QUANTUM MEASUREMENTS
 FROM A LOGICAL POINT OF VIEW

Olivier Brunet - olivier.brunet@normalesup.org
Grenoble, France
July 17, 2015
QPL
Oxford, U.K.

PRESENTATION OUTLINE

A Logic about Measurement

Models

Two Theorems on Models

Sequences of Outcomes

A LOGIC ABOUT MEASUREMENT

BASIC INGREDIENTS

Logical Constructor

$$
\operatorname{Mes}(s, \mathcal{O}, p, t)
$$

s	- Measured system
\mathcal{O}	- Measured sharp observable
$p \in \mathcal{O}$	- Outcome
t	- Resulting system

$$
\begin{aligned}
& \neg(\exists s, \mathcal{O}, t: \operatorname{Mes}(s, \mathcal{O}, \perp, t)) \\
& \forall p \neq \perp, \exists s, \mathcal{O}, t: \operatorname{Mes}(s, \mathcal{O}, p, t) \\
& \forall s, \mathcal{O}, \exists p, t: \operatorname{Mes}(s, \mathcal{O}, p, t)
\end{aligned}
$$

VERIFICATION STATEMENT

Definition

$$
s p \stackrel{\Delta}{\Longleftrightarrow} \neg\left(\exists \mathcal{O}, t: \operatorname{Mes}\left(s, \mathcal{O}, p^{\perp}, t\right)\right)
$$

VERIFICATION STATEMENT

Definition

$$
s \triangleright p \stackrel{\Delta}{\Longleftrightarrow} \neg\left(\exists \mathcal{O}, t: \operatorname{Mes}\left(s, \mathcal{O}, p^{\perp}, t\right)\right)
$$

Meaning in a Hilbert Space
If a system s is in a state $|\varphi\rangle$, then s p corresponds to $|\varphi\rangle \in \mathrm{p}$, or $\Pi_{\mathrm{p}}|\varphi\rangle=|\varphi\rangle$.

BASIC AXIOMS, SECOND VERSION

$$
\begin{array}{r}
s \triangleright \top \\
\neg(s \triangleright \perp) \\
\forall p \neq \perp, \exists s: s \triangleright \rho
\end{array}
$$

WEAK NONCONTEXTUALITY

Claim

The certainty/impossibility of an outcome is independent of the measured observable.

WEAK NONCONTEXTUALITY

Claim

The certainty/impossibility of an outcome is independent of the measured observable.

Motivation: the Born Rule

The probability of obtaining outcome P in state $|\varphi\rangle$ is $\langle\varphi| \Pi_{P}|\varphi\rangle$.

WEAK NONCONTEXTUALITY

> Axiom
> If s p and $\mathrm{p} \leq \mathrm{q}$, then s q.

WEAK NONCONTEXTUALITY

Axiom

If s pand $p \leq q$, then s.

Justification

$$
\left\{p, p^{\perp} \wedge q, q^{\perp}\right\}
$$

WEAK NONCONTEXTUALITY

Axiom

If s pand $p \leq q$, then s.
Justification

$$
\left\{p, p^{\perp} \wedge q, q^{\perp}\right\}
$$

WEAK NONCONTEXTUALITY

Axiom
 If s pand $p \leq q$, then s.

Justification
$\left\{p, p^{\perp} \wedge q, q^{\perp}\right\}$

WEAK NONCONTEXTUALITY

Axiom

If s pand $p \leq q$, then s.
Justification

$$
\begin{gathered}
\left\{p, p^{\perp} \wedge q, q^{\perp}\right\} \\
\left\{a, a^{\perp}\right\}
\end{gathered}
$$

WEAK NONCONTEXTUALITY

Axiom
 If s pand $p \leq q$, then s.

Justification

$$
\begin{gathered}
\left\{p, p^{\perp} \wedge q, q^{\perp}\right\} \\
\left\{a, a^{\perp}\right\}
\end{gathered}
$$

WEAK NONCONTEXTUALITY

Axiom
 If s pand $p \leq q$, then s.

Justification

$$
\begin{gathered}
\left\{p, p^{\perp} \wedge a, a^{\perp}\right\} \\
\left\{a, a^{\perp}\right\}
\end{gathered}
$$

WEAK NONCONTEXTUALITY

[^0]
WEAK NONCONTEXTUALITY

Axiom

If $s p, s$ and p is compatible with q, then $s-p \wedge q$.

Justification

$$
\begin{gathered}
\left\{p, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{q, p \wedge q^{\perp}, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{p \wedge q, p \wedge q^{\perp}, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\}
\end{gathered}
$$

WEAK NONCONTEXTUALITY

Axiom

If $s p, s$ and p is compatible with q, then $s-p \wedge q$.

Justification

$$
\begin{gathered}
\left\{p, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{q, p \wedge q^{\perp}, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{p \wedge q, p \wedge q^{\perp}, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\}
\end{gathered}
$$

WEAK NONCONTEXTUALITY

Axiom

If $s p, s$ and p is compatible with q, then $s-p \wedge q$.

Justification

$$
\begin{array}{r}
\left\{p, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{q, p \wedge q^{\perp}, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{p \wedge q, p \wedge q^{\perp}, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\}
\end{array}
$$

WEAK NONCONTEXTUALITY

Axiom

If $s p, s$ and p is compatible with q, then $s-p \wedge q$.

Justification

$$
\begin{array}{r}
\left\{p, p^{\perp} \wedge q_{,} p^{\perp} \wedge q^{\perp}\right\} \\
\left\{q, p \wedge q^{\perp}, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{p \wedge q, p \wedge q^{\perp}, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\}
\end{array}
$$

WEAK NONCONTEXTUALITY

Axiom

If $s p, s$ and p is compatible with q, then $s-p \wedge q$.

Justification

$$
\begin{aligned}
&\left\{p, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\} \\
&\left\{q, p \wedge q^{\perp}, p^{\perp} \wedge q^{-}\right\} \\
&\left\{p \wedge q, p \wedge q^{\perp}, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\}
\end{aligned}
$$

WEAK NONCONTEXTUALITY

Axiom

If $s p, s$ and p is compatible with q, then $s-p \wedge q$.

Justification

$$
\begin{array}{r}
\left\{p, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{q, p \wedge q^{\perp}, p^{\perp} \wedge q^{\perp}\right\} \\
\left\{p \wedge q, p \wedge q^{\perp}, p^{\perp} \wedge q, p^{\perp} \wedge q^{\perp}\right\}
\end{array}
$$

COMPATIBLE PRESERVATION

Axiom

If p and q are compatible, $s p$ and $\operatorname{Mes}(s, \mathcal{O}, q, t)$, then t.

COMPATIBLE PRESERVATION

Axiom

If p and q are compatible, $s p$ and $\operatorname{Mes}(s, \mathcal{O}, q, t)$, then t.

Justification

p and q are compatible iff Π_{p} and Π_{q} commute

$$
\text { If } \Pi_{p}|\varphi\rangle=|\varphi\rangle \text {, then } \Pi_{p}\left(\Pi_{q}|\varphi\rangle\right)=\Pi_{q}|\varphi\rangle \text {. }
$$

Definition

$$
\forall a, b \in L, \quad a \& b \triangleq b \wedge\left(a \vee b^{\perp}\right)
$$

SASAKI PROJECTION

Definition

$$
\forall a, b \in L, \quad a \& b \triangleq b \wedge\left(a \vee b^{\perp}\right)
$$

Intuition

It's the lattice theoretic equivalent of the orthogonal projection.

SASAKI PROJECTION

Definition

$$
\forall a, b \in L, \quad a \& b \triangleq b \wedge\left(a \vee b^{\perp}\right)
$$

Intuition

It's the lattice theoretic equivalent of the orthogonal projection.
"Simplifications"
Weak Noncontextuality $2 s p$ and $s q \Longrightarrow s \Longrightarrow p \& q$
Compatible Preservation $s p$ and $\operatorname{Mes}(s, \mathcal{O}, q, t) \Longrightarrow t-p \& q$

Axioms of \mathcal{T}_{L}

$$
\begin{aligned}
& s-\top \\
& \neg(s-\perp) \\
& \mathrm{p} \neq \mathrm{T} \Longrightarrow \exists \mathrm{~s}: \mathrm{s} p \\
& s>p \text { and } p \leq q \Longrightarrow s \text { q } \\
& s-p \text { and } s q \Longrightarrow s \Rightarrow p \& \\
& s>p \text { and } \operatorname{Mes}(s, \mathcal{O}, q, t) \Longrightarrow t>p \& q
\end{aligned}
$$

MODELS

DEFINITION OF THE MODEL

Reminder

$$
\begin{aligned}
\forall s, p, & s>p \stackrel{\Delta}{\Longleftrightarrow} \forall t, \neg\left(\exists \mathcal{O}: \operatorname{Mes}\left(s, \mathcal{O}, p^{\perp}, t\right)\right) \\
\forall s, p, q, t, & s p \text { and }(\exists \mathcal{O}: \operatorname{Mes}(s, \mathcal{O}, q, t)) \Longrightarrow t \vee p \& q
\end{aligned}
$$

Definition

A model of \mathcal{T}_{L} is a pair $\mathfrak{G}=(A, M)$ consisting of
$-a \operatorname{set} A$

- a relation M on $A \times L \times A$

DEFINITION OF THE MODEL

Definition

A model of \mathcal{T}_{L} is a pair $\mathfrak{G}=(A, M)$ consisting of

- a set A
- a relation M on $A \times L \times A$
$\exists \mathcal{O}: \operatorname{Mes}(s, \mathcal{O}, p, t) \quad$ translates as $\quad M(a, p, b)$

$$
a \triangleright_{\mathfrak{G}} p \stackrel{\Delta}{\Longleftrightarrow} \neg\left(\exists b \in A: M\left(a, p^{\perp}, b\right)\right)
$$

VERIFICATION OF AXIOMS

$$
\begin{aligned}
& \forall a \in A, \quad a>_{\mathfrak{G}} \top \\
& \forall a \in A, \quad \neg\left(a \backslash_{\mathfrak{G}} \perp\right) \\
& \forall p \in L, \quad p \neq \top \Longrightarrow \exists a \in A:\left.a\right|_{\mathfrak{G}} p \\
& \forall a \in A, \forall p, q \in L, \quad a \square_{\mathfrak{G}} p \text { and } p \leq q \Longrightarrow a{ }_{\mathfrak{G}} q \\
& \forall a \in A, \forall p, q \in L, \quad a>_{\mathfrak{G}} p \text { and } a>_{\mathfrak{G}} q \Longrightarrow a>_{\mathfrak{G}} p \& q \\
& \forall a, b \in A, \forall p, a \in L, \quad a>_{\mathfrak{G}} p \text { and } M(a, a, b) \Longrightarrow b{ }_{\mathfrak{G}} p \& a
\end{aligned}
$$

Definition

Given a Hilbert space \mathcal{H}, we define the model $\mathfrak{H}_{\mathcal{H}}=\left(A_{\mathfrak{H}}, M_{\mathfrak{H}}\right)$ by

$$
\begin{gathered}
A_{\mathfrak{H}} \triangleq\{|\varphi\rangle \mid\langle\varphi \mid \varphi\rangle=1\} \\
M_{\mathfrak{H}}(|\varphi\rangle, p,|\psi\rangle) \stackrel{\Delta}{\Longleftrightarrow} \Pi_{p}|\psi\rangle \neq|0\rangle \text { and }|\varphi\rangle=\frac{\Pi_{p}|\psi\rangle}{\| \Pi_{p}|\psi\rangle \|}
\end{gathered}
$$

EXAMPLE: THE HILBERT MODEL

Definition

Given a Hilbert space \mathcal{H}, we define the model $\mathfrak{H}_{\mathcal{H}}=\left(A_{\mathfrak{H}}, M_{\mathfrak{H}}\right)$ by

$$
\begin{gathered}
{A_{\mathfrak{H}}}^{\triangleq}\{|\varphi\rangle \mid\langle\varphi \mid \varphi\rangle=1\} \\
M_{\mathfrak{H}}(|\varphi\rangle, p,|\psi\rangle) \stackrel{\Delta}{\Longleftrightarrow} \Pi_{p}|\psi\rangle \neq|0\rangle \text { and }|\varphi\rangle=\frac{\Pi_{p}|\psi\rangle}{\| \Pi_{p}|\psi\rangle \|}
\end{gathered}
$$

Verification Relation

$$
|\varphi\rangle \rightharpoonup_{\mathfrak{H}} p \Longleftrightarrow|\varphi\rangle \in \mathrm{p}
$$

EXAMPLE: THE LATTICE MODEL

Definition
Given an orthomodular lattice L, we define the model $\mathfrak{L}_{L}=\left(A_{\mathfrak{L}}, M_{\mathfrak{L}}\right)$ by

$$
\begin{gathered}
A_{\mathfrak{L}} \triangleq L^{\star} \quad \text { where } \quad L^{\star} \triangleq L \backslash\{\perp\} \\
M_{\mathfrak{L}}(a, p, b) \stackrel{\Delta}{\Longleftrightarrow} b \leq a \& p
\end{gathered}
$$

EXAMPLE: THE LATTICE MODEL

Definition

Given an orthomodular lattice L, we define the model $\mathfrak{L}_{L}=\left(A_{\mathfrak{L}}, M_{\mathfrak{L}}\right)$ by

$$
\begin{gathered}
A_{\mathfrak{L}} \triangleq L^{\star} \quad \text { where } \quad L^{\star} \triangleq L \backslash\{\perp\} \\
M_{\mathfrak{L}}(a, p, b) \stackrel{\Delta}{\Longleftrightarrow} b \leq a \& p
\end{gathered}
$$

Verification Relation

$$
a \mathfrak{L} p \Longleftrightarrow p \leq a
$$

TWO THEOREMS ON MODELS

A STRENGTHENING OF THE KOCHEN-SPECKER THEOREM

Definition

Given a model $\mathfrak{G}=(A, M)$ of \mathcal{T}_{L}, for all $a \in A$,

$$
\llbracket a \rrbracket_{\mathfrak{G}} \triangleq\left\{p \in L \mid a \mathfrak{G}_{\mathfrak{G}} p\right\}
$$

Theorem ${ }^{\top}$
If $\mathfrak{G}=(A, M)$ is a model of $\mathcal{T}_{\llcorner(\mathcal{H})}$ with $\operatorname{dim} \mathcal{H} \geq 3$, then
for all $a \in A, \llbracket a \rrbracket_{\mathfrak{G}}$ contains at most one vector ray.

[^1]
CONSEQUENCE: KOCHEN-SPECKER

Kochen-Specker Theorem

Pick exactly one element in each maximal orthogonal family of vectors
Kochen-Specker 117 vectors in dimension 3
Peres 33 vectors in dimension 3
Cabello 17 vectors in dimension 4

CONSEQUENCE: KOCHEN-SPECKER

Kochen-Specker Theorem

Pick exactly one element in each maximal orthogonal family of vectors
Kochen-Specker 117 vectors in dimension 3
Peres 33 vectors in dimension 3
Cabello 17 vectors in dimension 4

Here
Pick at most one element in each maximal orthogonal family of vectors
2 vectors in dimension 3

A REPRESENTATION THEOREM IN FINITE DIMENSION

Theorem

If $3 \leq \operatorname{dim} \mathcal{H}<\infty$ and $\mathfrak{G}=(A, M)$ is a model of $\mathcal{T}_{L(\mathcal{H})}$, then

$$
\forall a \in A, \exists e(a) \in L(\mathcal{H}): \llbracket a \rrbracket_{\mathfrak{G}}=e(a)^{\uparrow}
$$

A REPRESENTATION THEOREM IN FINITE DIMENSION

Theorem

If $3 \leq \operatorname{dim} \mathcal{H}<\infty$ and $\mathfrak{G}=(A, M)$ is a model of $\mathcal{T}_{L(\mathcal{H})}$, then

$$
\forall a \in A, \exists e(a) \in L(\mathcal{H}): \llbracket a \rrbracket_{\mathfrak{G}}=e(a)^{\uparrow}
$$

Consequence
If $3 \leq \operatorname{dim} \mathcal{H}<\infty$, in $\mathcal{T}_{\llcorner(\mathcal{H})}$,

$$
s \wedge p \text { and } s \wedge q \Longrightarrow s \wedge p \wedge q
$$

THE METAPHYSICAL DISASTER

$$
\left\{\llbracket a \rrbracket_{\mathfrak{G}} \mid a \in A\right\} \simeq L(\mathcal{H})
$$

THE METAPHYSICAL DISASTER

$$
\left\{\llbracket a \rrbracket_{\mathfrak{G}} \mid a \in A\right\} \simeq L(\mathcal{H})
$$

[The Metaphysical Disaster is] the error of equating properties of a physical system on the one hand with experimentally testable propositions about the system on the other hand.

Unfortunately, this is precisely what is done in conventional Hilbert-space based quantum mechanics where both properties and experimentally testable propositions are represented by projection operators.
(David Foulis, private communication)

SEQUENCES OF OUTCOMES

SEQUENCE OF OUTCOMES

A word on L is a finite sequence of elements of L

Definition

Given a model $\mathfrak{G}=(A, M)$ of \mathcal{T}_{L}, a word $p=p_{1} p_{2} \cdots p_{n}$ is in $\ell(\mathfrak{G})$ iff
$\exists a_{0}, a_{1}, \ldots, a_{n} \in A:$

$$
M\left(a_{0}, p_{1}, a_{1}\right) \text { and } \cdots \text { and } M\left(a_{n-1}, p_{n}, a_{n}\right)
$$

$a_{0} \xrightarrow{p_{1}} a_{1} \xrightarrow{p_{2}} a_{2} \xrightarrow{p_{3}} \cdots \xrightarrow{p_{n-1}} a_{n-1} \xrightarrow{p_{n}} a_{n}$

EQUALITY OF LANGUAGES

Theorem
If $3 \leq \operatorname{dim} \mathcal{H}<\infty$,

$$
\ell\left(\mathfrak{L}_{\llcorner(\mathcal{H})}\right)=\ell\left(\mathfrak{H}_{\mathcal{H}}\right)
$$

EQUALITY OF LANGUAGES

Theorem

If $3 \leq \operatorname{dim} \mathcal{H}<\infty$ and $\mathfrak{G}=(A, M)$ is a model of $\mathcal{T}_{L(\mathcal{H})}$, then

$$
\ell(\mathfrak{G})=\ell\left(\mathfrak{L}_{\llcorner(\mathcal{H})}\right)=\ell\left(\mathfrak{H}_{\mathcal{H}}\right)
$$

EQUALITY OF LANGUAGES

Theorem

If \mathcal{H} is such that $3 \leq \operatorname{dim} \mathcal{H}<\infty$, then for all model \mathfrak{G} of $\mathcal{T}_{\llcorner(\mathcal{H})}$,

$$
\ell(\mathfrak{G})=\ell\left(\mathfrak{L}_{\llcorner(\mathcal{H})}\right)=\ell\left(\mathfrak{H}_{H}\right)
$$

EQUALITY OF LANGUAGES

Theorem

If \mathcal{H} is such that $3 \leq \operatorname{dim} \mathcal{H}<\infty$, then for all model \mathfrak{G} of $\mathcal{T}_{L(\mathcal{H})}$,

$$
\ell(\mathfrak{G})=\ell\left(\mathfrak{L}_{\llcorner(\mathcal{H})}\right)=\ell\left(\mathfrak{H}_{H}\right)=\ell(\mathcal{H})
$$

EQUALITY OF LANGUAGES

Theorem

If \mathcal{H} is such that $3 \leq \operatorname{dim} \mathcal{H}<\infty$, then for all model \mathfrak{G} of $\mathcal{T}_{L(\mathcal{H})}$,

$$
\ell(\mathfrak{G})=\ell\left(\mathfrak{L}_{\llcorner(\mathcal{H})}\right)=\ell\left(\mathfrak{H}_{H}\right)=\ell(\mathcal{H})
$$

Given a word $p_{1} p_{2} \cdots p_{n}$ on $L(\mathcal{H})$,

$$
\begin{aligned}
p_{1} p_{2} \cdots p_{n} \in \ell(\mathcal{H}) & \Longleftrightarrow p_{1} \& p_{2} \& \cdots \& p_{n} \neq \perp \\
& \Longleftrightarrow \Pi_{p_{n}} \Pi_{p_{n-1}} \cdots \Pi_{p_{1}} \neq 0
\end{aligned}
$$

EQUALITY OF LANGUAGES

Theorem

If \mathcal{H} is such that $3 \leq \operatorname{dim} \mathcal{H}<\infty$, then for all model \mathfrak{G} of $\mathcal{T}_{\llcorner(\mathcal{H})}$,

$$
\ell(\mathfrak{G})=\ell(\mathcal{H})
$$

EQUALITY OF LANGUAGES

Theorem

If \mathcal{H} is such that $3 \leq \operatorname{dim} \mathcal{H}<\infty$, then for all model \mathfrak{G} of $\mathcal{T}_{\llcorner(\mathcal{H})}$,

$$
\ell(\mathfrak{G})=\ell(\mathcal{H})
$$

Can Quantum-Mechanical Description of Physical Reality be Considered Complete?

EQUALITY OF LANGUAGES

Theorem

If \mathcal{H} is such that $3 \leq \operatorname{dim} \mathcal{H}<\infty$, then for all model \mathfrak{G} of $\mathcal{T}_{\llcorner(\mathcal{H})}$,

$$
\ell(\mathfrak{G})=\ell(\mathcal{H})
$$

Can Quantum-Mechanical Description of Physical Reality be Considered Complete?

Possibilistically yes.

[^0]: Axiom

 If s p, s and p is compatible with q, then $s>p \wedge$.

[^1]: ${ }^{1}$ arXiv:quant-ph/0610066

