QUANTUM MEASUREMENTS FROM A LOGICAL POINT OF VIEW

Olivier Brunet — olivier.brunet@normalesup.org Grenoble, France July 17, 2015 QPL Oxford, U.K. A Logic about Measurement

Models

Two Theorems on Models

Sequences of Outcomes

A LOGIC ABOUT MEASUREMENT

Logical Constructor

 $\mathsf{Mes}(s,\mathcal{O},\rho,t)$

- s Measured system
- ${\mathcal O}$ Measured sharp observable
- $p \in \mathcal{O}$ Outcome
 - t Resulting system

$$\neg (\exists s, \mathcal{O}, t: Mes(s, \mathcal{O}, \bot, t))$$

$$\forall p \neq \bot, \exists s, \mathcal{O}, t: Mes(s, \mathcal{O}, p, t)$$

$$\forall s, \mathcal{O}, \exists p, t: Mes(s, \mathcal{O}, p, t)$$

$$s \blacktriangleright \rho \iff \neg (\exists \mathcal{O}, t: \mathsf{Mes}(s, \mathcal{O}, \rho^{\perp}, t))$$

$$s \blacktriangleright \rho \iff \neg (\exists \mathcal{O}, t: \mathsf{Mes}(s, \mathcal{O}, p^{\perp}, t))$$

Meaning in a Hilbert Space

If a system s is in a state $|\varphi\rangle$, then $s \triangleright p$ corresponds to $|\varphi\rangle \in p$, or $\Pi_p |\varphi\rangle = |\varphi\rangle$.

BASIC AXIOMS, SECOND VERSION

$$\forall p \neq \bot, \exists s: s \triangleright p$$

Claim

The **certainty/impossibility** of an outcome is **independent** of the measured observable.

Claim

The **certainty/impossibility** of an outcome is **independent** of the measured observable.

Motivation: the Born Rule

The probability of obtaining outcome *P* in state $|\varphi\rangle$ is $\langle \varphi | \Pi_P | \varphi \rangle$.

If $s \triangleright p$ and $p \leq q$, then $s \triangleright q$.

If $s \triangleright p$ and $p \leq q$, then $s \triangleright q$.

Justification

 $\{p, p^{\perp} \land q, q^{\perp}\}$

If $s \triangleright p$ and $p \leq q$, then $s \triangleright q$.

$$\{\boldsymbol{p}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}, \boldsymbol{q}^{\perp}\}$$

If $s \triangleright p$ and $p \leq q$, then $s \triangleright q$.

Justification

 $\{\boldsymbol{p}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}, \boldsymbol{q}^{\perp}\}$

If $s \triangleright p$ and $p \leq q$, then $s \triangleright q$.

$$\{p, p^{\perp} \land q, q^{\perp}\}$$

 $\{q, q^{\perp}\}$

If $s \triangleright p$ and $p \leq q$, then $s \triangleright q$.

$$\{p, p^{\perp} \land q, q^{\perp}\}$$

 $\{q, q^{\perp}\}$

If $s \triangleright p$ and $p \leq q$, then $s \triangleright q$.

$$\{p, p^{\perp} \land q, q^{\perp}\}$$

 $\{q, q^{\perp}\}$

If $s \triangleright p$, $s \triangleright q$ and p is compatible with q, then $s \triangleright p \land q$.

If $s \triangleright p$, $s \triangleright q$ and p is compatible with q, then $s \triangleright p \land q$.

$$\begin{aligned} \{p, p^{\perp} \land q, p^{\perp} \land q^{\perp} \} \\ \{q, p \land q^{\perp}, p^{\perp} \land q^{\perp} \} \end{aligned}$$

If $s \triangleright p$, $s \triangleright q$ and p is compatible with q, then $s \triangleright p \land q$.

$$\begin{aligned} \{ \boldsymbol{p}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}^{\perp} \} \\ \{ \boldsymbol{q}, \boldsymbol{p} \land \boldsymbol{q}^{\perp}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}^{\perp} \} \end{aligned}$$

If $s \triangleright p$, $s \triangleright q$ and p is compatible with q, then $s \triangleright p \land q$.

$$\{ \boldsymbol{p}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}^{\perp} \} \\ \{ \boldsymbol{q}, \boldsymbol{p} \land \boldsymbol{q}^{\perp}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}^{\perp} \} \\ \{ \boldsymbol{p} \land \boldsymbol{q}, \boldsymbol{p} \land \boldsymbol{q}^{\perp}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}^{\perp} \}$$

If $s \triangleright p$, $s \triangleright q$ and p is compatible with q, then $s \triangleright p \land q$.

$$\begin{aligned} \{ p, p^{\perp} \land q, p^{\perp} \land q^{\perp} \} \\ \{ q, p \land q^{\perp}, p^{\perp} \land q^{\perp} \} \\ \\ p \land q, p \land q^{\perp}, p^{\perp} \land q, p^{\perp} \land q^{\perp} \} \end{aligned}$$

If $s \triangleright p$, $s \triangleright q$ and p is compatible with q, then $s \triangleright p \land q$.

$$\{ \boldsymbol{p}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}^{\perp} \} \\ \{ \boldsymbol{q}, \boldsymbol{p} \land \boldsymbol{q}^{\perp}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}^{\perp} \} \\ \{ \boldsymbol{p} \land \boldsymbol{q}, \boldsymbol{p} \land \boldsymbol{q}^{\perp}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}, \boldsymbol{p}^{\perp} \land \boldsymbol{q}^{\perp} \}$$

If $s \triangleright p$, $s \triangleright q$ and p is compatible with q, then $s \triangleright p \land q$.

$$egin{aligned} \{ oldsymbol{p}, p^{ot} \wedge q, p^{ot} \wedge q^{ot} \} \ \{ oldsymbol{q}, p \wedge q^{ot}, p^{ot} \wedge q^{ot} \} \end{aligned}$$

$$\{\mathsf{p} \land \mathsf{q}, \mathsf{p} \land \mathsf{q}^{\perp}, \mathsf{p}^{\perp} \land \mathsf{q}, \mathsf{p}^{\perp} \land \mathsf{q}^{\perp}\}$$

If p and q are compatible, $s \triangleright p$ and $Mes(s, \mathcal{O}, q, t)$, then $t \triangleright p$.

If p and q are compatible, $s \triangleright p$ and $Mes(s, \mathcal{O}, q, t)$, then $t \triangleright p$.

Justification

p and q are compatible iff Π_p and Π_q commute If $\Pi_p |\varphi\rangle = |\varphi\rangle$, then $\Pi_p (\Pi_q |\varphi\rangle) = \Pi_q |\varphi\rangle$.

$$\forall a, b \in L, \qquad a \& b \stackrel{\Delta}{=} b \land (a \lor b^{\perp})$$

$$\forall a, b \in L, \qquad a \& b \stackrel{\Delta}{=} b \land (a \lor b^{\perp})$$

Intuition

It's the lattice theoretic equivalent of the orthogonal projection.

$$\forall a, b \in L, \qquad a \& b \stackrel{\Delta}{=} b \land (a \lor b^{\perp})$$

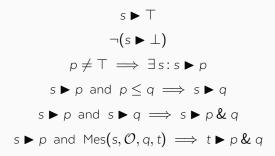
Intuition

It's the lattice theoretic equivalent of the orthogonal projection.

"Simplifications"

Weak Noncontextuality 2 $s \triangleright p$ and $s \triangleright q \implies s \triangleright p \& q$ Compatible Preservation $s \triangleright p$ and $Mes(s, \mathcal{O}, q, t) \implies t \triangleright p \& q$

Axioms of \mathcal{T}_L



MODELS

Reminder

$$\forall s, p, \quad s \blacktriangleright p \iff \forall t, \neg (\exists \mathcal{O} \colon \mathsf{Mes}(s, \mathcal{O}, p^{\perp}, t))$$

$$\forall s, p, q, t, \quad s \blacktriangleright p \text{ and } (\exists \mathcal{O} \colon \mathsf{Mes}(s, \mathcal{O}, q, t)) \implies t \blacktriangleright p \& q$$

Definition

A model of \mathcal{T}_L is a pair $\mathfrak{G} = (A, M)$ consisting of

— a set A

– a relation M on $A \times L \times A$

A model of \mathcal{T}_L is a pair $\mathfrak{G} = (A, M)$ consisting of

– a set A

– a relation M on $A \times L \times A$

 $\exists \mathcal{O}: Mes(s, \mathcal{O}, p, t)$ translates as M(a, p, b)

$$a \blacktriangleright_{\mathfrak{G}} p \iff \neg (\exists b \in A : M(a, p^{\perp}, b))$$

 $\forall a \in A, \ a \triangleright_{\mathfrak{G}} \top$ $\forall a \in A, \ \neg (a \triangleright_{\mathfrak{G}} \bot)$ $\forall p \in L, \ p \neq \top \implies \exists a \in A : a \triangleright_{\mathfrak{G}} p$ $\forall a \in A, \forall p, q \in L, \ a \triangleright_{\mathfrak{G}} p \text{ and } p \leq q \implies a \triangleright_{\mathfrak{G}} q$ $\forall a \in A, \forall p, q \in L, \ a \triangleright_{\mathfrak{G}} p \text{ and } a \triangleright_{\mathfrak{G}} q \implies a \triangleright_{\mathfrak{G}} p \& q$ $\forall a, b \in A, \forall p, q \in L, \ a \triangleright_{\mathfrak{G}} p \text{ and } a \triangleright_{\mathfrak{G}} q \implies a \triangleright_{\mathfrak{G}} p \& q$

Given a Hilbert space \mathcal{H} , we define the model $\mathfrak{H}_{\mathcal{H}} = (A_{\mathfrak{H}}, M_{\mathfrak{H}})$ by

$$A_{\mathfrak{H}} \stackrel{\Delta}{=} \left\{ |\varphi\rangle \mid \langle \varphi |\varphi\rangle = 1 \right\}$$
$$\mathcal{M}_{\mathfrak{H}}(|\varphi\rangle, \rho, |\psi\rangle) \stackrel{\Delta}{\iff} \Pi_{\rho} |\psi\rangle \neq |0\rangle \text{ and } |\varphi\rangle = \frac{\Pi_{\rho} |\psi\rangle}{\left\| \Pi_{\rho} |\psi\rangle \right\|}$$

Given a Hilbert space \mathcal{H} , we define the model $\mathfrak{H}_{\mathcal{H}} = (A_{\mathfrak{H}}, M_{\mathfrak{H}})$ by

$$\begin{split} \mathsf{A}_{\mathfrak{H}} &\triangleq \left\{ |\varphi\rangle \mid \langle \varphi |\varphi\rangle = 1 \right\} \\ \mathsf{M}_{\mathfrak{H}}(|\varphi\rangle, \rho, |\psi\rangle) & \iff \mathsf{\Pi}_{\rho} |\psi\rangle \neq |\mathsf{O}\rangle \text{ and } |\varphi\rangle = \frac{\mathsf{\Pi}_{\rho} |\psi\rangle}{\left\| \mathsf{\Pi}_{\rho} |\psi\rangle \right\|} \end{split}$$

Verification Relation

$$|\varphi\rangle \blacktriangleright_{\mathfrak{H}} \rho \iff |\varphi\rangle \in \rho$$

Definition

Given an orthomodular lattice L, we define the model $\mathfrak{L}_{L} = (A_{\mathfrak{L}}, M_{\mathfrak{L}})$ by

$$A_{\mathfrak{L}} \stackrel{\Delta}{=} L^{\star} \quad \text{where} \quad L^{\star} \stackrel{\Delta}{=} L \setminus \{\bot\}$$
$$M_{\mathfrak{L}}(a, p, b) \iff b \leq a \& p$$

Definition

Given an orthomodular lattice L, we define the model $\mathfrak{L}_{L} = (A_{\mathfrak{L}}, M_{\mathfrak{L}})$ by

$$A_{\mathfrak{L}} \stackrel{\Delta}{=} L^{\star} \quad \text{where} \quad L^{\star} \stackrel{\Delta}{=} L \setminus \{\bot\}$$
$$M_{\mathfrak{L}}(a, p, b) \iff b \leq a \& p$$

Verification Relation

$$a \blacktriangleright_{\mathfrak{L}} p \iff p \leq a$$

TWO THEOREMS ON MODELS

Definition

Given a model $\mathfrak{G} = (A, M)$ of \mathcal{T}_L , for all $a \in A$,

$$\llbracket a \rrbracket_{\mathfrak{G}} \stackrel{\Delta}{=} \{ p \in L \mid a \blacktriangleright_{\mathfrak{G}} p \}$$

Theorem

If $\mathfrak{G} = (A, M)$ is a model of $\mathcal{T}_{L(\mathcal{H})}$ with dim $\mathcal{H} \geq 3$, then for all $\alpha \in A$, $\llbracket \alpha \rrbracket_{\mathfrak{G}}$ contains at most one vector ray.

¹arXiv:quant-ph/0610066

Kochen-Specker Theorem

Pick exactly one element in each maximal orthogonal family of vectors

Kochen-Specker 117 vectors in dimension 3

Peres 33 vectors in dimension 3

Cabello 17 vectors in dimension 4

Kochen-Specker Theorem

Pick exactly one element in each maximal orthogonal family of vectors

Kochen-Specker 117 vectors in dimension 3

Peres 33 vectors in dimension 3

Cabello 17 vectors in dimension 4

Here

Pick at most one element in each maximal orthogonal family of vectors

2 vectors in dimension 3

If $3 \leq \dim \mathcal{H} < \infty$ and $\mathfrak{G} = (A, M)$ is a model of $\mathcal{T}_{L(\mathcal{H})}$, then

$$\forall a \in A, \exists e(a) \in L(\mathcal{H}) : \llbracket a \rrbracket_{\mathfrak{G}} = e(a)^{\uparrow}$$

If $3 \leq \dim \mathcal{H} < \infty$ and $\mathfrak{G} = (A, M)$ is a model of $\mathcal{T}_{L(\mathcal{H})}$, then

$$\forall a \in A, \exists e(a) \in L(\mathcal{H}) \colon \llbracket a \rrbracket_{\mathfrak{G}} = e(a)^{\uparrow}$$

Consequence

If $3 \leq \dim \mathcal{H} < \infty$, in $\mathcal{T}_{\mathcal{L}(\mathcal{H})}$,

$$s \triangleright p$$
 and $s \triangleright q \implies s \triangleright p \land q$

$\big\{ \llbracket a \rrbracket_{\mathfrak{G}} \ \big| \ a \in A \big\} \simeq L(\mathcal{H})$

$\big\{ \llbracket a \rrbracket_{\mathfrak{G}} \ \big| \ a \in A \big\} \simeq L(\mathcal{H})$

[The Metaphysical Disaster is] the error of **equating properties** of a physical system on the one hand **with experimentally testable propositions** about the system on the other hand.

Unfortunately, this is precisely what is done in conventional Hilbert-space based quantum mechanics where both properties and experimentally testable propositions are represented by projection operators.

(David Foulis, private communication)

SEQUENCES OF OUTCOMES

A word on *L* is a finite sequence of elements of *L*

Definition

Given a model $\mathfrak{G} = (A, M)$ of \mathcal{T}_L , a word $\mathbf{p} = p_1 p_2 \cdots p_n$ is in $\ell(\mathfrak{G})$ iff

$$\exists a_0, a_1, \dots, a_n \in A:$$

$$M(a_0, p_1, a_1) \text{ and } \dots \text{ and } M(a_{n-1}, p_n, a_n)$$

$$a_0 \xrightarrow{p_1} a_1 \xrightarrow{p_2} a_2 \xrightarrow{p_3} \cdots \xrightarrow{p_{n-1}} a_{n-1} \xrightarrow{p_n} a_n$$

If 3 \leq dim $\mathcal{H}<\infty$,

$$\ell(\mathfrak{L}_{L(\mathcal{H})}) = \ell(\mathfrak{H}_{\mathcal{H}})$$

If $3 \leq \dim \mathcal{H} < \infty$ and $\mathfrak{G} = (A, M)$ is a model of $\mathcal{T}_{L(\mathcal{H})}$, then $\ell(\mathfrak{G}) = \ell(\mathfrak{L}_{L(\mathcal{H})}) = \ell(\mathfrak{H})$

If \mathcal{H} is such that $3 \leq \dim \mathcal{H} < \infty$, then for all model \mathfrak{G} of $\mathcal{T}_{L(\mathcal{H})}$,

$$\ell(\mathfrak{G}) = \ell(\mathfrak{L}_{L(\mathcal{H})}) = \ell(\mathfrak{H}_{H})$$

If \mathcal{H} is such that $3 \leq \dim \mathcal{H} < \infty$, then for all model \mathfrak{G} of $\mathcal{T}_{L(\mathcal{H})}$,

$$\ell(\mathfrak{G}) = \ell(\mathfrak{L}_{L(\mathcal{H})}) = \ell(\mathfrak{H}) = \ell(\mathcal{H})$$

If \mathcal{H} is such that $3 \leq \dim \mathcal{H} < \infty$, then for all model \mathfrak{G} of $\mathcal{T}_{\mathcal{L}(\mathcal{H})}$,

$$\ell(\mathfrak{G}) = \ell(\mathfrak{L}_{L(\mathcal{H})}) = \ell(\mathfrak{H}) = \ell(\mathcal{H})$$

Given a word $p_1p_2\cdots p_n$ on $L(\mathcal{H})$,

$$p_{1}p_{2}\cdots p_{n} \in \ell(\mathcal{H}) \iff p_{1} \& p_{2} \& \cdots \& p_{n} \neq \bot$$
$$\iff \Pi_{p_{n}} \Pi_{p_{n-1}} \cdots \Pi_{p_{l}} \neq 0$$

If \mathcal{H} is such that $3 \leq \dim \mathcal{H} < \infty$, then for all model \mathfrak{G} of $\mathcal{T}_{\mathcal{L}(\mathcal{H})}$,

 $\ell(\mathfrak{G})=\ell(\mathcal{H})$

If \mathcal{H} is such that $3 \leq \dim \mathcal{H} < \infty$, then for all model \mathfrak{G} of $\mathcal{T}_{\mathcal{L}(\mathcal{H})}$,

 $\ell(\mathfrak{G})=\ell(\mathcal{H})$

Can Quantum-Mechanical Description of Physical Reality be Considered Complete?

If \mathcal{H} is such that $3 \leq \dim \mathcal{H} < \infty$, then for all model \mathfrak{G} of $\mathcal{T}_{L(\mathcal{H})}$,

 $\ell(\mathfrak{G})=\ell(\mathcal{H})$

Can Quantum-Mechanical Description of Physical Reality be Considered Complete?

Possibilistically yes.