〉〈x|= {(x,x) | x ∈ X }= idX (2.9)

4From now on we will use a dot of the structure colour to denote a classical structure.
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When the classical structures on X and Y are the discrete structures, Equation 2.6 provides the usual
embedding of the category of finite sets and partial functions in fRel:

R f = {(x, f (x)) | x ∈ dom f } (2.10)

In any †-SMC, any classical structure on some system X can be used to induce a cup ∪X and cap ∩X on
X : the discrete structures in fRel induce a natural family of cups and caps, and hence a compact-closed
structure for fRel. The cup on X is given by the relation ∪X := {(?,(x,x)) | x ∈ X }, while the cap is
the partial map ∩X := X ×X ⇀ 1 sending (x,x) to ? for all x ∈ X and undefined everywhere else. The
resulting conjugation is trivial, i.e. R? = R, and transposition coincides with the dagger, i.e. RT = R†.
This is somewhat different from fdHilb, where the traditional compact closed structure is not induced by
any specific classical structure.

Finally, a central role in pure state quantum mechanics is also played by isometries and unitaries.
Recall that an isometry in any †-SMC is a morphism f : X → Y such that f † ◦ f = idX , and a unitary is
a morphism U such that both U and U† are isometries. In fdHilb, unitaries coincide with orthonormal
change-of-basis transformations, i.e. bijective classical maps. This results in the following (straightfor-
ward) lemma, a proof of which is given in the Appendix.

Lemma 2.4. If f : X→Y is a morphism in fdHilb, then f is an isometry if and only if there are classical
structures on X and Y making f into an injective classical map. Furthermore, f is a unitary if and only
if it is a bijective classical map.5

In fRel, one could hope for unitaries that are isomorphisms between arbitrary classical structures (as
it happens in fdHilb), giving rise to a non-trivial interplay. Unfortunately, the condition of isome-
try/unitarity turns out to be a lot more restrictive in fRel than it it in fdHilb, as the following lemma
(proved in the Appendix) summarises.

Lemma 2.5. If f : X → Y is a morphism in fRel, then f is an isometry if and only f † is a surjective
partial function. Equivalently, f is an isometry if and only if it is an injective classical map with respect
to the discrete structure on X and some classical structure on Y . Furthermore, f is a unitary if and only
if it is a bijection.6

Thus unitaries in fRel are exactly the bijective classical maps between discrete structures: pure state
quantum mechanics in fRel suddenly becomes quite boring. Let’s now proceed to mixed state quantum
mechanics in CPM[fRel], in the hope that the peculiar measurement structure, resulting from the general
lack of enough classical points, will spice things up.

Remark 2.6. One last point on the relationship between classical structures in fRel, before moving on to
mixed state quantum mechanics. Classical structures on some space X in any †-SMC with a distributive
superposition operation can be given a preorder by defining ≤ if and only if classical points of can
be expressed as superpositions of classical points of (possibly multiplied by scalars). In fdHilb, the
preorder is an equivalence relation with a single equivalence class, as all structures have enough classical
points, but in fRel this is not so. Recall that the classical structure induced by groupoid ⊕λ∈ΛGλ on a set
X yields a partition (Gλ )λ∈Λ of X : thus there is a surjective map of classical structures onto partitions,
where classical structures corresponding to the same partition are exactly those having the same classical
points. The surjection exactly quotients away the equivalence classes in the preorder, which therefore

5In fact, if f is an isometry then fixing any classical structure on X means there is a classical structure on Y making f into
an injective classical map. If f is furthermore a unitary, the structure on Y is also unique.

6Note that this is NOT the same as a bijective classical map between classical structures.
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descends to the partial order (in fact a lattice) on partitions of X : this is given by the refinement partial
order, with the partition into singletons as a minimum and the partition with only X as the maximum. The
discrete structure is the only one mapping to the singleton partition, and is therefore the unique minimum
for the preorder on classical structures.

3 Mixed state quantum mechanics in fRel

The fundamental observation of categorical quantum mechanics is that there are only a few ingredients
needed for an abstract, operational characterisation of pure state quantum theory: states, a dagger for
inner products, a (symmetric) tensor for joint systems, classical structures for classical computation, uni-
taries for dynamics, an optional enrichment of morphisms (with appropriate distributivity law for the
tensor) giving some notion of superposition. But an equally fundamental aspect of quantum theory, not
immediately captured by this framework, is given by measurements and mixed states: in order to intro-
duce them in fRel, we turn our attention to the associated CPM category CPM[fRel].

The CPM category CPM[fRel] has the same objects of fRel, and morphisms R : X CPM−→ Y in CPM[fRel]
are exactly the morphisms R : X×X → Y ×Y in fRel taking the following form:

ff ? (3.1)

If f : X → Z×Y , then we denote f ? = ( f †)T = f in Diagram 3.1 as a morphism f : X → Y × Z to
keep the picture symmetric and avoid wire-crossing. We shall refer to morphisms in CPM[fRel] as CPM
maps, to CPM maps 1 CPM−→ X as mixed states in X , and to CPM morphisms with no cap involved (i.e.
with f : X → 1×Y ) as pure maps (or pure states, if X = 1). In particular, the caps are CPM maps
∩X : X CPM−→ 1 and the cups are mixed states ∪X : 1 CPM−→ X . Explicitly they are defined to be the following
relations:

∩X := {((x,x),?) | x ∈ X }
∪X := {(?,(x,x)) | x ∈ X } (3.2)

We will refer to ∩X as the discarding map on X , to post-composition with ∩X as tracing out X , and to
∪X as the totally mixed state in X . Then general CPM maps are exactly obtained by tracing out some
factor of the codomain of some pure map, or equivalently by applying some map to a totally mixed state
in some factor of the domain: the conceptual importance of this observation comes from the following
theorem (proven in [20] and given operational interpretation in [11]).

Theorem 3.1. There is a faithful functor I : C � CPM[C ] of †-SMCs from any compact-closed †-SMC
(with enough states) to the associated CPM Category CPM[C ], itself a compact-closed †-SMC, bijective
on objects and mapping morphisms f : X → Y in C to the respective pure maps given by f : X → 1×Y
in the notation of Diagram 3.1. Thus the CPM construction can be seen, operationally, as the abstract
process theory obtained from C by adding discarding maps (and/or totally mixed states).

In this setting, tracing out systems is interpreted as complete erasure of information about them, so it is
no surprise that information-theoretic considerations come into play. Indeed, we will be interested in a
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particular class of CPM maps and mixed states: we say that a CPM map R : X CPM−→ Y (or mixed state,
if X = 1) is causal if ∩Y ·R = ∩X . Causal CPM maps are one of the reason isometries (and unitaries in
particular) in pure state quantum mechanics are so interesting: a CPM map in the form of Diagram 3.1
is causal if and only if f : X → Z×Y is an isometry.7

In order to proceed with our investigation of CPM[fRel], it is time to introduce the characterisation
of mixed states and CPM maps in terms of graphs. Although the material here is fruit of the author’s
own work, full credit for the original characterisation goes to [17], which contains all the details.

If ρ : 1 CPM−→ X is a mixed state, then it is straightforward to check that, seen as a relation ρ ⊆ X ×X ,
it has the following properties:

(i) ρ is a symmetric relation, i.e. if (x,y) ∈ ρ then (y,x) ∈ ρ

(ii) ρ is reflexive on all elements appearing in it, i.e. if (x,y) ∈ ρ then (x,x) ∈ ρ and (y,y) ∈ ρ

Conversely, every relation with those properties is a mixed state. Furthermore, causal mixed states are
exactly those with ρ 6= /0. As a consequence of this characterisation, we can identify mixed states in X
with subgraphs of the complete graph KX with X as set of nodes. The subgraph Gρ ≤ KX corresponding
to a mixed state ρ in X is defined to have:

(i) nodes •x specified by the pairs (x,x) ∈ ρ (corresponding to a subset of X)

(ii) edges x•−• y specified by the pairs (x,y) ∈ ρ with x 6= y

Furthermore, causal states correspond to the non-empty subgraphs. The graph characterisation of CPM
maps can be then obtained using compact closure. The subgraph GR ≤ KX×Y corresponding to a CPM
map R : X CPM−→ Y is seen to have:

(i) nodes •[x,y] specified by those pairs x ∈ X and y ∈ Y such that 〈y|〈y|R|x〉|x〉= 1, where R is seen
as a fRel morphism R : X×X → Y ×Y

(ii) edges [x,y]•−•[x′,y′] specified by those quadruplets x,x′ ∈X and y,y′ ∈Y such that 〈y|〈y′|R|x〉|x′〉=
1, where R is seen as an fRel morphism R : X×X → Y ×Y

Given a CPM morphism R : X CPM−→Y and a mixed state ρ in X , it is interesting to characterise the subgraph
GR·ρ ≤ KY of the mixed state R ·ρ in terms of the subgraphs GR ≤ KX×Y and Gρ ≤ KX of R and ρ:

(i) if •x is a node of Gρ and •[x,y] is a node of GR, then •y is a node of GR·ρ

(ii) if x•−•x′ is an edge of Gρ and [x,y]•−• [x′,y′] is an edge of GR, then y•−•y′ is an edge of GR·ρ

A generalisation of the argument above can be used to characterise the subgraph GS·R ≤ KX×Z of the
composition of two CPM maps R : X CPM−→ Y and S : Y CPM−→ Z:

(i) if •[x,y] is a node of GR and •[y,z] is a node of GR, then •[x,z] is a node of GS·R

(ii) if [x,y]•−• [x′,y′] is an edge of GR and [y,z]•−• [y′,z′] is an edge of GR, then [x,z]•−• [x′,z′] is
an edge of GS·R

A few examples of CPM maps and mixed states will give us a hands-on understanding of this graph-
theoretic characterisation.

1. If ρ is a pure state in X , corresponding to a fRel state S ⊆ X , then Gρ ≤ KX is the clique on S,
because ρ = {(s,s′) | s,s′ ∈ S}; conversely, all cliques are pure states.

7Observe that the cap on Z×Y is the product of the caps on Z and on Y .
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2. The pure map idX : X CPM−→ X , seen as the morphism idX×X : X × X → X × X in fRel, satisfies
〈y|〈y′|idX×X |x〉|x′〉= 1 if and only if x= y and x′= y′; as a consequence, the subgraph GidX ≤KX×X

is the clique on the diagonal ∆X := {(x,x) | x ∈ X } ⊂ X×X .

3. The discarding map ∩X : X CPM−→ 1 corresponds to the discrete graph with node set X ×1 ∼= X and
no edges. Similarly, the totally mixed state in X corresponds to the discrete graph with node set X .

4. If G is a subgraph of KX×Y , define πX G to be the projection of G on X , and πY G to be the
projection on Y . The subgraph G∩Y ·R≤KX×1 of the composite ∩Y ·R for some CPM map R : X CPM−→
Y has exactly the same nodes as πX GR, but only those edges x•−• x′ such that [x,y]•−• [x′,y] is
an edge in GR for some y ∈ Y . Causal maps R are then those for which πX GR covers all elements
of X , and such that no Y -constant edges exist.

As subgraphs of the complete graph KX , the mixed states in X come with a boolean lattice structure
given by the subgraph (or, equivalently, subset) relation ⊆, and in particular with graph union ∨ (or,
equivalently, subset union). We can define a notion of purity as the partial order� obtained by restricting
⊆ to graphs with the same node-set: this has discrete subgraphs as its minima, and cliques (pure states)
as its maxima. The CPM category CPM[fdHilb] does not inherit the enriched structure of fdHilb, but
it has an operation of convex combination which preserves causality. The CPM category CPM[fRel],
on the other hand, turns out to be closed under the superposition operation ∨ from fRel, in the form of
union of graphs and preserving causality: in CPM[fRel], we shall refer to this as convex combination.
In CPM[fdHilb], non-trivial convex combination of non-pure states, or of distinct pure states, is never
pure. In CPM[fRel], on the other hand, convex combination of non-pure states can yield a pure state (the
proof can be found in the Appendix).

Lemma 3.2. Let P : 1 CPM−→X be a pure state in CPM[fRel] corresponding to a subset of X with n elements.
For any m = 2, ..., n(n−1)

2 , P can be expressed as a convex combination of m non-pure states (ρ j) j=1,...,m.

Furthermore, if ρ : 1 CPM−→ X is any mixed state, then there exists another mixed state ρ ′ : 1 CPM−→ X with Gρ

and Gρ ′ having the same node set and ρ ∨ρ ′ a pure state.

4 Decoherence and measurements

The definition of measurements and the treatment of the ensuing classical data is a tricky subject in
quantum theory. A rigorous formalisation for fdHilb can be achieved by working in CPM[fdHilb] and
considering a certain family of CPM maps, the decoherence maps for each classical structure on a system.
Given a classical structure on some Hilbert space H , the associated decoherence map is a CPM map
dec( ) with the following property: if ρ is any mixed state in H , then dec( ) · ρ is always a convex
combination ∑ j p j| j〉〈 j| of -classical points. Because of this property, the result of -decoherence can
always be interpreted as probabilistic -classical data. Decoherence maps can be defined in the CPM
category associated with any abstract process theory in the following way.

Definition 4.1. Let be a classical structure on some space X in some compact closed †-SMC C Then
the -decoherence map dec( ) is defined to be the following causal morphism of CPM[C ]:

(4.1)
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In CPM[fdHilb], the result of a -decoherence map is always a convex combination ∑ j p j| j〉〈 j| of -
classical points: as long as any further operation on the result is -classical (i.e. only pure CPM maps
coming from classical endomorphisms of are allowed), the entire process is equivalent to the state
∑ j p j| j〉 being acted upon in fdHilb by the same classical endomorphisms. This leads to a so-called
quantum-classical formalism, where the decoherence map from Diagram 4.1 is replaced with the follow-
ing map, and it is understood that any operation following it8 will be -classical:

(4.2)

Unfortunately, in CPM[fRel] things are not this simple: the -decoherence map applied to a mixed state
does not in general return a convex combination of -classical points. The short-cut summarised by the
map in Diagram 4.2 does not work, and we have to work entirely in the CPM category if we want to
make proper sense of measurements and decoherence in fRel.
Definition 4.2. Let be a classical structure in fRel on some set X , associated with the abelian groupoid
⊕λ∈Λ Gλ , and let dλ ∈ Gλ . We define the orbit subgraph for dλ as the subgraph of KX with nodes •gλ

for all gλ ∈ Gλ and edges gλ •−• (gλ +dλ ) for all gλ ∈ Gλ . Intuitively, the orbit subgraph traces the
orbit of dλ under the right regular action gλ 7→ gλ +dλ .
Theorem 4.3. Let be a classical structure in fRel on some set X, associated with the abelian groupoid
⊕λ∈Λ Gλ . Let σ = dec( ) · ρ be the mixed state resulting from decohering some state ρ . Then the
subgraph Gσ ≤ KX is the union of the orbit subgraphs for dλ = gλ −g′

λ
, for all dλ such that:

∃gλ ,g
′
λ
∈ Gλ s.t. gλ •−•g′

λ
appears in Gρ (4.3)

Proof. We see the decoherence map as a morphism X ×X → X ×X in fRel, and try to evaluate the
composition 〈h′

γ̃
|〈hγ |dec( )|g′

λ̃
〉|gλ 〉. Consider the fRel morphism X → X obtained by composing the

state |gλ 〉 and effect 〈h′
γ̃
| to the bottom right and top left wires of figure 4.1 respectively:

a. on the RHS, we have · |gλ 〉= ∨hλ∈Gλ
|gλ −hλ 〉|hλ 〉

b. we now have |gλ −hλ 〉 going on the central wire and |hλ 〉 going up the top right wire

c. on the LHS, we have · (|gλ −hλ 〉|h′γ̃〉) = δλ γ̃ |gλ −hλ +h′
λ
〉

d. we now have δλ γ̃ |gλ −hλ +h′
λ
〉 going down the bottom left wire

We conclude that the decoherence map, seen as a morphism in fRel, yields the scalar 1, when applied
to |g′

λ̃
〉|gλ 〉 and evaluated against effects 〈h′

γ̃
|〈hγ |, if and only if λ = λ̃ = γ = γ̃ and g′

λ
= gλ −hλ +h′

λ
.

Thus the decoherence map, seen as a CPM morphism, sends a node •gλ to the node set {hλ ∈ Gλ}, and
an edge gλ •−•g′

λ̃
to the orbit subgraph for dλ := gλ −g′

λ
if λ = λ̃ , and to no edge otherwise.

Remark 4.4. As a consequence of Theorem 4.3, σ = dec( ) ·ρ can be written as:

σ =
∨

λ∈Λ′

τλ for some Λ
′ ⊆ Λ and some τλ � |Gλ 〉〈Gλ | (4.4)

This is a convex combination of -classical points if only if τλ = |Gλ 〉〈Gλ | for all λ ∈ Λ′, which is not
in general the case. Thus the identification of decohered states in CPM[fRel] as possibilistic mixtures of
classical data is not entirely sound.

8Where categorical composition is read bottom to top.
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Having understood decoherence, it is finally time to introduce measurements in CPM[fRel] and tackle the
fundamental question of locality. We set aside the issues with convex mixing and take a more traditional
approach, using demolition measurements and evaluating against classical points to obtain a possibilis-
tic empirical model. We will discuss other options for future work in the conclusions. Definition 4.5
introduces non-demolition and demolition measurements in CPM[fRel], in accordance with the frame-
work laid out in [9] and the upcoming [7]. Theorem 4.6 shows that the same results of a -demolition
measurement (with evaluation against -classical points) can be obtained by decoherence in some other
structure , followed by some classical manipulation of the results. Definition 4.7 defines the desired
class of empirical models for fRel: by virtue of Theorem 4.6, we only need to consider measurements
given directly by decoherence maps. Theorem 4.8 finally shows that every measurement scenario has a
local hidden variable model, settling once and for all that fRel is local.

Definition 4.5. Let be a classical structure in fRel on some set Z, associated with the abelian groupoid
⊕λ∈Λ Gλ . A -valued non-demolition measurement on some set X is a causal CPM map M : X CPM−→
X ×Z in the form of Diagram 4.5, and satisfying the following idempotence and self-adjointness prop-
erties. Let Mλ :=

(
idX ×ρ

†
Gλ

)
·M be M evaluated against the pure state ρGλ

:= |Gλ 〉|Gλ 〉 in CPM[fRel]
corresponding to the classical points Gλ of . Then:

(a.) M is idempotent if for all λ ∈ Λ we have Mλ ·Mλ = Mλ

(b.) M is self-adjoint if for all λ ∈ Λ we have M†
λ
= Mλ

A -valued demolition measurement on X is a CPM map M̄ : X CPM−→ Z in the form M̄ = (∩X × idZ) ·M
for some -valued non-demolition measurement M. Thus demolition measurements are exactly the CPM
maps obtained by tracing out the set X in a non-demolition measurement on X .

PP? (4.5)

In particular the decoherence maps are demolition measurements: it turns out that, in fRel, they are the
only measurements we ever need.

Theorem 4.6. Let be a classical structure in fRel on some set Z, associated with the abelian groupoid
⊕λ∈Λ Gλ . Let M̄ : X CPM−→ Z be a -valued demolition measurement. Let M̄λ := ρGλ

· M̄ : X CPM−→ 1 be M̄
evaluated against the -classical point |Gλ 〉 of . Then there exist:
(i) a classical structure on X (for some abelian groupoid ⊕γ∈Γ Hγ )

(ii) an endomorphism of the classical structures corresponding to some f : Γ
Set→ Λ

such that the following holds, where Dγ : X CPM−→ 1 is the -decoherence map evaluated against |Hγ〉:

M̄λ =
∨

γ s.t. f (γ)=λ

Dγ (4.6)

Proof. The measurement M is a causal CPM map: thus the P map in Diagram 4.5 is an isometry, and
hence by Lemma 2.5 it is a classical map in the following form, with Js(x) classical points of some
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classical structure on X×Y (given by some abelian groupoid⊕δ∈∆ Jδ ) and s : X Set→∆ a classical injection:

P =
∨
x∈X

|Js(x)〉〈x| (4.7)

Until further notice we work in fRel (i.e. with pure maps only). The subsets (Gλ )λ∈Λ are disjoint, and
so are the subsets (Js(x))x∈X : thus the family of states |Dλ ,x〉 := (idX ×〈Gλ |) · |Js(x)〉 is also composed of
disjoint subsets of X . Notice that the CPM map Mλ is pure, since the central wire of the -decoherence
map disappears once the decoherence is evaluated against a pure -classical state: we can continue
working in fRel, with Pλ := (idX ×〈Gλ |) ·P in place of Mλ (which lives in CPM[fRel]). Given the Dλ ,x
defined above, the map Pλ takes the following form:

Pλ =
∨
x∈X

|Dλ ,x〉〈x| (4.8)

Now M is idempotent/self-adjoint if and only if all Mλ are idempotent/self-adjoint, if and only if all Pλ

are idempotent/self-adjoint (because the Mλ are pure maps). Let Rλ be the following relation on X :

xRλ y if and only if y ∈ Dλ ,x (4.9)

Self-adjointness of Pλ is equivalent to Rλ being symmetric, while idempotence of Pλ is equivalent to Rλ

being transitive; since all x∈ X appear in Rλ , then by symmetry and transitivity Rλ is also reflexive. Thus
Rλ is an equivalence relation on X for all λ . Now we go back to CPM[fRel]: the subgraph GM̄λ

≤ KX

associated with the CPM map M̄λ : X CPM−→ 1 has edges x •− • x′ for all x,x′ ∈ X such that xRλ y and
x′Rλ y for some y ∈ X . But Rλ is an equivalence relation, so GM̄λ

is the union of the cliques on the
equivalence classes of Rλ . For each λ ∈ Λ, let (H(λ , j)) j=1,...,nλ

be any family of groups, each with
element sets one of the nλ equivalence classes of Rλ . Define Γ := {(λ , j) |λ ∈ Λ, j = 1, ...,nλ }, and let

be the classical structure on X associated with the abelian groupoid ⊕γ∈Γ Hγ . Then each state (M̄λ )
†

is a convex combination of -classical points. Thus the results of the demolition measurement M̄ can be
reproduced by the -decoherence map, i.e. by testing against -classical points and then applying the
function f = (λ , j) 7→ λ to reconstruct the M̄ measurements result in terms of -classical points.

We have shown that the only demolition measurements we really need are the decoherence maps. But
applying a decoherence map and then testing against a classical state is the same as testing directly
against the classical state, so we can give the following, simpler definition of an empirical model, where
mixed states are directly tested against classical points, with no demolition measurements in between.

Definition 4.7. Let ρ be a mixed state in X1× ...×XN . For each j = 1, ...,N, let ( m
j )m=1,...,M be a

family of classical structures on X j. Let (Λm
j ) jm be sets indexing the classical points of the classical

structures (without loss of generality, disjoint for different classical structures). Let Φm(λ m
1 , ...,λ m

N ) :
Λm

1 × ...×Λm
N → {⊥,>} be a boolean function defined by the scalar obtained evaluating ρ against the

separable pure state ρλ m
1
× ...×ρλ m

N
associated with the family of classical points |Gλ m

j
〉 j=1,...,N , as shown

in Equation 4.10. Then (Φm)m is a possibilistic empirical model (based on mixed state ρ).

Φm(λ m
1 , ...,λ m

N ) :=

Gλ m
1

Gλ m
1

... Gλ m
N

Gλ m
N

ρ

(4.10)
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This definition of (possibilistic) empirical model squares with that given in [2], in the following way:

1. The commutative semiring is that of the booleans ({⊥,>},∨,⊥,∧,>).

2. The set of measurements is
{

dec( )m
j |m = 1, ...,M and j = 1, ...,N

}
. As a consequence of The-

orem 4.6, this is general enough to capture all measurements in CPM[fRel].910

3. The measurement contexts take the form Cm :=
{

dec( )m
j | j = 1, ...,N

}
, for m = 1, ...,M.

4. The sheaf of events is defined by E (Cm) := ∏ j=1,...,N Λm
j , with measurement-dependent outcomes.

5. The empirical model is the family (Φm : E (Cm)→{⊥,>})m of boolean-valued distributions.

Under the correspondence above, the local hidden variable we construct in Theorem 4.8 below take
the form of those defined in [2] (further details can be found in the Appendix). In this sense, our last
result should be interpreted as stating that fRel is local: every empirical model, obtained by considering
demolition measurements as per Definition 4.5, admits a local hidden variable.

Theorem 4.8. Every possibilistic empirical model (Φm)m in CPM[fRel] constructed as in Definition 4.7
admits a local hidden variable ν . This is shown in Figure 4.11, and is obtained as follows:
(i) the mixed state ρ underlying the empirical model is decohered in the discrete structures on X1, ...,XN;
(ii) the discrete classical data is appropriately copied to obtain a local hidden variable ν .

ν ′

ν

D

local map

Z1
1
... Z1

N
... Zm

j ... ZM
1
... ZM

N

Y 1
1
... Y K

1
... Y k

j
... Y 1

N
... Y K

N
... ... ... ...

X1 X j XN
... ...

ρ

(4.11)

Proof. The proof hinges on the following, somewhat puzzling fact: the purity of a mixed state can-
not be observed in CPM[fRel]. To be more precise, let ρ,τ be mixed states and σ be any other mixed
state such that τ � ρ: then σ† · ρ = σ† · τ (the proof of this can be found in the Appendix). Now
consider an empirical model (Φm)m, based on mixed state ρ : 1 CPM−→ X1 × ...× XN , for a measure-
ment scenario (( m

j ) j=1,...,N)m=1,...,M. Let ⊕λ m
j ∈Λm

j
Gλ m

j
be the abelian groupoid associated with m

j . Let
D � ρ be local purity minimum (i.e. GD has the same nodes of Gρ and no edge), and consider the
empirical model (Ψm)m, based on mixed state D instead of ρ and otherwise identical to (Φm)m (i.e.
again for the measurement scenario (( m

j ) j=1,...,N)m=1,...,M). Then, since the Φm and Ψm are func-
tions are computed by considering scalars in the form σ† · ρ and σ† ·D respectively (for the same
σs), we have that the two empirical models coincide. Thus any empirical model can equivalently be

9The classical function involved in Theorem 4.6 irrelevant when it comes to non-locality.
10To be more precise, all measurements according to the framework laid out in [9] and the upcoming [7], which is restricted

to commutative special †-Frobenius Algebras.
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obtained as the empirical model based on some state with discrete associated subgraph. Elaborating
a bit further, we conclude that Ψm(λ m

1 , ...,λ m
N ) = 1 if and only if•(gm

1 , ....,g
m
N) ∈ GD for some family

(gm
j ∈ Gλ m

j
) j=1,...,N . The state D can be concretely obtained from ρ by decohering each X j component

in the discrete structure on X j. Furthermore the duplication map : X j → X j×X j for the discrete
structure sends the pure state |(gm

1 , ...,g
m
j , ...,g

m
N)〉 to |(gm

1 , ...,g
m
j ,g

m
j , ...,g

m
N)〉. Now consider the state

ν ′ : 1 CPM−→∏m=1,...,M

(
∏ j=1,...,N Zm

j

)
shown in Equation 4.11, where Zm

j := X j. Let ≡ be the equivalence

relation such that ( j,m) ≡ ( j′,m′) if and only if m
j and m′

j′ are the same classical structure, let K be
the set of equivalence classes of ≡ and q : {1, ...,N}×{1, ...,M}� K be the associated quotient map
(denote the structures by k). Then ν ′ is obtained from a mixed state ν : 1 CPM−→∏ j=1,...,N ∏k∈K Y k

j , where
Y k

j := X j, by multiplexing each Y k
j component in the k structure and then connecting it to all the Zm

j
component wires with q( j,m) = k. The state ν , the local hidden variable, is obtained in Equation 4.11
by multiplexing each X j component of D in the discrete structure and then connecting it to all the Y k

j
wires with k ∈ K. Tracing out all components of ν ′ except for (Zm

j ) j=1,...,N yields a mixed state with
discrete associated graph (since all k multiplexings have disappeared) and node set {•(g j) j}. Evaluated
against the pure separable state ρλ m

1
× ...×ρλ m

N
, this yields 1 if and only if g j ∈ Gλ m

j
for all j = 1, ...,N,

i.e. if and only if Φm(λ m
1 , ...,λ m

N ) = 1. Therefore ν is a local hidden variable for the empirical model
(Φm)m.

5 Conclusions

Building on established literature and recent developments in the graph-theoretic characterisation of
CPM[fRel], we have provided an overview of pure state CQM in the category fRel of finite sets and rela-
tions, and explored mixed state CQM in the same setting. Comparing and contrasting with the category
fdHilb of Hilbert spaces and linear maps, traditional arena of quantum theory, we have presented many
solid parallelisms, and many puzzling features. Superposition is well-defined, but the basis of singletons
plays a distinguished role; there are many classical structures, but the classical structure associated with
singletons is strictly finer than all of the others. Unitarity is a very restrictive property, making pure state
quantum mechanics in fRel not very interesting. However, the existence of many classical structures
without enough classical points, and many distinct classical structures for each set of classical points,
makes mixed state quantum mechanics in fRel spicy and exotic. For example, convex mixing of pure
(or non-pure) states can result in a pure state. But most importantly, decohering a state does not in gen-
eral result in convex mixing of classical points: the interpretation of measurement results as possibilistic
mixtures is ill-founded, and extra care is needed in the treatment of measurements and locality. We give
the full characterisation of decoherence maps, and show that they are the only demolition measurements
needed if the results of measurements are, as traditionally done, tested against classical points. We show
that the degree of purity of a state, characterised in graph theoretic terms as the number of edges present,
cannot be measured in our setup, and conclude that fRel is a local theory. However, this result is based
on the assumption that measurements can be tested against classical points to obtain classical data: this
is a legitimate assumption in fdHilb, where decoherence produces convex mixing of classical points, but
it may turn not be in fRel. Thus we cannot exclude the existence of a more thorough categorical charac-
terisation of the measurement process which would lead to more general empirical models and re-open
the question of locality. Furthermore, our definition is restricted to measurements associated to commu-
tative special †-Frobenius algebras, and it is interesting to see whether the line of reasoning presented in
this work will extend to the non-commutative case (which has already received attention in [15]).
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6 Appendix A - Proofs

Proof. (Lemma 2.4) Classical structures (special commutative †-Frobenius algebras) in fdHilb corre-
spond to orthonormal bases by [10]: let’s fix the orthonormal basis corresponding to a classical structure
on X and consider the matrix of f in that basis. Then f is an isometry if and only if all column vectors
are orthonormal, and any orthonormal basis including the column vectors as a subset will give a classical
structure on Y making f an injective classical map. Furthermore, f is unitary if and only if the column
vectors form an orthonormal basis, corresponding to a unique classical structure on Y .

Proof. (Lemma 2.5) Let f : X → Y be a morphism in fRel, i.e. a relation f ⊆ X ×Y . The condition
f † ◦ f = idX amounts to the following equation:

∨
x∈dom f

{(x,z) | (x,y) ∈ f and (z,y) ∈ f }= {(x,x) | x ∈ X } (6.1)

This is true if and only if both (i) dom f = X (i.e. f † is surjective) and (ii) (x,y) ∈ f and (z,y) ∈ f imply
x = z (i.e. f † is a partial function). Furthermore f is unitary if and only if both f and f † are surjective
partial functions, which happens if and only if f is a bijection. If f † is surjective partial function, then f
can always be written in the following form, where f−1(x) are disjoint subsets of Y for all x ∈ X :

∨
x∈X

| f−1(x)〉〈x| (6.2)

Then any classical structure on Y including all | f−1(x)〉 amongst its classical points will make f into a
classical injection from the discrete structure on X .

Proof. (Lemma 3.2) We prove this of the case m = n(n−1)
2 , and the other cases follow easily. Let D� P

be the state with discrete graph on the same node set of P, and D≺ ρ1, ...,ρm are all the states with graphs
having the same node set of P and exactly 1 edge (i.e. 1 edge away from being a purity minimum in the
sense defined above). Then ∨ j=1,...,n ρ j = P. Furthermore, if ρ is any mixed state, let G′ρ ≤ KX be the
complement subgraph to Gρ , with the same nodes as Gρ and such that an edge is in G′ρ if and only if it
isn’t in Gρ . Then Gρ ∨Gρ ′ = KX and hence ρ ∨ρ ′ is pure. Also, ρ ′ is not pure unless Gρ is a discrete
subgraph.

Proof. (Sub-lemma of Theorem 4.8) We have to show that, if ρ,σ are two mixed states 1 CPM−→ X , then
the scalar σ† · ρ only depends on the nodes of the subgraphs Gρ ,Gσ ≤ KX . But Gσ†·ρ is non-empty
(equivalently, σ† ·ρ = 1) if and only if Gρ and Gσ have some node in common.
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7 Appendix B - Local Hidden Variables

The framework for non-locality set by [2] consists of the following basic ingredients:

1. A commutative semiring (R,+,0,×,1), generalising the semiring (R+,+,0,×,1) in the definition
of probabilities (e.g. the semiring of booleans ({⊥,>},∨,0,∧,1), yielding possibilistic models).

2. A set M of measurements, and for each measurement µ ∈M a set Oµ of possible outcomes.

3. The event sheaf E : P(M )op−→ Set, acting as U 7→∏µ∈U Oµ on objects and as (V ⊆U) 7→ resU
V

on morphisms, where resU
V is the restriction map sending s∈∏µ∈U Oµ to s|V ∈∏µ∈V Oµ . The event

sheaf sends a subset U of measurements to their set of joint outcomes.

4. The presheaf of distributions DRE , where DR : Set−→ Set is the functor defined to send a set P to
the set of R-distributions on P, i.e. those functions d : P→ R which have finite support and satisfy
the normalisation condition ∑s∈P d(s) = 1. The presheaf of distributions then sends a set U ⊆M
of measurements to the set of R-distributions over the joint outcomes for the measurements in U .
The action on morphisms is given by restriction:

d|V := t 7→ ∑
s∈E (U) with resU

V (s)=t

d(s) (7.1)

5. The category P(M ) comes with a Grothendieck topology11 making E into a sheaf.

6. A cover U for the Grothendieck topology on P(M ), the measurement cover:12 the sets C ∈U are
the measurement contexts, stipulating all possible sets of mutually compatible measurements.

7. A compatible family (eC)C∈U for the measurement cover with respect to the presheaf DRE , i.e. a
family of elements eC ∈ DRE (C) such that (eC)|C∩C′ = (eC′)|C∩C′ for all C,C′ ∈ U. This will be
called a (no-signalling) empirical model, assigning an R-distribution to the joint outcomes of all
sets of mutually compatible measurements.

The ingredients above form a measurement scenario. A global section for an empirical model
(eC)C∈M , which we shall also refer to as a local hidden variable, is an R-distribution d ∈ DRE (M )
such that eC = d|C for all C ∈ U. An empirical model is local if it admits a global section, i.e. if there is
a R-distribution d on the joint outcomes of all measurements which, when restricted to the measurement
context specified by U, yields the same R-distributions as the empirical model; an empirical model is
non-local if no such R-distribution d exists.

This framework can be given the following (approximate) semantics in the context of CQM:

1. We consider a compact-closed13 †-SMC C enriched over monoids, and let (R,+,0,⊗,1) be its
semiring of scalars.

2. We consider measurements to be certain causal morphisms µ : Xµ

CPM−→ Xµ ⊗Zµ in CPM[C ], each
satisfying idempotence and self-adjointness with respect to some classical structure µ on Zµ

(see [9] and the upcoming [7] for more details). We take some finite set M of them. For each

11In [2], M and all Oµ are finite, and the Gr. topology on P(M ) is the one corresponding to the discrete topology on M .
12In [2], U is taken to be any family of subsets with ∪U = M and such that for any C,C′ ∈ U we have that C ⊆C′ implies

C =C′ (i.e. U is an antichain).
13Strictly not necessary, as the CPM construction, the only reason the requirement of compact-closedness is there, can be

replaced with the CP construction from [6].
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measurement, we take the classical points (Gµ

λ
)λ∈Λµ

of the associated classical structure µ as
the possible outcomes, assuming that each classical structure involved has a finite set of classical
points.

3. The event sheaf is defined as sending a set U ⊆M of measurements to the following set:

E (U) :=

{⊗
µ∈U

Gµ

λµ

∣∣∣∣∣ (λµ)µ ∈ ∏
µ∈U

Λµ

}
(7.2)

4. The presheaf of distributions is defined as sending a set U ⊆M of measurements to the set of all
possible states d : I CPM−→⊗µ∈U Zµ satisfying the following normalisation condition:(⊗

µ∈U

∩Zµ

)
·d = 1 (7.3)

i.e. such that d is causal. We see one such state d as a R-distribution on E (U) by defining:

d(
⊗
µ∈U

Gµ

λµ
) :=

(⊗
µ∈U

ρ
†
Gµ

λµ

)
·d ∈ R (7.4)

where ρGµ

λµ

is the pure state in CPM[C ] corresponding to pure state |Gµ

λµ
〉 from C . If for each

µ ∈M we have that id = ∑λ∈Λµ
|Gµ

λ
〉〈Gµ

λ
|, then the normalisation condition of Equation 7.3 can

equivalently be written as the more familiar:

∑
s∈E (U)

d(s) = 1 (7.5)

The restriction d|V of a distribution d : I CPM−→⊗µ∈U Zµ for V ⊆U is given by:

d|V :=

(⊗
µ∈U

ξµ

)
·d, where ξµ =

{
idZµ

if µ ∈V
∩Zµ

if µ /∈V
(7.6)

5. The topology on P(M ) is as before.

6. A measurement cover U is chosen as before.

7. A compatible family is chosen to be a family of states eC : I CPM−→⊗µ∈CZµ for all C ∈M satisfying
the normalisation condition of Equation 7.3 and such that (eC)|C∩C′ = (eC′)|C∩C′ for all C,C′ ∈ U,
under the restriction operation defined in Equation 7.6.

We focus our attention to a particular kind of empirical models, based on measurements of some mixed
state ρ . Let U be a measurement cover, and name its distinct measurement contexts C1, ...,CM. Let each
measurement context Cm consist of N measurements in the form:

µ
m
j : X j

CPM−→ X j⊗Zm
j , for j = 1, ...,N (7.7)

and let m
j be the respective classical structures. Fix some causal state:

ρ : I CPM−→
⊗

i=1,...,N

Xi (7.8)
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Then an empirical model em : I CPM−→⊗ j=1,...,NZm
j can be defined as follows, for m = 1, ...,M:

eCm :=

(
N⊗

j=1

(
∩X j ⊗ idZm

j

))
·ρ (7.9)

Local hidden variables are defined as distributions on the set of measurements, rather than on the family
µm

j indexed by the measurement contexts. We define an equivalence relation by setting ( j,m)≡ ( j′,m′)
if and only if µm

j = µm′
j′ : we index the equivalence classes by κ = 1, ...,K and let q : {1, ...,N} ×

{1, ...,M}� {1, ...,K} be the quotient map. Then µm
j = µm′

j′ if and only if q( j,m) = q( j′,m′): we
define Y κ

j := Zm
j and κ := m

j for some (any) m such that q( j,m) = κ , where κ = 1, ...,K. The local

map for the measurement scenarion is then defined to be the map (⊗i⊗κ Y κ
i )

CPM−→
(
⊗m⊗ j Zm

j

)
given as

follows (see figure 7.10 for a graphical definition):

a. we group the input wires in N groups of K wires

b. we group the output wires in M groups of N wires

c. each Y κ
i input wire is connected to a κ node

d. for all i, j and κ,m, the κ node of each Y κ
i input wire is connected to the Zm

j output wire if and
only if i = j and q( j,m) = κ

...

Y 1
1

· · ·

System 1

...

Y K
1

...

Y 1
i

· · ·
... ...

Y κ
i

System i

· · ·
...

Y K
i

...

Y 1
N

· · ·

System N

...

Y K
N

...

Meas. context C1

Z1
1 Z1

N

Meas. context Cm

Zm
j... ...

Zm
1 Zm

N ...

Meas. context CM

ZM
1 ZM

N

Connected iff i = j and q( j,m) = κ

Local Map

(7.10)

In this context, we define a local hidden variable to be some state ν : I CPM−→⊗i⊗κ Y κ
i such that:((

r−1⊗
m=1

N⊗
j=1

∩Zm
j

)
⊗

(
N⊗

j=1

idZr
j

)
⊗

(
M⊗

m=r+1

N⊗
j=1

∩Zm
j

))
· localmap ·ν = eCr (7.11)

for all r = 1, ...,M. In terms of R-distributions, this is the same as the definition from [2].
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