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A LOGIC ABOUT MEASUREMENT



BASIC INGREDIENTS

Logical Constructor

Mes(s,O, p, t)

s – Measured system

O – Measured sharp observable

p ∈ O – Outcome

t – Resulting system
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BASIC AXIOMS

¬
(
∃ s,O, t : Mes(s,O,⊥, t)

)

∀ p ̸= ⊥, ∃ s,O, t : Mes(s,O, p, t)

∀ s,O, ∃ p, t : Mes(s,O, p, t)
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VERIFICATION STATEMENT

Definition

s ▶ p
∆⇐⇒ ¬

(
∃O, t : Mes(s,O, p⊥, t)

)

Meaning in a Hilbert Space

If a system s is in a state |φ⟩,
then s ▶ p corresponds to |φ⟩ ∈ p, or Πp|φ⟩ = |φ⟩.
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BASIC AXIOMS, SECOND VERSION

s ▶ ⊤

¬
(
s ▶ ⊥)

∀ p ̸= ⊥, ∃ s : s ▶ p
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WEAK NONCONTEXTUALITY

Claim

The certainty/impossibility of an outcome is independent of the

measured observable.

Motivation: the Born Rule

The probability of obtaining outcome P in state |φ⟩ is ⟨φ|ΠP|φ⟩.
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WEAK NONCONTEXTUALITY

Axiom

If s ▶ p and p ≤ q, then s ▶ q.

Justification

{p, p⊥ ∧ q, q⊥}

{q, q⊥}
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COMPATIBLE PRESERVATION

Axiom

If p and q are compatible, s ▶ p and Mes(s,O, q, t), then t ▶ p.

Justification

� p and q are compatible iff Πp and Πq commute

� If Πp|φ⟩ = |φ⟩, then Πp

(
Πq|φ⟩

)
= Πq|φ⟩.
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SASAKI PROJECTION

Definition

∀ a, b ∈ L, a& b
∆
= b ∧ (a ∨ b⊥)

Intuition

It’s the lattice theoretic equivalent of the orthogonal projection.

“Simplifications”

Weak Noncontextuality 2 s ▶ p and s ▶ q =⇒ s ▶ p& q

Compatible Preservation s ▶ p and Mes(s,O, q, t) =⇒ t ▶ p& q

11



SASAKI PROJECTION

Definition

∀ a, b ∈ L, a& b
∆
= b ∧ (a ∨ b⊥)

Intuition

It’s the lattice theoretic equivalent of the orthogonal projection.

“Simplifications”

Weak Noncontextuality 2 s ▶ p and s ▶ q =⇒ s ▶ p& q

Compatible Preservation s ▶ p and Mes(s,O, q, t) =⇒ t ▶ p& q

11



SASAKI PROJECTION

Definition

∀ a, b ∈ L, a& b
∆
= b ∧ (a ∨ b⊥)

Intuition

It’s the lattice theoretic equivalent of the orthogonal projection.

“Simplifications”

Weak Noncontextuality 2 s ▶ p and s ▶ q =⇒ s ▶ p& q

Compatible Preservation s ▶ p and Mes(s,O, q, t) =⇒ t ▶ p& q

11



SUMMARY

Axioms of TL

s ▶ ⊤
¬(s ▶ ⊥)

p ̸= ⊤ =⇒ ∃ s : s ▶ p

s ▶ p and p ≤ q =⇒ s ▶ q

s ▶ p and s ▶ q =⇒ s ▶ p& q

s ▶ p and Mes(s,O, q, t) =⇒ t ▶ p& q
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MODELS



DEFINITION OF THE MODEL

Reminder

∀ s, p, s ▶ p
∆⇐⇒ ∀ t, ¬

(
∃O : Mes(s,O, p⊥, t)

)
∀ s, p, q, t, s ▶ p and

(
∃O : Mes(s,O, q, t)

)
=⇒ t ▶ p& q

Definition

A model of TL is a pair G = (A,M) consisting of

� — a set A

� — a relation M on A× L× A
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DEFINITION OF THE MODEL

Definition

A model of TL is a pair G = (A,M) consisting of

� — a set A

� — a relation M on A× L× A

∃O : Mes(s,O, p, t) translates as M(a, p, b)

a ▶G p
∆⇐⇒ ¬

(
∃ b ∈ A : M(a, p⊥, b)

)
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VERIFICATION OF AXIOMS

∀ a ∈ A, a ▶G ⊤
∀ a ∈ A, ¬(a ▶G ⊥)

∀ p ∈ L, p ̸= ⊤ =⇒ ∃ a ∈ A : a ▶G p

∀ a ∈ A, ∀ p, q ∈ L, a ▶G p and p ≤ q =⇒ a ▶G q

∀ a ∈ A, ∀ p, q ∈ L, a ▶G p and a ▶G q =⇒ a ▶G p& q

∀ a, b ∈ A, ∀ p, q ∈ L, a ▶G p and M(a, q, b) =⇒ b ▶G p& q
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EXAMPLE: THE HILBERT MODEL

Definition

Given a Hilbert space H, we define the model HH = (AH,MH) by

AH
∆
=

{
|φ⟩

∣∣ ⟨φ|φ⟩ = 1
}

MH(|φ⟩, p, |ψ⟩)
∆⇐⇒ Πp|ψ⟩ ̸= |0⟩ and |φ⟩ = Πp|ψ⟩∥∥Πp|ψ⟩

∥∥

Verification Relation

|φ⟩ ▶H p ⇐⇒ |φ⟩ ∈ p
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EXAMPLE: THE LATTICE MODEL

Definition

Given an orthomodular lattice L, we define the model LL = (AL,ML) by

AL
∆
= L⋆ where L⋆

∆
= L \ {⊥}

ML(a, p, b)
∆⇐⇒ b ≤ a& p

Verification Relation

a ▶L p ⇐⇒ p ≤ a
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TWO THEOREMS ON MODELS



A STRENGTHENING OF THE KOCHEN-SPECKER THEOREM

Definition

Given a model G = (A,M) of TL, for all a ∈ A,

[[a]]G
∆
=

{
p ∈ L

∣∣ a ▶G p
}

Theorem1

If G = (A,M) is a model of TL(H) with dimH ≥ 3, then

for all a ∈ A, [[a]]G contains at most one vector ray.

1arXiv:quant-ph/0610066
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CONSEQUENCE: KOCHEN-SPECKER

Kochen-Specker Theorem

Pick exactly one element in each maximal orthogonal family of vectors

Kochen-Specker 117 vectors in dimension 3

Peres 33 vectors in dimension 3

Cabello 17 vectors in dimension 4

Here

Pick at most one element in each maximal orthogonal family of vectors

2 vectors in dimension 3

21



CONSEQUENCE: KOCHEN-SPECKER

Kochen-Specker Theorem

Pick exactly one element in each maximal orthogonal family of vectors

Kochen-Specker 117 vectors in dimension 3

Peres 33 vectors in dimension 3

Cabello 17 vectors in dimension 4

Here

Pick at most one element in each maximal orthogonal family of vectors

2 vectors in dimension 3

21



A REPRESENTATION THEOREM IN FINITE DIMENSION

Theorem

If 3 ≤ dimH <∞ and G = (A,M) is a model of TL(H), then

∀ a ∈ A, ∃ e(a) ∈ L(H) : [[a]]G = e(a)↑

Consequence

If 3 ≤ dimH <∞, in TL(H),

s ▶ p and s ▶ q =⇒ s ▶ p ∧ q
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THE METAPHYSICAL DISASTER

{
[[a]]G

∣∣ a ∈ A
}
≃ L(H)

[The Metaphysical Disaster is] the error of equating properties

of a physical system on the one hand with experimentally

testable propositions about the system on the other hand.

Unfortunately, this is precisely what is done in conventional

Hilbert-space based quantum mechanics where both properties

and experimentally testable propositions are represented by

projection operators.

(David Foulis, private communication)
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SEQUENCES OF OUTCOMES



SEQUENCE OF OUTCOMES

A word on L is a finite sequence of elements of L

Definition

Given a model G = (A,M) of TL, a word p = p1p2 · · · pn is in ℓ(G) iff

∃ a0, a1, . . . , an ∈ A :

M(a0, p1, a1) and · · · and M(an−1, pn, an)

a0 a1 a2 · · · an−1 an
p1 p2 p3 pn−1 pn

25



EQUALITY OF LANGUAGES

Theorem

If 3 ≤ dimH <∞,

and G = (A,M) is a model of TL(H), then

ℓ(G) =

ℓ(LL(H)) = ℓ(HH)
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= ℓ(H)

Given a word p1p2 · · · pn on L(H),

p1p2 · · · pn ∈ ℓ(H) ⇐⇒ p1 & p2 & · · ·& pn ̸= ⊥
⇐⇒ ΠpnΠpn−1 · · ·Πp1 ̸= 0

27



EQUALITY OF LANGUAGES

Theorem

If H is such that 3 ≤ dimH <∞, then for all model G of TL(H),

ℓ(G) = ℓ(LL(H)) = ℓ(HH) = ℓ(H)

Given a word p1p2 · · · pn on L(H),

p1p2 · · · pn ∈ ℓ(H) ⇐⇒ p1 & p2 & · · ·& pn ̸= ⊥
⇐⇒ ΠpnΠpn−1 · · ·Πp1 ̸= 0

27



EQUALITY OF LANGUAGES

Theorem

If H is such that 3 ≤ dimH <∞, then for all model G of TL(H),

ℓ(G) = ℓ(LL(H)) = ℓ(HH) = ℓ(H)

Given a word p1p2 · · · pn on L(H),

p1p2 · · · pn ∈ ℓ(H) ⇐⇒ p1 & p2 & · · ·& pn ̸= ⊥
⇐⇒ ΠpnΠpn−1 · · ·Πp1 ̸= 0

27



EQUALITY OF LANGUAGES

Theorem
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Can Quantum-Mechanical Description of Physical Reality be

Considered Complete?
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