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Quantum entanglement plays an important role in quantum computation and communication. It is
necessary for many protocols and computations, but causes unexpected disturbance of computational
states. Hence, static analysis of quantum entanglement in quantum programs is necessary. Several
papers studied the problem. They decided qubits were entangled if multiple qubits unitary gates are
applied to them, and some refined this reasoning using information about the state of each separated
qubit. However, they do not care about the fact that unitary gate undoes entanglement and that
measurement may separate multiple qubits. In this paper, we extend prior work using stabilizer
formalism. It refines reasoning about separability of quantum variables in quantum programs.

1 Introduction

Quantum entanglement plays an important role in quantum computation and communication. It allows
us to teleport quantum states [3] and reduces necessary numbers of qubits for communication [4]. More-
over, it is the essential resource in a one-way quantum computation model [14] and indispensable for
outperforming classical computers. Quantum entanglement also introduces some difficulty in compiling
quantum programs. For example, when a system uses an ancilla, the ancilla is possibly entangled with
the computation system and removal of it will disturb the computational state of the system. Compilers
of quantum programs should care about existence of quantum entanglement. Hence, static analysis of
quantum entanglement is necessary. Several papers studied the problem using types [10], abstract inter-
pretation [12], and Hoare-like logic [13]. The first paper reasoned that two qubits are entangled whenever
a two qubits gate is applied to these qubits. The other papers improved the reasoning by restricting two
qubit gates to the controlled-not gate CX and by memorising information about the basis of separated
qubits. Since CX does not create entanglement if the control qubit is in Z-basis or the target qubit is in
X basis, we can reason that two qubits are not entangled even after applying CX to the qubits. However,
these papers do not care about the fact that unitary gate undoes entanglement. Our motivating example
is as follows.

GHZ≡ INIT;H(q0);CX(q0,q1);CX(q1,q2)

SEP0 ≡ GHZ;CX(q0,q1);CX(q0,q2)

where INIT changes states of all qubits q0,q1,q2 into |0〉. GHZ creates GHZ state |GHZ〉 ≡ 1√
2
(|000〉+

|111〉), where all qubits are entangled. SEP0 destroys the entanglement without measurement. Indeed,
(CX⊗ I)(I⊗CX) |GHZ〉 = |+00〉 and all qubits are separated. All prior work reasons correctly that
entanglement exists after GHZ but incorrectly that entanglement still exists after SEP0. Another example
is

SEP1 ≡ GHZ;meas(q0)

NSEP≡ GHZ;H(q0);meas(q0).
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After executions, SEP1 produces all separated qubits but NSEP does one separated and two entangled
qubits regardless of the measurement results. In this paper, we borrow the framework of Perdrix’s
work [12] and extend it using stabilizer formalism [1, 7, 9], which gives a segment of quantum com-
putation that can be classically simulated. It refines reasoning about separability of quantum variables in
quantum programs.

2 Preliminaries

2.1 Stabilizer Formalism

Stabilizer formalism allows us to express a certain class of states in a compact way.

Let Gn be the Pauli group on n qubits. The stabilizer S of a nontrivial subspace VS of the 2n-
dimensional complex Hilbert space H2n is {P ∈ Gn | ∀ |ψ〉 ∈ VS. P |ψ〉 = |ψ〉}. Any stabilizer S is
abelian and −I⊗n /∈ S. A subgroup S of Gn is a stabilizer (on n qubits) if it is the stabilizer of some non-
trivial subspace of H2n . If {M0, . . . ,Mk−1} is a set of independent generators of S, we use 〈M0, . . . ,Mk−1〉
to denote S. If S = 〈M0, . . . ,Mk−1〉, the dimension of VS is 2n−k. In particular, if k = n, there exists a
unique state |ψS〉 stabilized by S. We call a state |ψ〉 is a stabilizer state if |ψ〉= |ψS〉 for some stabilizer
S. P±Mi

= 1
2(I
⊗n±Mi) is the projection onto eigenspaces corresponding to eigenvalues ±1.

Stabilizers have matrix expressions. Let S = 〈M0, . . . ,Mk−1〉. Each generator Ml has a form of either
σl,0⊗σl,1⊗·· ·⊗σl,n−1 or−σl,0⊗σl,1⊗·· ·⊗σl,n−1 where σl,m is a Pauli matrix, i.e. σl,m ∈ {I,X,Y,Z}.
A stabilizer array [2] is a k× (n + 1) matrix whose (i, j)th entry is σi, j for j < n or the sign of Mi

for j = n, and it denotes S. For example, 〈−ZZ,XX〉 = {I,XX,YY,−ZZ} stabilizes 1√
2
(|01〉+ |10〉).[

Z Z −
X X +

]
is a stabilizer array of the stabilizer. We identify the ith row of a stabilizer array and

the generator Mi. Obviously, both permutation of rows and multiplication of the ith row and the jth
row do not change the stabilizer provided i 6= j where “multiplication of the ith row and the jth row” is
replacement of the ith row with the product of the ith row and the jth row. Stabilizer arrays are compact
but have sufficient information to their stabilizers. We use stabilizer arrays to operate stabilizers.

Let S = 〈M0, . . . ,Mk−1〉 and T = 〈N0, . . . ,Nl−1〉 be stabilizers on k and l qubits. Their tensor product
S⊗T is the stabilizer 〈M0⊗ I⊗l, . . . ,Mk−1⊗ I⊗l, I⊗k⊗N0, . . . , I⊗k⊗Nl−1〉 on k+ l qubits. In stabilizer
array expression, the tensor product is the direct sum of two matrices.

When S = 〈M0, . . . ,Mn−1〉 is the stabilizer of VS, USU† = 〈UM0U†, . . . ,UMn−1U†〉 “stabilizes” UVS

for any unitary gate U . However, some UMiU† may exceed Gn and hence may not be a stabilizer. A
Clifford gate is a unitary gate that sends any stabilizer to a stabilizer. Any Clifford gate can be composed
from the controlled-X gate CX, the Hadamard gate H, and the phase gate S. A well-known non-Clifford
gate is the π

8 -gate T. Indeed, TXT† = 1√
2
(X+Y) and T |+〉= 1√

2
(|0〉+ e

π

4 |1〉) is not a stabilizer state.

Let 〈M0, . . . ,Mn−1〉 be a stabilizer on n qubits. If any Mi commutes with Z( j) ≡ I⊗ j⊗Z⊗ I⊗n− j−1,
i.e. the jth column of a stabilizer array consists of I or Z, then the measurement result of the jth qubit
is deterministic and does not change the state. If not, the measurement result is probabilistic. Through
multiplication of rows, we can take a unique generator Mi that does not commute with Z( j). The stabilizer
of the post-measurement state is 〈M0, . . . ,Mi−1,±Z( j),Mi+1, . . . ,Mn−1〉 if the measurement result is ±1,
respectively.
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2.2 Quantum Imperative Language

Following prior work [12], we use Quantum Imperative Language (QIL) as a target language. Fix the set
Q of quantum variables {q0, . . . ,qN−1}. We assume Q is finite and thus often identify a quantum variable
and its index. The syntax of QIL [11] is the following.

C,C′ ::= skip |C;C′ | X(i) | Y(i) | Z(i) | H(i) | S(i) | T(i) | CX(i, j)

| if i then C else C′ fi | while i do C od

where i 6= j. QIL is the set of QIL programs. The concrete denotational semantics of QIL is a superop-
erator J·K : QIL→ D2N → D2N where Dn is the set of n-dimensional partial density matrices, which is a
CPO [15].

JskipK(ρ) = ρ

JC;C′K(ρ) = JC′K(JCK(ρ))

JU(i)K(ρ) =U(i)ρU†
(i)

JCX(i, j)K(ρ) = CX(i, j)ρCX†
(i, j)

Jif i then C else C′ fiK(ρ) = JCK(|0〉〈0|(i)ρ|0〉〈0|(i))+ JC′K(|1〉〈1|(i)ρ|1〉〈1|(i))
Jwhile i do C odK(ρ) = ∑

n∈N
|1〉〈1|(i) f n(ρ)|1〉〈1|(i)

where U ∈ {X,Y,Z,H,S,T}, f (ρ) = JCK(|0〉〈0|(i)ρ|0〉〈0|(i)).
QIL has a control structure and hence we can change any state of a quantum variable into a constant.

INITi ≡ if i then skip else X(i) fi

INIT≡ INIT0;INIT1; · · ·;INITN−1

Indeed, JGHZK(ρ) = |GHZ〉〈GHZ| and JSEP0K(ρ) = |+00〉〈+00|.
In the work [12], an abstract domain AQ to analyse entanglement was introduced. An element of

the domain is a pair (b,π) of a partition π of Q and a function b : Q→ {I,X,Z,>}. π denotes that the
quantum state ρ is π-separable:

ρ = ∑
k

pk
⊗
A j∈π

ρ
k, j

where ρk, j is a quantum state of A j. Moreover, if the ith qubit is separated from the others, b(i) shows
which basis it is. For example, if b(i) = Z, the quantum state ρ is:

ρ = p0|0〉〈0|(i)⊗ρ0 + p1|1〉〈1|(i)⊗ρ1

for some p0, p1,ρ0,ρ1. It implies that the ith qubit will be still separated even after executing CX(i, j).

3 Abstract domain on stabilizers

Although AQ gives us some information about separability of a quantum state, it contains no informa-
tion about entanglement except that qubits are entangled. In order to analyse more, we will refine the
abstract domain AQ using the stabilizer formalism. We follow the idea of AQ, where Z and X denote
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that a state can be separated through |0〉 , |1〉 and |+〉 , |−〉 respectively. We suppose that a stabilizer
S = 〈M0, . . . ,Mn−1〉 on N qubits represents not only the stabilized state |ψS〉 but also the eigenstates of
it, i.e. {|ψ〉 | ∀Mi Mi |ψ〉= |ψ〉 or Mi |ψ〉=−|ψ〉}. We reuse |ψS〉 to denote an eigenstate. The sign of
each generator has no longer any meaning. From now on, we assume any generator has the plus sign and
we ignore the last column of any stabilizer array.

Our idea of using stabilizers, of course, has a problem about non-Clifford gates. Since QIL has
the π

8 -gate T, even if we start an execution of a QIL program from a stabilizer state, we may not get a
stabilizer state. We prepare a symbol � that denotes a non-stabilizer.

Now, we introduce our abstract domain CQ, which is composed of assignments of stabilizers to each
segment of partitions of Q. When T(i) appears, we forget about a stabilizer that expresses the current
state of the segment containing the ith qubit, and keep just the symbol �. Hence, when we can divide
a stabilizer into the tensor product of multiple stabilizers, it is good to separated them. In particular, if
a stabilizer on multiple qubits contains either X(i), Y(i), or Z(i), then the ith qubit can be separated from
the others. Naive algorithms on a stabilizer array allow us to compute whether X(i) belongs to a given
stabilizer in O(N) time and to divide a stabilizer into two stabilizers in O(N2) time.

Definition 3.1. Let Sk be the set of stabilizers on k ≥ 2 qubits that are generated by k independent
generators and contain neither Xi, Yi, nor Zi. S1 = {I,〈X〉,〈Y〉,〈Z〉}. We add the non-stabilizer � to all
Sk. Define S =

⋃
k≤N Sk. We call α ⊂ 2Q×S a (stabilizer) assignment if pr0α is a partition of Q and

for any (A,S) ∈ α , S ∈S|A|. Here, pri is the ith projection. The set of stabilizer assignments is CQ.

Notation 3.2. Let α be an assignment. We sometimes regard α as a function from Q to 2Q×S such
that α(i) = (A,S) where i ∈ A. We define α0 = pr0 ◦α,α1 = pr1 ◦α . Hence, α0(i) ∈ 2Q and α1(i) ∈S.
We also regard a partition of Q as a function from Q to 2Q. α[(A,S)/i] is a new assignment (α\α(i))∪
{(A,S)}. We extend the notation into α[{(A0,S0), . . . ,(Ak−1,Sk−1)}/i] in a natural manner. α[S/i] means
(α\α(i))∪{(α0(i),S)}. α[S/i, j] = (α\(α(i)∪α( j)))∪{(α0(i)∪α1(i),S)}.
Definition 3.3. Let ρ be a quantum state and α be an assignment. We write α � ρ if

ρ = ∑
k

pk
⊗

(A,S)∈α

ρ
k,(A,S)

with some probability pk and some state ρk,(A,S) on A qubits where ρk,(A,S) has a form of 1
2 I if S = I and

|ψS〉〈ψS| if S is another stabilizer.

Although an assignment tells how to separate a quantum state, it is just an overapproximation. Even
if a stabilizer is assigned to two qubits, it does not mean the qubits are entangled. Indeed, although
1
4(I⊗ I) is a separable state, {({0,1},〈XX,ZZ〉)} � 1

4(I⊗ I).
Each assignment contains information about entanglement of a quantum state. Intuitively, an assign-

ment α has more information than another assignment β if β � ρ whenever α � ρ . It gives CQ a lattice
structure: For S,S′ ∈S, we write S≤s S′ if S = I, S′ =�, or S = S′. Obviously,≤s is an order. Let≤π be
an order of partitions: π ≤π π ′ if for any A′ ∈ π ′, there exists A0, . . .Ak−1 such that A′ =

⋃
i∈{0,...,k−1}Ai.

Moreover, we write α ≤c β if α0 ≤π β0 and for each i ∈Q,
⊙

j∈β0(i) α( j)≤s β1(i) where

⊙
j∈J

(A j,S j) =


S j (all A j are the same)
I (all S j are I)
� (otherwise)

.

The relation ≤c makes CQ a CPO.
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Proposition 3.4. CQ is a finite lattice and hence a CPO.

Proof. It is easy to see≤c is order. The maximum assignment is {(Q,�)} and the minimum is {({i}, I) |
i ∈Q}. Let α,β be assignments. Take the join π of α0 and β0 with respect to ≤π . Let A ∈ π . Define S
as the join of

⊙
j∈A α1( j) and

⊙
j∈A β1( j). The set of these pairs (A,S) is the join of α and β . The meet

of α and β can be constructed similarly.

We define an abstract semantics J·KC : QIL → CQ → CQ inductively. For simplicity, we define
U�U† = � for any unitary U and assume that conditions are exclusive and an upper condition has
priority.

JskipKC(α) = α

JC;C′KC(α) = JC′KC(JCKC(α))

JU(i)KC(α) = α[U(i)α1(i)U
†
(i)/i]

JT(i)KC(α) =

{
α (α1(i) and Z(i) commute)
α[�/i] (otherwise)

JCX(i, j)KC(α) =



α (α0(i) = α0( j) and α1(i) =�)

update({i, j},α[CX(i, j)α1(i)CX†
(i, j)/i]) (α0(i) = α0( j))

α (α1(i) = 〈Z〉,α1( j) = 〈X〉,
α1(i) = α1( j) = I)

α[�/i, j] (α1(i) =�,α1( j) =�)
α[〈Z〉/i] (α1(i) = I)
α[〈X〉/ j] (α1( j) = I)
α[CX(i, j)(α1(i)⊗α1( j))CX†

(i, j)/i, j] (otherwise)
u

ww
v

if i
then C
else C′

fi

}

��
~

C

(α) = JCKC(meas(α))∨ JC′KC(meas(α))

Jwhile i do C odKC(α) =
∨

n∈N
meas((JCKC ◦meas)n(α))

where U ∈ {X,Y,Z,H,S}. update makes a “pseudo-”assignment to satisfy the condition that each stabi-
lizer contains neither Xi, Yi, nor Zi. The first argument are possibly-unentangled qubits.

update(J,ξ ) = {(A,S) ∈ ξ | A∩ J = /0}∪{divide(J,A,S) | J ⊂ A}
divide( /0,A,S) = {(A,S)}

divide({i}∪ J,A,S) =


{({i},S′)}∪divide(J,A\{i},S′′) (S = S′⊗S′′ such that S′ ∈S1 and S′ has

non-identity entry only in the ith column)
divide(J,A,S) (otherwise)

Note that, in the definition of J·KC, the arguments of update satisfy that there exists unique (A,S)∈ ξ such
that A∩ J 6= /0. meas means measurement. After measurement, the measured qubit is always separated.

meas(α) =


α[〈Z〉/i] (|α0(i)|= 1)
α[{({i},〈Z〉),(α0(i)\{i},�)}/i] (α1(i) =�)
update(α0(i),α[measst(i,α1(i))/i]) (otherwise)
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where measst is the measurement process of the ith qubit in stabilizer formalism.
Example 3.5. JGHZKC(α)= {({0,1,2},〈XXX,ZZI, IZZ〉)}, JSEP0KC(α)= {({0},〈X〉),({1},〈Z〉),({2},
〈Z〉)}, JSEP1KC(α) = {({0},〈Z〉),({1},〈Z〉),({2},〈Z〉)}, and JNSEPKC(α) = {({0},〈Z〉),({1,2},〈XX,
ZZ〉)} where meas(i)≡ if i then skip else skip fi.
Example 3.6. Take a QIL program exm0 = T(0);if 1 then skip else CX(2,3) fi. Let |B00〉 be
a Bell state 1√

2
(|00〉+ |11〉) and ρexm0 = |B00〉〈B00|⊗ |B00〉〈B00|. Since |B00〉 is stabilized by 〈ZZ,XX〉

and
Z Z
X X

X X
Z Z

 T(0)−−→


� �
� �

X X
Z Z

 meas−−→


�

Z
X X
Z Z

 CX(2,3)−−−−−→


�

Z
X

Z

 ,
Jexm0KC(ρexm0) is {({0},�),({1},Z),({2,3},�)}. Note {({2,3},〈XX,ZZ〉)}∨{({2},〈X〉),({3},〈Z〉)}
is {({2,3},�)}.

In the above example, we can see that CX undoes quantum entanglement between the second and
third qubits. It enables us to analyse entanglement in a QIL program more deeply than the prior work.
Of course, in order to use J·KC for analysis, the abstract semantics should be sound for the concrete
semantics. Indeed, J·KC is monotone and sound as the abstract semantics in the paper [12] is.
Proposition 3.7. For any assignment α,β , and QIL program C, α ≤c β implies JCKC(α)≤c JCKC(β ).

Proof. By induction on the structure of C.

Theorem 3.8. For any state ρ , assignment α , and QIL program C, α � ρ implies JCKC(α) � JCK(ρ).

Proof. By induction on the structure of C. For skip, C;C′, U(i), and T(i), it is easy. For CX(i, j),
there are several cases. But, in any case, it is straightforward that the statement holds by the definition of
α � ρ and computation in stabilizer formalism. Note that α∨β � ρ +σ whenever α � ρ and β � σ . The
statement holds for if i then C else C′ fi because of the above fact, meas(α) � |0〉〈0|ρ|0〉〈0|, and
meas(α) � |1〉〈1|ρ|1〉〈1|. Finally, we show for while i do C od. Because of meas(α) � |0〉〈0|ρ|0〉〈0|
and the induction hypothesis,

∨
n≤M meas((JCKC ◦meas)n(α)) � ∑n≤M |1〉〈1|(i) f n(ρ)|1〉〈1|(i). Since CQ is

finite, Jwhile i do C odKC(α) � ∑n≤M |1〉〈1|(i) f n(ρ)|1〉〈1|(i) for sufficiently large M. Thus, the state-
ment holds.

4 Abstract domain on extended stabilizers

In the previous section, we use stabilizers and the symbol � that represents a non-stabilizer. The symbol
� contains no information. It just states that the state of the associated qubits is unknown. The abstract
semantics J·KC introduces the symbol when it faces the non-Clifford gate T because the post-execution
state is a non-stabilizer state. Can not we really extract meaningful information from the post-execution
state? Let us take the following QIL program.

exm1 ≡ GHZ;T(1);meas(0)

The abstract semantics X X X
Z Z I
Z I Z

 T(1)−−→

 � � �
� � �
� � �

 meas(0)−−−−→

 Z
� �
� �
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tells us that the first qubit is separated but the second and the third qubits may be entangled last. Now, let
us try not to fill the matrix with � when T appears, and to memorise the applied gates. Recall that USU†

“stabilizes” UVS if S is the stabilizer of VS. X X X
Z Z I
Z I Z

 T(1)−−→

 X TXT† X
Z Z I
Z I Z

 meas(0)−−−−→

 Z
Z

Z


It means all qubits are separated. Indeed, Jexm1K(ρ) = 1

2(|000〉〈000|+ |111〉〈111|). The example shows
that the affect of T may be bounded locally and will be removed later. We introduce a new symbol ♥,
which means a unitary matrix that may not be a Pauli matrix or their tensor product. Note that ♥ means
not only a single qubit unitary matrix but also an n qubit unitary matrix. Using the symbol ♥, we will
extend our abstract domain CQ to a new domain EQ. Before doing it, we extend stabilizers so that they
allow us to put ♥ on them.

Definition 4.1. Let k be a natural number and A be a k×k matrix whose entries are in {I,X,Y,Z,♥}. We
now identify two matrices A and B if A can be converted into B via permutation of rows. We name a row
containing the symbol ♥ and a row containing no ♥ by a ♥-row and an L-row respectively. We always
require any L-rows commute. Moreover, we require that for any ♥-row Ri and row M j, by substituting I,
X, Y, or Z for each ♥ in Ri and M j, the result rows can commute. For example, the matrix consisting of
two rows ♥X and IZ is excluded, but the matrix consisting of ♥X and XZ is right because substitution
of Z for ♥ makes these rows commute. We further identify two matrices A and B if for any L-row Li of
A, there exists L-rows L j0 , . . . ,L jmi

of B such that Li = L j0 · · ·L jmi
and for any ♥-row Ri of A, there exists

rows R j0 , . . . ,R jmi
,L j0 , . . . ,L jli

of B such that Ri = R j0 · · ·R jmi
L j0 · · ·L jli

, and vice versa. Here, ♥ behaves
as an absorbing element. Finally, we excludes some matrices. Let k ≥ 2. If a matrix has a row II · · · I,
X( j), Y( j), Z( j), or ♥( j), then it is excluded. If a matrix has a column that contains only I and one of
{X,Y,Z}, then the matrix is also eliminated. Finally, if a matrix has a column such that exact one entry
is ♥ and the others are I, it is excluded. We name the set of those matrices Ek. Then, � is added into all
Ek. E is the union of these Eks.

Example 4.2.

[
I
]
,
[
♥
]
,

[
X ♥
♥ X

]
,

 ♥ X Y
Z ♥ ♥
X Y Z

 ∈ E,

 ♥ ♥ Y
I X I
Z I X

 ,[ X Z
X ♥

]
,

[
♥ Y
I X

]
/∈ E

The third matrix is an abstraction of matrices such as[
X I
I X

]
,

[
X Z
Z X

]
,

[
X HTXT†H†

Z X

]
.

Recall that S has the order ≤s. Regardless of the addition of ♥, the same definition seems to give
an order of E: E ∈ E is lower than or equal to E ′ ∈ E if E = I, E ′ =�, or E = E ′. However, it does not
answer our purpose. Recall the join operator corresponds with the summation of density matrices. For

example,
[

X ♥
♥ X

]
may represent

[
X I
I X

]
or
[

X Z
Z X

]
. But, the summation of stabilized states

by them does not always have the form of
[

X ♥
♥ X

]
. The example shows the join of

[
X ♥
♥ X

]
and[

X ♥
♥ X

]
should not be itself, so the “order” is not reflexive.
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In order to obtain a join operator, we remove rows that contain ♥. We give up keeping information
about unitary matrices when we take a join.

Definition 4.3. Take A ∈ Ek. Remove all ♥-rows. If all rows are ♥-rows, we obtain �. We call this
procedure normalisation and these matrices normal forms. The set of normal forms is Fk and the union
of them is F. We redefine Ek and E as Ek∪Fk and E∪F respectively.

Notation 4.4. For each E ∈ E, Enl is the normal form of E.

Example 4.5. [
I
]
,
[
�
]
,
[

X Y Z
]
∈F

F has an order ≤ f : F ≤ f F ′ if F = I, F ′ = �, or F = F ′. Obviously, F has the maximum, the
minimum, and the join and the meet of any two elements. We can take an approximation of a join
operator of E via the subset F.

Now, we define our second abstract domain EQ.

Definition 4.6. We call γ ⊂ 2Q×E an extended (stabilizer) assignment if pr0γ is a partition of Q and
for any (A,E) ∈ γ , E ∈ E|A|. The set of extended assignments is EQ. For each extended assignment γ ,
an extend assignment {(A,Enl) | (A,E) ∈ γ} is the normal form of γ . FQ is the set of normal forms of
extended assignments.

Notation 4.7. For extended assignments, we use the same notation as for assignments.

Definition 4.8. Let ρ be a quantum state and γ be an extended assignment. We write γ � ρ if ρ is
pr0γ-separable and for any L-row Li of any E ∈ γ , P+

Li
ρP−Li

= 0. Recall P±Li
= 1

2(I
⊗n±Li).

The same construction as CQ makes FQ a CPO. Although EQ does not have joins, we can define
an approximate join operator ] on EQ through FQ: for each γ,δ ∈ EQ, γ ] δ is the join of the normal
forms of γ and δ . Note that the approximate join ] of two elements can be computed efficiently. Now,
we define our second abstract semantics J·KE : QIL→ EQ→ EQ. Since ♥ loses some information, we
have to avoid introducing ♥ if possible. For simplicity, we define U�U† =� for any U , U♥U† =♥ for
any 1 qubit unitary U , and CX(♥U)CX† = CX(U♥)CX† = ♥♥ for any U . Moreover, we assume that
conditions are exclusive and an upper condition has priority.

JskipKE(γ) = γ

JC;C′KE(γ) = JC′KE(JCKE(γ))

JU(i)KE(γ) = γ[U(i)γ1(i)U
†
(i)/i]

JT(i)KE(γ) =

{
γ (γ1(i) and Z(i) commute)
γ[add♥(i,γ1(i))/i] (otherwise)

JCX(i, j)KE(γ) =



γ (γ0(i) = γ0( j) and γ1(i) =�)

updateE({i, j},γ[CX(i, j)γ1(i)CX†
(i, j)/i]) (γ0(i) = γ0( j))

γ (γ1(i) = 〈Z〉,γ1( j) = 〈X〉,
γ1(i) = γ1( j) = I)

γ[�/i, j] (γ1(i) =�,γ1( j) =�)
γ[〈Z〉/i] (γ1(i) = I)
γ[〈X〉/ j] (γ1( j) = I)
γ[CX(i, j)(γ1(i)⊗ γ1( j))CX†

(i, j)/i, j] (otherwise)
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u

ww
v

if i
then C
else C′

fi

}

��
~

E

(γ) = JCKE(measE(γ))] JC′KE(measE(γ))

Jwhile i do C odKE(γ) =
⊎

n∈N
measE((JCKE ◦measE)

n(γ))

where U ∈ {X,Y,Z,H,S}.
The result updateE(J′,γ) is computed as follows. Take (J,E) ∈ γ such that J′ ⊂ J. (1) If E does not

contain ♥, then update(J′,γ) is the result. (2) If E contains ♥ but belongs to E, then γ is the result. Note
that in this case, the definition of equality in E ensures that there is not a row such as X(i). (3) If not,
take all j0, . . . , jk−1 ⊂ J′ such that each jl column is composed of I and one of X, Y, Z. It means that the
jl qubit is separated. Let ♦ jl is X, Y, or Z that the jlth column contains. Define J′′ = J\{ j0, . . . , jk−1}.
Then, the result is γ[{(J′′,�)}∪{({ jl},♦ jl ) | l = 0, . . . ,k−1}/J].

The result of measE(γ) varies with γ . (1) If |γ0(i)| = 1, then γ[〈Z〉/i] is the result. (2) If γ1(i) is
a square matrix and does not contain ♥ but is not �, then update(γ0(i),γ[measst(i,γ1(i))/i]), which
is the same as meas. (3) If exactly one row of γ1(i) has X or Y in the ith column, measE(γ) is com-
puted as follows. First, the row and the ith column are removed from γ1(i). Let us call the matrix E ′.
Then updateE(γ0(i)\{i},γ[{({i},〈Z〉),(γ0(i)\{i},E ′)}/i]) is the result. (4) Otherwise, we cannot obtain
information about the post-measurement state. The result is γ[{({i},〈Z〉),(γ0(i)\{i},�)}/i].

The function add♥ changes X and Y in the ith column into ♥. By the definition of equality in E,
we can assume that exactly one of the following holds: (1) the ith column does not contain X or Y, (2)
exactly one L-row has X or Y in the ith column, and (3) only ♥-rows have X or Y in the ith column. In
the first case, add♥ does nothing and returns the second argument. In the second and third cases, add♥
changes all X and Y in the ith column into ♥ and returns the matrix. Hence, add♥ changes at most one
L-row into a ♥-row.

Example 4.9. Now, we compute Jexm1KE(γ). X X Z
Z Z I
Z I Z

 T(1)−−→

 X ♥ X
Z Z I
Z I Z

 meas(0)−−−−→

 Z
Z

Z


Thus, we conclude that all qubits are separated.

Finally, we show J·KE is sound.

Theorem 4.10. For any state ρ , extended assignment γ , and program C, γ � ρ implies JCKE(γ) � JCK(ρ).

Proof. By induction on the structure of C. For skip, C;C′, U(i), and T(i), it is easy. For CX(i, j),
since the number of ♥-rows does not increase, the statement holds. Extended stabilisers also satisfy
γ ] δ � ρ +σ whenever γ � ρ and δ � σ . For if i then C else C′ fi, we have to check measE .
However, since it also just decrease the number of ♥-rows, measE(γ) � |0〉〈0|(i)ρ|0〉〈0|(i). Hence, the
statement holds for if i then C else C′ fi. Finally, we show for while i do C od. Since CQ

is finite, Jwhile i do C odKE(γ) � ∑n≤M |1〉〈1|(i) f n(ρ)|1〉〈1|(i) for sufficiently large M. Therefore, the
statement holds by continuity of projection.
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5 Conclusion

We used stabilizer formalism to improve entanglement analysis in quantum programs. First, we intro-
duced an abstract domain CQ and an abstract semantics. It assigns stabilizers or non-stabilizers to each
segment of a quantum state, where non-stabilizers are assigned when non-Clifford gates are applied to the
segment. The method enables us to analyse separability of qubits in quantum programs more precisely.
Specifically, we could deduce that all qubits are separated after executing SEP0 or SEP1. Moreover, we
defined an abstract domain EQ, as CQ introduces too many non-stabilizers. Even when non-Clifford
gates appear, the domain does not discard stabilizers but keeps Pauli matrices that are not disturbed by
the gates. Hence, it suppresses effects of non-Clifford gates that will be removed later. We showed
soundness of both semantics.

In a field of model checking, the stabilizer formalism was used to verify quantum programs and
analyse entanglement of those programs [5, 6]. However, in the study, quantum gates in a target language
were restricted to only Clifford gates. It is worth noting that our target language QIL has a non-Clifford
gate. This is a big advantage of our work and actually one of the challenges of our work was how to
manage the non-Clifford gate. We restricted the effect by overapproximation. Although we refined the
approximation from CQ to EQ, further refinement is still needed such as finding a better approximate
join operator in EQ.
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