Operational axioms for diagonalizing states

Giulio Chiribella Carlo Maria Scandolo

Institute for Interdisciplinary Information Sciences, Tsinghua University

QPL 2015, 07/16/2015

G. Chiribella, C. M. Scandolo Operational axioms for diagonalizing states

• • • • • • •

The importance of thermodynamics

• Thermodynamics has applications in several branches of science.

The importance of thermodynamics

- Thermodynamics has applications in several branches of science.
- It gave rise to foundational puzzles, related to irreversibility.

Figure: Maxwell's demon. Source:wikimedia commons

• In classical thermodynamics, microscopic dynamics is fundamentally reversible.

- In classical thermodynamics, microscopic dynamics is fundamentally reversible.
- It'd be desirable to reconcile thermodynamic irreversibility with reversibility at the fundamental level.

- In classical thermodynamics, microscopic dynamics is fundamentally reversible.
- It'd be desirable to reconcile thermodynamic irreversibility with reversibility at the fundamental level.
- Important for nanotechnology: systems at the nanoscale.

- In classical thermodynamics, microscopic dynamics is fundamentally reversible.
- It'd be desirable to reconcile thermodynamic irreversibility with reversibility at the fundamental level.
- Important for nanotechnology: systems at the nanoscale.
- Relationship between thermodynamics and information theory (Landauer, etc.)

- In classical thermodynamics, microscopic dynamics is fundamentally reversible.
- It'd be desirable to reconcile thermodynamic irreversibility with reversibility at the fundamental level.
- Important for nanotechnology: systems at the nanoscale.
- Relationship between thermodynamics and information theory (Landauer, etc.)

Need for information-theoretic principles!

Method Thermodynamics in GPTs!

The tool of majorization

Majorization has featured in several works on quantum thermodynamics.

The tool of majorization

Majorization has featured in several works on quantum thermodynamics.

Majorization

Let $p,p'\in\mathbb{R}^n$ be two probability distributions. We say that p is majorized by p' $(p\preceq p')$ if

$$\sum_{i=1}^{k} p_{[i]} \leq \sum_{i=1}^{k} p'_{[i]} \quad \text{for } i = 1, \dots, n-1,$$

where $p_{[i]}$ is the *i*-th entry of the decreasing rearrangement of **p**.

The tool of majorization

Majorization has featured in several works on quantum thermodynamics.

Majorization

Let $p,p'\in\mathbb{R}^n$ be two probability distributions. We say that p is majorized by p' $(p\preceq p')$ if

$$\sum_{i=1}^{k} p_{[i]} \leq \sum_{i=1}^{k} p'_{[i]} \text{ for } i = 1, \dots, n-1,$$

where $p_{[i]}$ is the *i*-th entry of the decreasing rearrangement of **p**.

It gives a preorder of quantum states based on their eigenvalues.

• We want to export the tool of majorization to GPTs.

< ∃ > < ∃ >

- We want to export the tool of majorization to GPTs.
- From majorization we get entropies as Schur-concave functions.

- We want to export the tool of majorization to GPTs.
- From majorization we get entropies as Schur-concave functions.

We need to define the "eigenvalues" of states even in GPTs (cf. [Chiribella et al. '11]).

- We want to export the tool of majorization to GPTs.
- From majorization we get entropies as Schur-concave functions.

We need to define the "eigenvalues" of states even in GPTs (cf. [Chiribella et al. '11]).

Cf. also the next talk by Barnum et al.! (from a different angle) $% \left(f_{1}^{2}\right) =\left(f_{1}^{2}\right) \left(f_{2}^{2}\right) \left(f_{1}^{2}\right) \left(f_{2}^{2}\right) \left(f_{1}^{2}\right) \left(f_{1}^{$

G. Chiribella, C. M. Scandolo Operational axioms for diagonalizing states

Section 1

Framework and axioms

G. Chiribella, C. M. Scandolo Operational axioms for diagonalizing states

OPTs

```
We use a specific variant of GPTs, known as OPTs (operational-probabilistic theories).
[Chiribella et al. '10, Chiribella et al. '11]
```

.⊒ ▶ ∢

OPTs

We use a specific variant of GPTs, known as OPTs (operational-probabilistic theories). [Chiribella et al. '10, Chiribella et al. '11] Circuits such as

- A, B, etc. are systems
- *A*, *B*, etc. are transformations: they can be composed in sequence (e.g. *A* and *A*') or in parallel (e.g. *A* and *B*)
- ρ is a state (a transformation with *no* input)
- a and b are effects (transformations with no output)

Reversible transformations

Reversible transformations

A transformation $\mathcal{U} : A \to B$ is called reversible if there exists a transformation $\mathcal{U}^{-1} : B \to A$ such that $\mathcal{U}^{-1}\mathcal{U} = \mathcal{I}_A$, and $\mathcal{U}\mathcal{U}^{-1} = \mathcal{I}_B$, where \mathcal{I}_S is the identity on system S.

$$\begin{array}{c} \underline{A} & \underline{\mathcal{U}} & \underline{B} & \underline{\mathcal{U}}^{-1} & \underline{A} & \underline{B} & \underline{A} \\ \underline{B} & \underline{\mathcal{U}}^{-1} & \underline{A} & \underline{\mathcal{U}} & \underline{B} & \underline{B} & \underline{B} \\ \end{array}$$

• Circuits with no external wires represent probabilities

$$(a_i|\rho_j) := \rho_j \underline{a_i} = p_{ij} \in [0,1].$$

• Circuits with no external wires represent probabilities

$$(a_i|\rho_j) := \rho_j \underline{A} \underline{a_i} = p_{ij} \in [0,1].$$

• This induces a sum for transformations.

• Circuits with no external wires represent probabilities

$$(a_i|\rho_j) := \rho_j \underline{A} a_i = \rho_{ij} \in [0,1].$$

- This induces a sum for transformations.
- We define real vector spaces spanned by states and effects. We assume they are finite-dimensional.

• Circuits with no external wires represent probabilities

$$(a_i|\rho_j) := \rho_j \underline{A} a_i = \rho_{ij} \in [0,1].$$

- This induces a sum for transformations.
- We define real vector spaces spanned by states and effects. We assume they are finite-dimensional.
- We can define coarse-graining and purity.

Purity

A transformation \mathcal{T} is pure if $\mathcal{T} = \sum_{i} \mathcal{T}_{i}$ implies $\mathcal{T}_{i} = p_{i}\mathcal{T}$, where $\{p_{i}\}$ is a probability distribution.

A (1) > (1) > (1)

Purity Preservation

Purity Preservation [Chiribella & Scandolo '15a]

The sequential and parallel composition of pure transformations is a pure transformation.

Purity Preservation

Purity Preservation [Chiribella & Scandolo '15a]

The sequential and parallel composition of pure transformations is a pure transformation.

• The product of two pure states is pure.

Purity Preservation

Purity Preservation [Chiribella & Scandolo '15a]

The sequential and parallel composition of pure transformations is a pure transformation.

- The product of two pure states is pure.
- Without Purity Preservation, we may have a "non-local" loss of information when composing transformations.

Causality

Causality [Chiribella et al. '10, Chiribella et al. '11]

The outcome probabilities of present experiments are not affected by the choice of future measurements.

4 3 6 4 3 6

Causality

Causality [Chiribella et al. '10, Chiribella et al. '11]

The outcome probabilities of present experiments are not affected by the choice of future measurements.

• Equivalently, for every system A there is a *unique* deterministic effect Tr_A .

3 b 4

Causality

Causality [Chiribella et al. '10, Chiribella et al. '11]

The outcome probabilities of present experiments are not affected by the choice of future measurements.

- Equivalently, for every system A there is a unique deterministic effect Tr_A .
- ullet We can use Tr to define the marginals of bipartite states:

$$\rho_{\mathbf{A}} := \mathbf{Tr}_{\mathbf{B}} \rho_{\mathbf{A}\mathbf{B}} = \begin{array}{c} \rho \\ \hline \\ \mathbf{B} \\ \hline \\ \mathbf{Tr} \end{array}$$

Important in thermodynamics: we need to restrict ourselves to subsystems!

Purification [Chiribella et al. '10, Chiribella et al. '11]

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Purification [Chiribella et al. '10, Chiribella et al. '11]

• Every state ρ_A can be purified: there exists a pure state Ψ_{AB} such that

◆□> <圖> <필> <필> < => < =</p>

Purification [Chiribella et al. '10, Chiribella et al. '11]

 Every state ρ_A can be purified: there exists a pure state Ψ_{AB} such that

$$(\rho - A) = (\Psi - A) = (P -$$

Oifferent purifications of the same state differ by a reversible transformation on the purifying system:

• It reconciles partial information and irreversibility with a picture where everything is pure and reversible.

3 1 4

- It reconciles partial information and irreversibility with a picture where everything is pure and reversible.
- Dilation and extension theorems can be reconstructed from it [Chiribella et al. '10].

- It reconciles partial information and irreversibility with a picture where everything is pure and reversible.
- Dilation and extension theorems can be reconstructed from it [Chiribella et al. '10].
- It provides a formal justification of the thermodynamic procedure of enlarging a system to deal with an isolated system.

- It reconciles partial information and irreversibility with a picture where everything is pure and reversible.
- Dilation and extension theorems can be reconstructed from it [Chiribella et al. '10].
- It provides a formal justification of the thermodynamic procedure of enlarging a system to deal with an isolated system.

Purification is a good starting point for a theory of thermodynamics.

Pure Sharpness

Pure Sharpness

For every system, there exists at least one pure effect a that occurs with probability 1 on some state ρ .

Pure Sharpness

Pure Sharpness

For every system, there exists at least one pure effect a that occurs with probability 1 on some state ρ .

• We can think of *a* as part of a yes/no test to check an elementary property of the system.

Pure Sharpness

Pure Sharpness

For every system, there exists at least one pure effect a that occurs with probability 1 on some state ρ .

- We can think of *a* as part of a yes/no test to check an elementary property of the system.
- Pure Sharpness ensures that every system has an elementary property.

Consequences of Pure Sharpness (+ Purification)

• Duality pure states-pure effects: for every pure state α there is a unique pure effect α^{\dagger} such that $(\alpha^{\dagger}|\alpha) = 1$.

Consequences of Pure Sharpness (+ Purification)

- Duality pure states-pure effects: for every pure state α there is a unique pure effect α^{\dagger} such that $(\alpha^{\dagger}|\alpha) = 1$.
- Sexistence of perfectly distinguishable (pure) states.

Perfectly distinguishable states

The states $\{\rho_i\}_{i \in X}$ are said *perfectly distinguishable* if there exists a measurement $\{a_j\}_{j \in X}$ such that $(a_j | \rho_i) = \delta_{ij}$.

Section 2

Diagonalization

G. Chiribella, C. M. Scandolo Operational axioms for diagonalizing states

Diagonalizing states

Diagonalization

A diagonalization of a state ρ is a convex decomposition of ρ into perfectly distinguishable pure states.

$$\rho = \sum_{i} p_{i} \alpha_{i}$$

The p_i 's are called eigenvalues of the diagonalization.

Diagonalizing states

Diagonalization

A diagonalization of a state ρ is a convex decomposition of ρ into perfectly distinguishable pure states.

$$\rho = \sum_{i} p_{i} \alpha_{i}$$

The p_i 's are called eigenvalues of the diagonalization.

Define

$$p_* := \max_{\alpha \text{ pure}} \left\{ p \in (0, 1] : \rho = p \alpha + (1 - p) \sigma \right\}.$$

Diagonalizing states

Diagonalization

A diagonalization of a state ρ is a convex decomposition of ρ into perfectly distinguishable pure states.

$$\rho = \sum_{i} p_{i} \alpha_{i}$$

The p_i 's are called eigenvalues of the diagonalization.

Define

$$p_* := \max_{lpha ext{ pure}} \left\{ p \in (0,1] :
ho = p lpha + (1-p) \sigma
ight\}.$$

• We have $(\alpha^{\dagger}|\rho) = p_*$, whence $(\alpha^{\dagger}|\sigma) = 0$, and $(\alpha^{\dagger}|\psi) = 0$ for any pure state ψ contained in σ .

The diagonalization algorithm

Consider a state ρ .

Consider a state ρ .

• Determine $p_* =: q_1$ and find $\alpha =: \alpha_1$ pure, such that $\rho = q_1 \alpha_1 + (1 - q_1) \sigma_1$.

Consider a state ρ .

- Determine $p_* =: q_1$ and find $\alpha =: \alpha_1$ pure, such that $\rho = q_1 \alpha_1 + (1 q_1) \sigma_1$.
- ⁽²⁾ Repeat the same procedure for σ_1 : find the maximum probability q_2 such that $\sigma_1 = q_2\alpha_2 + (1 q_2)\sigma_2$, with α_2 pure.

• • = • • = •

Consider a state ρ .

- Obtermine $p_* =: q_1$ and find $\alpha =: \alpha_1$ pure, such that $\rho = q_1 \alpha_1 + (1 q_1) \sigma_1$.
- 2 Repeat the same procedure for σ_1 : find the maximum probability q_2 such that $\sigma_1 = q_2\alpha_2 + (1 q_2)\sigma_2$, with α_2 pure.
- Iterate the procedure.

Consider a state ρ .

- Determine $p_* =: q_1$ and find $\alpha =: \alpha_1$ pure, such that $\rho = q_1 \alpha_1 + (1 q_1) \sigma_1$.
- 2 Repeat the same procedure for σ_1 : find the maximum probability q_2 such that $\sigma_1 = q_2\alpha_2 + (1 q_2)\sigma_2$, with α_2 pure.
- Iterate the procedure.

At the end,
$$\rho = \sum_{i=1}^{n} p_i \alpha_i$$
, where

イロト イポト イヨト イヨト

Consider a state ρ .

- Determine $p_* =: q_1$ and find $\alpha =: \alpha_1$ pure, such that $\rho = q_1 \alpha_1 + (1 q_1) \sigma_1$.
- 2 Repeat the same procedure for σ_1 : find the maximum probability q_2 such that $\sigma_1 = q_2\alpha_2 + (1 q_2)\sigma_2$, with α_2 pure.
- Iterate the procedure.

At the end,
$$ho = \sum_{i=1}^{n} p_i lpha_i$$
, where
• $p_1 := q_1$, and $p_i := q_i \prod_{j < i} (1 - q_j)$ for $i > 1$.

イロト イポト イヨト イヨト

Consider a state ρ .

- Determine $p_* =: q_1$ and find $\alpha =: \alpha_1$ pure, such that $\rho = q_1 \alpha_1 + (1 q_1) \sigma_1$.
- 2 Repeat the same procedure for σ_1 : find the maximum probability q_2 such that $\sigma_1 = q_2\alpha_2 + (1 q_2)\sigma_2$, with α_2 pure.
- Iterate the procedure.

At the end,
$$\rho = \sum_{i=1}^{n} p_i \alpha_i$$
, where
• $p_1 := q_1$, and $p_i := q_i \prod_{j < i} (1 - q_j)$ for $i > 1$.
• $\left(\alpha_i^{\dagger} | \alpha_j\right) = 0$ for $j > i$

イロト イポト イヨト イヨト

From effects to transformations

We want to prove the α_i 's are perfectly distinguishable.

From effects to transformations

We want to prove the α_i 's are perfectly distinguishable.

Preliminary result (from Purification) [Chiribella et al. '11]

We can associate a test $\{A_i\}_{i\in X}$ made of transformations with a measurement $\{a_i\}_{i\in X}$ made of effects, where the A_i 's occur with the same probability as the a_i 's. Moreover, if $(a|\rho) = 1$, then the associated transformation Adoesn't disturb ρ .

G. Chiribella, C. M. Scandolo Operational axioms for diagonalizing states

From effects to transformations

We want to prove the α_i 's are perfectly distinguishable.

Preliminary result (from Purification) [Chiribella et al. '11]

We can associate a test $\{A_i\}_{i\in X}$ made of transformations with a measurement $\{a_i\}_{i\in X}$ made of effects, where the A_i 's occur with the same probability as the a_i 's. Moreover, if $(a|\rho) = 1$, then the associated transformation Adoesn't disturb ρ .

Effects destroy a system, but we can iterate the perfectly distinguishing test by using transformations!

Consider the pure states $\{\alpha_i\}_{i=1}^n$, with $(\alpha_i^{\dagger}|\alpha_j) = 0$ for j > i.

Consider the pure states $\{\alpha_i\}_{i=1}^n$, with $(\alpha_i^{\dagger}|\alpha_j) = 0$ for j > i.

• Consider the measurement $\{\alpha_1^{\dagger}, \text{Tr} - \alpha_1^{\dagger}\}$. Apply the associated test $\{\mathcal{A}_1, \mathcal{A}_1^{\perp}\}$. If \mathcal{A}_1 occurs, the state is α_1 . If not, the state is one of the others.

Consider the pure states $\{\alpha_i\}_{i=1}^n$, with $(\alpha_i^{\dagger}|\alpha_j) = 0$ for j > i.

- Consider the measurement $\{\alpha_1^{\dagger}, \text{Tr} \alpha_1^{\dagger}\}$. Apply the associated test $\{\mathcal{A}_1, \mathcal{A}_1^{\perp}\}$. If \mathcal{A}_1 occurs, the state is α_1 . If not, the state is one of the others.
- Consider $\rho_1 = \frac{1}{n-1} \sum_{i=2}^n \alpha_i$. Since $\left(\operatorname{Tr} \alpha_1^{\dagger} | \rho_1 \right) = 1$, \mathcal{A}_1^{\perp} does not disturb the states $\{\alpha_i\}_{i=2}^n$. Now repeat the procedure with the measurement $\left\{ \alpha_2^{\dagger}, \operatorname{Tr} \alpha_2^{\dagger} \right\}$ and the remaining states.

Consider the pure states $\{\alpha_i\}_{i=1}^n$, with $(\alpha_i^{\dagger}|\alpha_j) = 0$ for j > i.

- Consider the measurement $\{\alpha_1^{\dagger}, \text{Tr} \alpha_1^{\dagger}\}$. Apply the associated test $\{\mathcal{A}_1, \mathcal{A}_1^{\perp}\}$. If \mathcal{A}_1 occurs, the state is α_1 . If not, the state is one of the others.
- Consider $\rho_1 = \frac{1}{n-1} \sum_{i=2}^n \alpha_i$. Since $\left(\operatorname{Tr} \alpha_1^{\dagger} | \rho_1 \right) = 1$, \mathcal{A}_1^{\perp} does not disturb the states $\{\alpha_i\}_{i=2}^n$. Now repeat the procedure with the measurement $\left\{ \alpha_2^{\dagger}, \operatorname{Tr} \alpha_2^{\dagger} \right\}$ and the remaining states.

In the end, we're able to identity the state with certainty! The α_i 's are perfectly distinguishable!

3 N A 3 N

Image: A matrix and a matrix

• With Purity Preservation, Causality, Purification and Pure Sharpness we've managed to diagonalize states.

- With Purity Preservation, Causality, Purification and Pure Sharpness we've managed to diagonalize states.
- All diagonalizations of a given state have the same eigenvalues (forthcoming paper with G. Chiribella).

- With Purity Preservation, Causality, Purification and Pure Sharpness we've managed to diagonalize states.
- All diagonalizations of a given state have the same eigenvalues (forthcoming paper with G. Chiribella).
- We can define majorization and Schur-concave functions (entropies!) [Scandolo '14]

- With Purity Preservation, Causality, Purification and Pure Sharpness we've managed to diagonalize states.
- All diagonalizations of a given state have the same eigenvalues (forthcoming paper with G. Chiribella).
- We can define majorization and Schur-concave functions (entropies!) [Scandolo '14]
- Adding the requirement that reversible transformations act transitively on maximal sets of perfectly distinguishable pure states (cf. [Barnum et al. '14]), the preorder of states given by majorization is equivalent to the one given by random reversible transformations in the GPT-version of the resource theory of purity. [Chiribella & Scandolo '15b]

References

- G Chiribella, G M D'Ariano, P Perinotti, *Phys. Rev. A* 81 (6), 062348 (2010).
- G Chiribella, G M D'Ariano, P Perinotti, *Phys. Rev. A* 84 (1), 012311 (2011).
- G Chiribella, CMS, *EPJ Web of Conferences* **95**, 03003 (2015).
- CMS, Entanglement and thermodynamics in general probabilistic theories, Master's thesis, University of Padua, Italy, July 2014. http://tesi.cab.unipd.it/46015/1/ Scandolo_carlo_maria.pdf
- H Barnum, M P Müller, C Ududec, *New Journal of Physics* **16** (12), 123029 (2014).
- **G** Chiribella, CMS, arXiv:1504.07045 [quant-ph] (2015).