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Much progress has recently been made (see for example [1, 2]) in understanding the fine-grained
thermodynamics and statistical mechanics of microscopic quantum physical systems, using the fun-
damental idea of thermodynamics as a particular type of resource theory. A resource theory is a
theory that governs which state transitions, whether deterministic or stochastic, are possible in a
given theory, using specified means. This depends on the kind of state transformations that are al-
lowed in the theory, and in particular on which subset of them are specified as “thermodynamically
allowed”.

In this note, we lay some groundwork for the resource theory of thermodynamics in general prob-
abilistic theories. We describe simple, but fairly strong, postulates under which the structure of
systems in a theory gives rise to a natural notion of spectrum, allowing definition of entropy-like
quantities and relations such as majorization analogous to those involved in fine-grained quantum
and classical thermodynamics. These are candidates for governing which transitions are thermody-
namically possible under specialized conditions (such as a uniform (“microcanonical”) bath), and
for figuring in definitions of free-energy-like quantities that constrain state transitions under more
general conditions. In further work [3] we will investigate the extent to which they do so, under
reasonable assumptions about which transformations are thermodynamically allowed. Since the
postulates are shared by quantum theory, and the spectrum of quantum states is deeply involved in
determining which transitions are possible, we expect that these postulates, supplemented with fur-
ther ones (including a notion of energy), allow the development of a thermodynamics and statistical
mechanics fairly similar to the quantum one.
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2 Entropy, majorization and thermodynamics in general probabilistic theories

Our main result, proven in Section 4, is that under certain assumptions, implied by but weaker than
the conjunction of Postulates 1 and 2 of [4], the outcome probabilities of a finegrained measure-
ment are majorized by those for a spectral measurement, and therefore the “spectral entropy” is the
measurement entropy (and therefore concave). It also allows other entropy-like quantities, based
on Schur-concave functions, to be defined. Our first assumption, described in Section 2 is a purely
convex abstraction of the spectral decomposition of density matrices: that every state has a decom-
position, with unique probabilities, into perfectly distinguishable pure (i.e. extremal) states. The
spectral entropy (and analogues using other Schur-concave functions) can be defined as the entropy
of these probabilities. Another assumption, projectivity (Section 3.1), abstracts aspects of the pro-
jection postulate in quantum theory; together with symmetry of transition probabilities it ensures
the desirable behavior of the spectral entropic quantities that follows from our main result.

In Sections 5 and 6 we note that projectivity on its own implies a spectral expansion for observables
(our additional spectrality assumption is for states), and also note the equivalence of the premises
of our theorem on spectra to a strong kind of self-duality, known as perfection, of the state space.

Section 7 contains another main result of this work. Using spectrality, and some assumptions about
the thermodynamic cost of certain processes that are partially motivated by our other postulates,
especially projectivity, we generalize von Neumann’s argument that the thermodynamic entropy of
a quantum system is its spectral entropy, to generalized probabilistic systems satisfying spectrality.
We then consider the prospect of embedding this result in a broader thermodynamics of systems
satisfying relevant properties including the ones used in the present work, as well as others. Among
the other useful properties, Energy Observability, which was used in [4] to narrow down the class of
Jordan algebraic theories to standard complex quantum theory, can provide a well-behaved notion
of energy to play a role in a fuller thermodynamic theory, and an ample automorphism group of
the normalized space, acting transitively on the extremal points or, even stronger, satisfying Strong
Symmetry ([4]), may enable reversible adiabatic processes that can be crucial to thermodynamic
protocols.

While our postulates are strong and satisfied by quantum theory, it is far from clear that, even sup-
plemented by energy observability, they constrain us to quantum theories: in [4] the strong property
of no higher-order interference was used, along with the properties of Weak Spectrality, Strong
Symmetry, and Energy Observability, to obtain complex quantum theory as the unique solution.
While it is possible that latter three properties alone imply quantum theory, this would be a highly
nontrivial result and we consider it at least as likely that they do not.

In the special case of assuming Postulates 1 and 2 of [4], a proof of our main theorem (Theorem 4.7)
and several further results have been obtained in one of the authors’ Master thesis [5]. We will elab-
orate on this, and in particular on the physics as detailed in von Neumann’s thought experiment (cf.
Section 7), elsewhere [3]. Note also the very closely related, but independent work of Chiribella and
Scandolo [6, 7]. The main difference to our work is that (in most cases) they assume a “purification
postulate” (among other postulates), and thus rely on a different set of axioms than we do. General-
probabilistic thermodynamics has also been considered in [8, 9], where entanglement entropy and
its role in the black-hole information problem has been analyzed. We hope that these different ways
of approaching generalized thermodynamics will help to identify the main features of a probabilis-
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tic theory which are necessary for consistent thermodynamics, and thus lead to a different, possibly
more physical understanding of the structure of quantum theory.

1 Systems

In this section, we recall the general notion of system that we will use as an abstract model of
potential physical systems in a theory, and define several properties of a system that in following
sections will be related to the existence of a spectrum. We make a standing assumption of finite
dimension throughout the paper except where it is explicitly suspended (notably in Appendix 5).

A system will be a triple consisting of a finite-dimensional regular cone A+ ⊂ A, a distinguished
regular cone A]

+ ⊆ A∗+ (A∗+ ⊂ A∗ being the cone dual to A+), and a distinguished element u in the
interior of A]

+. The normalized states are the elements x ∈ A+ for which u(x) = 1; the set Ω of
such states is compact and convex, and forms a base for the cone. Measurement outcomes, called
effects, are linear functionals e ∈ A]

+ taking values in [0,1] when evaluated on normalized states; a
measurement is a (finite, for present purposes) set of effects that add up to u. Below, we will assume
that A]

+ =A∗+, although we are investigating whether this can be derived from our other assumptions.
Allowed dynamical processes on states will usually be taken to be positive maps: linear maps T such
that TA+ ⊂ A+. Such a map is an order-automorphism if TA+ = A+, and reversible if T Ω = Ω. An
order-isomorphism T : A→ B between ordered vector spaces has TA+ = B+.

An extremal ray of a cone A+ is a ray ρ = R+x, for some nonzero x ∈ A+, such that no y ∈ ρ is
a nonnegative linear combination of distinct elements of A+ not in ρ . Equivalently, it is the set of
nonnegative multiples of an extremal state of Ω. A cone is reducible if A = A1⊕A2, a nontrivial
vector space direct sum, and all extremal rays of A+ are contained either in A1 or A2, and irreducible
if it is not reducible. Information about which of the summands Ai of a reducible cone a state lies in
can be considered essentially classical; Ai are like “superselection sectors”.

2 Spectrality

Axiom WS: (“Weak Spectrality”) Every state ω has a convex decomposition ω = ∑i piωi into
perfectly jointly distinguishable pure states.

Axiom S: (“Spectrality” (or “Unique Spectrality”)). Every state has a decomposition ∑i piωi into
perfectly jointly distinguishable pure states. If it has more than one such decomposition, the two
use the same probabilities. In other words, if ω = ∑

N
i=1 piωi = ∑

M
i=1 qiρi, where both ωi and ρi are

sets of perfectly distinguishable pure states, pi,qi ≥ 0, ∑i pi = ∑i qi = 1, then there is a permutation
σ such that for each i, σ(pi) = qi.

A priori Axiom S is stronger than Axiom WS. Later in this note we will give an example of a weakly
spectral, but not uniquely spectral, system.



4 Entropy, majorization and thermodynamics in general probabilistic theories

Note that WS is Postulate 1 of [4]. Postulate 2 of [4] is Strong Symmetry: that every set of mutu-
ally distinguishable pure states can be taken to any other such set of the same size by a reversible
transformation (affine automorphism of Ω.) WS and Strong Symmetry together imply Axiom S
and Axiom P (that is, “projectivity” as defined below). The converse is probably not true. Indeed,
Postulates 1 and 2 of [4] imply the very strong property of perfection, which, as we note in Section
6 is equivalent to Axioms S, P, and Symmetry of Transition Probabilities.

3 Projective and perfect systems

3.1 Projectivity

We call a finite-dimensional system projective if each face of Ω is the positive normalized part of
the image of a filter. Filters are defined in [4] to be normalized, bicomplemented, positive linear
projections A→ A. This is equivalent to being the dual of a compression, where the latter is as
defined in [13]. Normalization just means that they are contractive in (do not increase) the base
norm, which for x ∈ A+ is just u(x). P a projection means P2 = P, positive means PA+ ⊆ A+,
complemented means there is another positive projection P′ with imP∩A+ = ker P′ ∩A+,ker P∩
A+ = imP′∩A+, and bicomplemented means complemented with complemented adjoint. It can be
shown that filters are neutral: if u(x) = u(Px) (“x passes the filter with certainty”) then Px = x (“x
passes the filter undisturbed”). The complement, P′, is unique. The projections P : X 7→ QXQ of
quantum theory, where Q is a projector onto a subspace of the Hilbert space, are examples of filters.
The existence of filters might be important for informational protocols such as data compression,
or for thermodynamic protocols or the machinations of Maxwell demons. In finite dimension, a
system is projective in this sense if and only if it satisfies the standing hypothesis of [13], Ch. 8.

A system is said to satisfy Axiom P (“Projectivity”) if it is projective. The effects u ◦P, for filters
P, are called projective units.

Proposition 3.1 ([13], Theorem 8.1). For a projective state space, the lattice of faces is complete
and orthomodular. The filters and the projective units, being in one-to-one correspondence with
faces, can be equipped with an orthocomplemented lattice structure isomorphic to that of the faces.
For orthogonal faces F and G, uF∨G = uF +uG.

The relevant orthocomplementation is the map P→ P′ described in the definition of filter above; by
Proposition 3.1 it transfers to the lattices of faces and of projective units.

3.2 Self-duality and perfection

A regular cone A+ is said to be self-dual if there exists an inner product on A such that A+ = {y ∈
A : ∀x ∈ A+, (y,x) ≥ 0}. (We sometimes refer to the RHS of this expression, even when A+ is not
self-dual, as the internal dual cone of A+ relative to the inner product (., .).) This is equivalent to the
existence of an order isomorphism ϕ : A∗→ A such that bilinear form 〈.,ϕ(.)〉 is an inner product
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on A. It is stronger than just isomorphism of A+ to A∗, since we may have ϕ(A∗+) = A+ without the
nondegenerate bilinear form 〈.,ϕ(.)〉 being positive definite.

Definition 3.2. A cone A+ ⊂ A is called perfect if we can introduce a fixed inner product on A such
that each face of the cone (including the cone itself) is self-dual with respect to the restriction of
that inner product to the span of the face.

For such cones, the orthogonal (in the self-dualizing inner product) projection PF onto the span of a
face is a positive linear map [14, 15]. It is clearly bicomplemented. If the system has a distinguished
order unit, with respect to which PF is normalized, then PF is a filter.

Definition 3.3. A perfect system is one whose state space A+ is perfect and for which each of the
orthogonal projections PF onto lin F is normalized.

It follows from this definition that the projections PF of a perfect system are filters, hence a perfect
system is projective.

Question 1. For a perfect cone, is there always a choice of order unit that makes it projective?

Question 2. Are there perfect cones that can be equipped with order units that make them projective
in inequivalent ways?

One may investigate these questions by looking at an analogue of tracial states (Def. 8.1 and the
remark following it in [13]). In an appropriate setting (which includes systems with spectral duality
([13], Def. 8.42) in general, and is equivalent to projective systems in the finite-dimensional case)
a tracial state is one that is central, i.e. such that (P+P′)ω = ω for all filters P. Equivalently it
is the intersection of Conv (F ∪F ′) for all projective faces F . The conditions (P+P′)ω = ω are
linear, so this defines a subspace of the state space; in a self-dual cone, it also gives a subspace of
the observables, and it is natural to ask whether the order unit lies in that subspace, and whether,
indeed, in an irreducible self-dual projective cone the tracial states are just the one-dimensional
space generated by the order unit. If so, that suggests that we consider an analogue of the notion of
the linear space generated by tracial elements, for perfect cones: the linear space spanned by states
(or effects) such that (PF +PF ′)ω = ω for every orthogonal projection PF onto the span of a face F .
We call the nonnegative elements of such a linear space in a perfect cone orthotracial.

Proposition 3.4. A system with A+ a perfect cone and an orthotracial element e in the interior of
A+ taken as the order unit is the same thing as a perfect projective system.

Proof: Let e be orthotracial and in the interior of A+. Orthotraciality of e says PFe+PF ′e = e,
i.e. e−PFe = PF ′e. Since in any perfect cone the orthogonal projections onto spans of faces are
positive, PF ′e ≥ 0; hence e−PFe ≥ 0, i.e. PFe ≤ e, i.e. PF is normalized. Conversely, in a perfect
projective system the order unit is orthotracial (as well as tracial). We have already pointed out
that the orthogonal projectors P onto spans of faces are compressions/filters in this context; from
p+ p′ = u, and p := Pu, p′ := P′u, we have (P+P′)u = u for all filters P. �

Question 3. Is an orthotracial state automatically in the interior of A+?
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4 Measurements, measurement entropy, and majorization

Definition 4.1. Let Axiom WS hold. A spectral measurement on state ω is a measurement that
distinguishes the pure states ωi appearing in a convex decomposition of ω .

Consider a system satisfying Axiom S whose normalized state space Ω has maximal number of per-
fectly distinguishable pure states N. Call a function f : Rn → R symmetric if f (x) = f (σ(x))
for any permutation σ . For any symmetric function f : Rn → R, we define another function,
f : Ω→ R, by f (ω) = f (p) where p are decomposition probabilities for f . By symmetry and
unique spectrality this is independent of the choice of decomposition, so our claim that it defines a
function is legitimate. Define the functions λ ↓ : Ω→ Rn and λ ↑ : Ω→ Rn to take a state and return
the decreasingly-ordered and increasingly-ordered decomposition probabilities, respectively, of ω .
Then f (ω) = f (λ ↓(ω)) = f (λ ↑(ω)).

Definition 4.2. For x,y ∈ Rn, x ≺ y, “x is majorized by y”, means that ∑
k
i=1 x↓i ≤ ∑

k
i=1 y↓i for k =

1, ...,n−1, and ∑
n
i=1 x↓i = ∑

n
i=1 y↓i .

If the first condition holds, and the second holds with ≤ in place of equality, we say x is lower
weakly majorized by y, x≺w y.

We can extend the majorization relation to the set of all “vectors” (i.e. 1×n row matrices) of finite
length (n not fixed) by padding the shorter vector with zeros and applying the above definition.

Theorem 4.3. An n×n matrix M is doubly substochastic iff y ∈ Rn
+ =⇒ (My ∈ Rn

+ & My≺w y).

This is C.3 on page 39 of [10].

Definition 4.4. A function f : Rn→ R is called Schur-concave if for every v,w ∈ Rn, v majorizes
w implies f (v)≤ f (w).

Proposition 4.5. Every concave symmetric function is Schur-concave.

An effect is called atomic if it is on an extremal ray of A+ (the cone of normalized effects) and is
the maximal normalized effect on that ray. It is equivalent, in the projective context, to say it is an
atom in the orthomodular lattice of projective units. In a projective state space the projective units
are precisely the extremal points of the convex compact set [0,u] of effects. Indeed, Proposition
8.31 of [13] states that “if the standing hypothesis of this chapter is satisfied [which it is in finite
dimensional projective state spaces] and A =V ∗, then the projective units are w∗-dense in the set of
extreme points of A+

1 ”, the latter being the set of effects.

In projective state spaces, elements of A∗ have a spectral expansion in terms of mutually orthogonal
projective units. We may take these unit to be atomic, but then the expansion coefficients may
be degenerate. We can also choose the expansion so that the coefficients are nondegenerate (the
projective units no longer being necessarily atomic); the nondegenerate expansion is unique. In
Appendix 5 these facts are shown to be the finite-dimensional case of [13], Corollary 8.65. We
leave open whether the expansion is unique in the stronger sense analogous to that in (Unique)
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Spectrality, that the probabilities in any expansion into atomic effects (though not necessarily the
expansion itself) are unique.

One wonders whether analogous things hold for the state space A of a projective system. Weak
Spectrality probably does hold (and perhaps some analogue of weak spectral decomposition for
arbitrary elements of A therefore follows, i.e. one without uniqueness). But there are clear coun-
terexamples to the conjecture that projectivity implies (Unique) Spectrality. Strictly convex sets in
finite dimension are spectral convex sets in the sense of [13], Ch. 8, and therefore normalized state
spaces of projective systems. But one can easily construct one even in two affine dimensions in
which there is a state with two distinct convex decompositions into perfectly distinguishable (“an-
tipodal”) pure states, having very different probabilities. A non-equilateral isosceles triangle that
has been perturbed (“puffed out”) to be strictly convex (and therefore spectral [13], and the base for
a projective system) does the trick. One can even construct an example (not strictly convex, but still
spectral in the sense of [13], Ch. 8) in which there is a state with convex decompositions into differ-
ent numbers of perfectly distinguisable pure states. See Theorem 8.87 of [13]. For the special case
of the family of sets constructed in that theorem, illustrated in their Fig. 8.1, the “triangular pillow”
(an equilateral triangle puffed into a third dimension), the state at the barycenter of the equilateral
triangle (with vertices the three pure states in the “equatorial plane”) can be written as the sum of
1/3 times each of the three vertices, or of 1/2 times the “north pole” plus 1/2 times the “south
pole”. It would be nice to know whether or not this state space is self-dual.

For a projective state space, every atomic effect takes the value 1 on a unique normalized state,
which is extremal in Ω, called ẽ, and every extremal normalized state takes the value 1 on a unique
atomic effect, called ω̂ . ̂ and ˜are 1-1 maps of the atomic effects onto the pure states and
vice versa, and are each others’ inverses. For a pair of states ω,σ , ω̂(σ) is sometimes called the
transition probability from σ to ω .
Definition 4.6 (Symmetry of Transition Probabilities). A system is said to satisfy Symmetry of
Transition Probabilities (or Axiom STP) if for any pair of pure states ω,σ , ω̂(σ) = σ̂(ω).
Theorem 4.7. Let a system satisfy Unique Spectrality, Symmetry of Transition Probabilities, and
Projectivity. Then for any state ω it holds that for any fine-grained measurement e1, ...,en, the vector
p = [e1(ω), ...,en(ω)] of probabilities of the measurement outcomes is majorized by the vector of
probabilities of outcomes for a spectral measurement on ω .
Lemma 4.8. For a system satisfying Projectivity, ω is perfectly distinguishable from σ if, and only
if, Face(ω)⊆ Face(σ)′.

Proof: [of Lemma 4.8] It follows straightforwardly from the definition of filters and their comple-
ments, that for P the filter associated with Faceσ and P′ the filter associated with Face(σ ′), the
projective units u◦P and u◦P′ distinguish σ from ω .

Proof: [of Theorem 4.7] Let ω = ∑ j p jω j be a convex decomposition, with ω j pure and perfectly
distinguishable. Then p j are the outcome probabilities for a spectral measurement on ω . Write the
effects ei of an arbitrary fine-grained measurement as ei = ciπi, where 0 < ci ≤ 1 and πi are atomic.
Then the outcome probabilities for this measurement, made on ω , are

qi = ∑
j

p jciπi(ω j) . (1)
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That is, q = Mp where Mi j = ciπi(ω j). So ∑
M
i=1 Mi j = ∑i ciπi(ω j) = u(ω j) = 1. That is, M is

row-stochastic. Also ∑
N
j=1 Mi j = ciπi(∑ j ω j). By Symmetry of Transition Probabilities this is equal

(using the fact that˜and̂are inverses) to ci ∑ j ω̂ j(π̃i). Lemma 4.8 tells us that ∑ j ω̂ j = u so this is
equal to: ciu(π̃i) = ci. So, ∑

N
j=1 Mi j = ci. ci ≤ 1, so M is column-substochastic.

So M is doubly substochastic. Letting R ≥ N be the number of outcomes of the finegrained mea-
surement, we pad p with R−N zeros and pad M on the right with R−N zero columns to obtain a
doubly substochastic matrix M̃. Then M̃ p̃ = q, so by Theorem 4.3 q≺w p. Since ∑i pi = ∑i qi = 1,
lower weak majorization implies majorization, q≺ p. �

Corollary 4.9. In a perfect system satisfying Axiom S, for any state ω the outcome probabilities for
any fine-grained measurement on ω are majorized by those for a spectral measurement on ω . In
particular, this is so for systems satisfying Postulates 1 and 2 of [4].

The first statement holds because, as we will show in Section 6, perfect systems are the same thing
as projective systems satisfying STP. The second sentence holds because Postulates 1 and 2 of [4]
imply both P and S. While we shall see that perfection implies weak spectrality, we do not know
whether it implies S, so S had to be included in the premise of the Corollary.

Corollary 4.10. Let ω ′ =
∫

K dµ(T )Tµ(ρ), where dµ(T ) is a normalized measure on the compact
group K of reversible transformations. Then ω � ω ′.

Proof: Let ei be the spectral measurement on ω ′. Then ei(ω
′) =

∫
K dµ(T )ei(T (ρ)). For any

state σ , write p for the vector whose i-th entry is ei(σ). Then the spectrum of ω ′ is p(ω), and
p(ω) ≡

∫
K dµ(T )p(T (ω)) but p(T (ω)) is just the vector of probabilities for a measurement on ρ

in the frame {T †ei}, hence is majorized by the spectrum of ω . A limit of convex combinations of
such things, for example the spectrum of ω ′, also majorizes the spectrum of ω . �

Definition 4.11. The measurement entropy Smeas(ω) of a state ω of a system A is defined to be
the infimum, over finegrained measurements, of the entropy of the outcome probabilities of the
measurement.

Recall that S(ω) is defined, for any Axiom-S theory, as the entropy of the probabilities in any
convex decomposition of ω . From the definitions of S(ω) and Smeas(ω), Theorem 4.7 and the
Schur-concavity of entropy we immediately obtain:

Proposition 4.12. For any state ω ∈ΩA, of a system satisfying Axioms S, P, and STP, equivalently
(see the next two sections) satisfying Axiom S and perfection, S(ω) = Smeas(ω).

From this we immediately obtain, by Theorem 1 in [11] (concavity of the measurement entropy;
there is probably a similar theorem in [12]), that S(ω) is concave in any system satisfying Axioms
S, P, and STP (and hence in any system satisfying Postulates 1 and 2 (WS and Strong Symmetry)
of [4]). Similarly, under these assumptions any entropy-like quantity constructed by applying a
Schur-concave function χ to the spectrum will be the same as the infimum of χ over probabilities
of measurement outcomes, and if χ is concave, so will be the function ω 7→ χ(spectrum(ω)).
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5 Spectral expansions of observables in projective systems

In proving Theorem 6.1 in Section 6 (that any (finite-dimensional) projective system satisfying
symmetry of transition probabilities is perfect) we will use the following, which is of interest in its
own right.

Proposition 5.1. In a projective system each a ∈ A∗ is a linear combination ∑
n
i=1 λi pi of mutually

orthogonal projections pi in the P-bicommutant of a. We can always choose the expansion so that
the coefficients pi are nondegenerate (i.e. i 6= j =⇒ pi 6= p j), and then the expansion is unique.

We call the unique expression for a as a nondegenerate linear combination of mutually orthogonal
projectors its spectral expansion. As shown in Appendix A, Proposition 5.1 is the finite-dimensional
case of:

Proposition 5.2 ([13], Corollary 8.65). If A and V are in spectral duality, then each a ∈ A can be
approximated in norm by linear combinations ∑

n
i=1 λi pi of mutually orthogonal projective units pi

in the P-bicommutant of a.

As noted in the discussion following the definition of spectral duality, Definition 8.42 of [13], by
Theorem 8.72 of [13], in finite dimension their property of spectral duality is equivalent to all
exposed faces of Ω being projective, i.e. in our terminology, to the system (A,u) being projective.
The C -bicommutant of a is the set of all compressions compatible with a (i.e. a = Pa + P′a)
and with all compressions compatible with a. Compatibility of two compressions is equivalent
to commutation. Compatibility of projective units is defined as compatibility of the associated
compressions; the definition of P-bicommutant is exactly analogous.

6 For projective systems, symmetry of transition probabilities is per-
fection

The following theorem shows that we may replace the conjunction of Projectivity and Symmetry of
Transition Probabilities with the the property of perfection. Parts of our proof are modeled after the
proof of Lemma 9.23 of [13], but with different assumptions: finite dimension makes certain things
simpler for us, but our premise involves only projectivity and symmetry of transition probabilities,
not the additional property of purity-preservation by compressions that figures in said Lemma. After
proving the theorem, we realized that essentially the same result, stated in somewhat different terms,
was proved by H. Araki in [16]. We include our proof in Appendix B.

Theorem 6.1. Let A,u be a finite-dimensional projective system satisfying Symmetry of Transition
Probabilities. Then there is a unique positive linear map ϕ : A∗→ A such that ϕ(x) = x̂ for each
atom x ∈P . (x,y), defined by (x,y) := 〈x,ϕ(y)〉, is an inner product on A∗, with respect to which
compressions are symmetric, i.e.:

(Pa,b) = (a,Pb). (2)

Hence A∗+ (and so also A+) is a perfect self-dual cone, so the system A,u is a perfect system.
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Corollary 6.2. For projective systems, symmetry of transition probabilities is equivalent to perfec-
tion.

Proof: Theorem 6.1 gives one direction; the other direction, that perfect projective systems satisfy
STP, is near-trivial (cf. [4]).
Corollary 6.3. For a projective system satisfying STP any element x∈A has a “spectral” expansion
x = ∑i λiωi, with λi ∈ R and ωi mutually orthogonal pure states in Ω.

This follows from the spectral expansion of observables (Proposition 5.1) and Theorem 6.1 since
the latter implies self-duality. The uniqueness properties of the expansion of elements of A∗ (cf.
discussion following Proposition 5.1) also hold for elements of A+ since the expansion in the state
space will be the image of the expansion of Proposition 5.1 under the order-isomorphism ϕ : A∗→A.
Question 4. Does perfection imply the stronger uniqueness properties embodied in Axiom S?

If the triangular pillow based state space (see Sec. 4) is perfect, then it does not.

7 Filters, compressions, and von Neumann’s argument for entropy

We have given assumptions that imply the existence of a spectral entropy and related quantities
with operational interpretation in terms of probabilities of measurement entropy, and majorization
properties, such as Corollary 4.10 that, in the quantum case, play a crucial role in thermodynamic
resource theory. We would like to use the spectrum and associated entropic quantities and majoriza-
tion relations in a generalized thermodynamic resource theory. In this section we take a step in
this direction by extending von Neumann’s argument that S(ρ) is the thermodynamic entropy in
quantum theory, to systems whose internal state space is a more general GPT state space satisfying
Axiom S and Axiom P.

Von Neumann’s argument is that a reversible process, making use of a heat bath at temperature T ,
exists between a system with density matrix ρ , and a system in a definite pure state, and that this
process overall involves doing work −kT tr ρ lnρ in the forward direction. His argument involves
a system with both quantum and classical degrees of freedom, e.g. a one-molecule ideal gas, and
the direct heat exchange and doing of work involves classical degrees of freedom (specifically,
expanding or contracting the volume occupied by a gas, while in contact with the heat reservoir).

Consider an arbitrary state ω = ∑i qiωi, where qi,ωi are a convex expansion of the state into a
set of N perfectly distinguishable pure states ωi. Axiom S ensures that such expansions exist and
that they uniquely define (as in the preceding section, except with different units corresponding to
taking ln instead of the base-2 log) S(ω) :=−∑i qi lnqi. By Lemma 4.8 Axiom P ensures that there
are atomic projective units πi that form a measurement distinguishing the states ωi (that is to say,
∑i πi = u, and πi(ω j) = δi j). There are associated filters Pi such that Piω j = δi jω j.

Assumption: if such filters exist, they allow us, at no thermodynamic cost, to take a cylinder of vol-
ume V , containing such a particle in equilibrium at temperature T and separate it into N cylinders
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Ci of volume V , still at temperature T , such that Ci contains a system in state ωi, with probability
pi, in which case the other cylinders are empty.

We may think of this separation process as realizing the measurement by using the instrument {Pi},
with the classical measurement outcome recorded as which cylinder the system is in. Because of
projectivity, it is consistent to assume that this is possible, and that the state of the system in cylinder
i (i.e., conditional on measurement outcome i) is still ωi due to the neutrality property of filters.
von Neumann’s argument involves instead semipermeable membranes, allowing particles whose
internal state is |i〉〈i| to pass (from either direction), whilst reflecting particles whose internal state is
supported on the subspace of Hilbert space orthogonal to |i〉〈i|. The use of analogous semipermeable
membranes, in the GPT case, which behave differently for systems in face Fi (i.e., whose state “is”
ωi) than for particles whose internal state “is” in F ′i , will allow us to ultimately separate each of the
mutually distinguishable states ωi into its own box or cylinder. We may, if we like, represent such
a procedure by a transformation on a tensor product of a classical state space and the internal state
space of the particle, for example:

x⊗ω 7→ (x⊕0)+Piω⊗ (x⊕1)⊗P′i ω, (3)

easily verified to be positive and base-norm-preserving.

In fact, the overall process that separates particles into the cylinders Ci could just be represented as
the positive map:

T : x⊗ω 7→∑
i
(x+ i−1)⊗Piω (4)

where the first register is classical and takes values 1, ...,N, where N is the maximal number of dis-
tinguishable states. Again this is positive and trace preserving on the overall tensor of the classical
N-state system with the GPT system (which is equivalent in structure to the direct sum of N copies
of the GPT system). The possibility of such transformations is due to the projectivity of the state
space (which implies such properties as the neutrality of filters). Whether or not it is reasonable
to consider them thermodynamically costless is less clear, especially because the overall transfor-
mation on the GPT-classical composite is not in general an automorphism of the normalized state
space (not “reversible”). Ultimately, the reasonableness of this assumption probably requires that
the “measurement record” be kept in a system for which the overall measurement dynamics on the
composite with the original system, can be reversible, a property which we are investigating.

Obviously, if ω = ∑i qiωi where ωi ∈ Fi, then we have T (1⊗ω) = ∑i qii⊗ωi.

At this point (or after the next step, it does not matter), we “adiabatically” transform the internal
state ωi of the particle in each cylinder Ci, to some fixed i-independent pure state, ω0.

Assumption (“Adiabatic assumption”): This can be achieved without doing any work on the system,
or exchanging any heat with the bath. (Thus we could do it while the system is isolated.)

If the reversible transformation group of the GPT system (the group of permitted transformations
that are in the automorphism group of Ω) acts transitively on the pure states, that would motivate this
assumption. This would follow, for example, from the much stronger property of Strong Symmetry.
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Next, we isothermally (in contact with the heat bath at temperature T ) compress the contents of
each cylinder Ci to a volume Vi := qiV . The work done on cylinder i, if it contains a particle, is Wi =
−
∫ qV

V PdV . By the ideal gas law, PV = nkT ; with n = 1, P = kT/V so Wi = −kT
∫ qV

V (1/V )dV =
−kT (lnqV − lnV ) =−kT lnq lnV/ lnV =−kT lnq. Since the probability the cylinder contains the
particle is qi, and these events, for the various cylinders i, are mutually exclusive and exhaustive,
the expected work done in this step is ∑i qiWi =−kT ∑i qi lnqi = S(ω).

Then we put the cylinders of compressed volume qiV next to each other and remove partitions
separating them, obtaining a particle whose internal GPT degree of freedom is in the pure state ω0,
in equilbrium at temperature T and in the volume ∑i qiV =V . Since this process was reversible, we
see that we may go from a particle in volume V and state ω , whose motional degrees of freedom
are in equilibrium at temperature T , to one in motional equilibrium at temperature T and volume V
but with state σ , by doing expected work S(ω)−S(σ) on the particle. �

Just because our assumptions imply we can do this process, does not imply that we have a consistent
thermodynamics (i.e. one without work-extracting cycles). It’s possible that further properties of
a GPT beyond projectivity and spectrality might be necessary for this. A notion of energy, such
as Postulate 4 (Energy Observability) in [4] provides, would be needed for a thermodynamics that
resembles our current thermodynamic theories, if we wish to discuss work done by or on GPT
systems. We already mentioned the principle that if there exists a reversible transformation (auto-
morphism of the normalized state space Ω), it can be applied with the system isolated or in contact
with a heat bath, at no cost in work and with no heat exchange, and used it along with a further
property, that the automorphism group of Ω acts transitively on pure states, to motivate assuming
zero thermodynamic cost for a step in the von Neumann protocol. Perhaps we can find a similar
motivation for the Strong Symmetry axiom of [4]. In [4] it was shown that the absence of higher-
order interference was equivalent, given Weak Spectrality and Strong Symmetry, to the postulate
that filters take pure states to multiples of pure states. This purity-preservation property greatly
constrained state spaces, giving irreducible or classical Jordan systems, and at first blush it seems it
might be important for thermodynamics. We suspect that it is not, and that a robust thermodynamics
may be developed for GPT systems that share many of the remarkable properties of quantum theory,
but are distinctly non-quantum in their interference behavior.

References

[1] F. G.S.L. Brandao, M. Horodecki, N. H. Y. Ng, J. Oppenheim, S. Wehner, The second laws of quantum
thermodynamics, Proc. Natl. Acad. Sci. 112, 3275 (2015). arXiv:1305.5278.

[2] M. Lostaglio, D. Jennings and T. Rudolph, Description of coherence in thermodynamic processes re-
quires constraints beyond free energy, Nature Communications 6, 6383 (2015), arXiv:1405.2188.

[3] H. Barnum, J. Barrett, M. Krumm, and M. P. Müller, in preparation.

[4] H. Barnum, M. Müller and C. Ududec, Higher-order interference and single-system postulates charac-
terizing quantum theory, New J. Phys. 16, 123029 (2014). arXiv:1403.4147.

[5] M. Krumm, Thermodynamics and the Structure of Quantum Theory as a Generalized Probabilistic The-
ory, Master Thesis, Heidelberg University, April 2015.



H. Barnum, J. Barrett, M. Krumm, M. Müller 13

[6] G. Chiribella and C. M. Scandolo, Entanglement and thermodynamics in general probabilistic theories,
arXiv:1504.07045.

[7] G. Chiribella and C. M. Scandolo, Operational axioms for state diagonalization, arXiv:1506.00380.

[8] M. P. Müller, O. C. O. Dahlsten, and V. Vedral, Unifying typical entanglement and coin toss-
ing: on randomization in probabilistic theories, Commun. Math. Phys. 316(2), 441–487 (2012).
arXiv:1107.6029.

[9] M. P. Müller, J. Oppenheim, and O. C. O. Dahlsten, The black hole information problem beyond quantum
theory, JHEP 09, 116 (2012). arXiv:1206.5030.

[10] A. W. Olkin, I. Marshall and B. Arnold, Inequalities: Theory of Majorization and its Applications, 2nd
edition, Springer (2011).

[11] H. Barnum, J. Barrett, L. Clark, M. Leifer, R. W. Spekkens, N. Stepanik, A. Wilce, and R. Wilke,
Entropy and information causality in general probabilistic theories, New J. Phys. 12, 033024 (2010).
arXiv:0909.5075. Addendum, New J. Phys. 14 129401 (2012).

[12] A. J. Short and S. Wehner, Entropy in general physical theories, New J. Phys. 12, 033023 (2010).
arXiv:0909.4801.

[13] E. M. Alfsen and F. W. Shultz, Geometry of State Spaces of Operator Algebras, Birkhäuser, Boston,
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A Proof of Proposition 5.1

In order to prove Proposition 5.1 we state (with very minor notational changes, and the incorporation
of some definitions that Alfsen and Shultz place in surrounding text) Alfsen and Shultz’ theorem of
which it is a corollary (note that it is V that corresponds to what we’ve been calling A; A corresponds
to what we call A∗):

Theorem A.1 ([13], Theorem 8.64). Assume A and V are in spectral duality, and let a ∈ A. Then
there is a unique family {eλ}λ∈R of projective units with associated compressions Pλ such that

(i) eλ is compatible with a for each λ ∈ R,

(ii) Pλ a≤ λeλ and P′
λ
≥ λe′

λ
for each λ ∈ R,

(iii) eλ = 0 for λ <−||a||, and eλ = 1 for λ > ||a||,

(iv) eλ ≤ eµ for λ < µ ,

(v)
∨

µ>λ eµ = eλ for each λ ∈ R.

The family {eλ} is given by eλ = r((a− λu)+), each eλ is in the P-bicommutant of a, and the
Riemann sums

sγ =
n

∑
i=1

λi(eλi− eλi−1) (5)
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converge in norm to a when ||γ|| → 0. Here the γ are finite increasing sequences λ0,λ1, ...,λn of
elements of R, satisfying λ0 <−||a|| and λn > ||a|| and the norm ||γ|| of such a sequence γ is taken
to be maxi∈{1,...,n}λi−λi−1 (Note that n depends on γ , indeed n→∞ is necessary to secure ||γ||→ 0
given the bounds on λ0 and λn.)

Proof of Proposition 5.1: As already mentioned, in finite dimension spectral duality just means
that the system is projective. In finite dimension [and probably in infinite dimension too], q < p
for projective units q and p implies that lin Fq is a proper subspace of lin Fp (here Fp is the face
of the cone A generated by p). Hence any chain 0 = e0 < e1 < e2 < e3 < · · ·en = 1 of projective
units has finite length no greater than one plus the dimension d of A. Thus, the family {eλ} contains
only a finite number n ≤ d + 1 of distinct projective units, which we index in increasing order as
e0 = 0 < e1 < · · ·en = 1. (Whenever we write e with a roman index, the index indexes this set; the
expression does not (except perhaps accidentally) refer to eλ for the real number λ = i.)

Consider the sets Si := {λ : ∀µ ≥ λ ,eµ ≥ ei}. Each of these is an up-set in the ordering ≤ of R, so
it is either a closed or open half-line [µi,∞) or (µi,∞) unless i = 0 in which case it is R. It is in fact
closed: if it were open, Si = (µi,∞)≡ {λ : λ > µi}, then by (v) of Theorem A.1, eµi =

∨
λ∈Si

eλ , so
by the definition of Si, µi ∈ Si, contradicting Si = (µi,∞).

Consequently the function R→{e0, ...,en} which maps µ to eµ is a sort of step-function; there are
n distinct real numbers µ1, ...,µn such that the preimage of e0 is (−∞,µ1), the preimage of e j for
1 < j < n is [µ j,µ j+1), and the preimage of en is [µn,∞). Let θ be the length of the shortest of these
intervals; we have 0 < θ < 2||a||/n [the only important thing about this seems to be that θ > 0].

Since γ is an increasing sequence, by (iv) we have eλi − eλi−1 ≥ 0. There are n such differences in
the Riemann sum; at most n ≤ d of them are nonzero; we call them p1, ..., pn. Since ∑i pi = 1, by
Proposition 8.8 of [13], the nonzero ones are mutually orthogonal.

All sequences γ with ||γ|| < θ have the same finite set of nonzero differences pi := eλi − eλi−1 , of
cardinality n ≤ d. For such γ , the Riemann sums sγ lie in the finite-dimensional subspace of A
spanned by the pi. Like all subspaces of a finite-dimensional vector space, it is closed. Hence
lim||γ||→0 lies in this subspace, so it, too, is a finite linear combination of mutually orthogonal
projective units. Since the family {eλ}λ∈R was unique, so is this linear combination. �

B Proof of Theorem 6.1

There exists a basis {wi} for A∗ consisting of atoms; there is a unique linear map ϕ : A∗ → A
that agrees with the map x 7→ x̂ on this basis. We need to show that this agrees with x 7→ x̂ more
generally, or what is the same thing, that it is independent of the choice of atomic basis; and also
that it is positive.
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Let x1, ...,xn ∈ A∗ be atoms, and λi ∈ R such that ∑
n
i=1 λixi ≥ 0. By STP, for each atom y

〈y,
n

∑
i=1

λix̂i〉= 〈
n

∑
i=1

λixi, ŷ〉. (6)

So if ∑i λixi = 0, then ∑i λix̂i = 0, where xi are any atoms. Now let x be an arbitrary unit, and expand
it in the basis of units wi: x=∑i αiwi. So x−∑i αiwi = 0, so x̂=∑i αiŵi≡∑i αiϕ(wi) = ϕ(x). Since
ϕ takes the set of all atomic effects (which generate the cone A∗+) to the set of all extreme points of
Ω (which generate the cone A+), it takes A∗+ onto A+, so it is an order-isomorphism. By ϕ’s linearity
the form (., .) := 〈.,ϕ(.)〉 is bilinear. Since an order-isomorphism is in particular an isomorphism
of linear spaces, the form (., .) is nondegenerate. That it is symmetric is easy to see from STP: for
arbitrary a = ∑i aiwi, b = ∑ j b jw j,

(a,b) = ∑
i j

aib j〈wi,ϕ(w j)〉 (7)

but since wi,w j are atoms, ϕ(w j) = ŵ j, and by STP 〈wi, ŵ j〉= 〈w j, ŵi〉= 〈w j,ϕ(wi)〉, we have

(a,b) = ∑
i j

aib j〈w j,ϕ(wi)〉= 〈∑
j

b jw j,∑
i

aiϕ(wi)〉= (b,a) . (8)

To establish that (., .) is an inner product, it remains to be shown that (x,x) ≥ 0 for all x ∈ A∗. To
see this, use the spectral expansion x = ∑i λi pi, λi ∈ R, pi mutually orthogonal atoms, afforded by
Proposition 5.1. Then

(x,x) = ∑
i j

λiλ j〈pi, p̂ j〉= ∑
i j

λiλ jδi j = ∑
i

λ
2
i ≥ 0. (9)

Since ϕ is an order-isomorphism between A∗ and A, and we have just established that the corre-
sponding bilinear form is an inner product, we have shown that A∗ (equivalently, A) is self-dual.

To show symmetry of P with respect to the form, we first establish

((I−P)x,Py) = 0 (10)

where x,y are atoms. Write the spectral expansion of Py, Py = ∑i λiyi, with yi mutually orthogonal
atoms in im+P and λi ∈ R. Note that wi ∈ imP =⇒ ŵi ∈ imP∗. [Need details on why this is so,
possibly an earlier proposition. It’s Eq. 9.10 in [13]]. Then

((I−P)x,Py) = ∑
i

λi((I−P)x,yi) (11)

= ∑
i

λi〈(I−P)x, ŷi〉= ∑
i

λi〈x,(I−P)∗ŷi〉= 0. (12)

The last equality is because ŷi ∈ imP∗.

Now (x,Py) ≡ ((I−P+P)x,Py) = ((I−P)x,Py)+ (Px,Py), but by (10), this is equal to (Px,Py).
Interchanging x and y, we have (y,Px) = (Py,Px). But using symmetry of (., .) twice: (Px,y) =
(y,Px) and (Py,Px) = (Px,Py) we obtain, as claimed, (x,Py) = (Px,y).
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Since a symmetric projection in a real inner product space is an orthogonal projection, we see that
the compressions on A∗, equivalently (when A is identified with A∗ via ϕ) the filters on A, are
orthogonal projections with respect to the self-dualizing inner product (., .). So our cone is perfect
by a result of Iochum [14, 15]: that a self-dual cone is perfect if and only if the orthogonal (in the
self-dualizing inner product) projection PF onto the the linear span of F is positive for each face F .1

�

1A proof may be found in Appendix A of [4].
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