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†-Frobenius algebras

A †-Frobenius algebra is a Frobenius algebra where the

monoid ( , ) and the co-monoid ( , ) are adjoint.

A †-Frobenius algebra is quasi-special if it is special up to
some invertible scalar N:

= N

†-qSFA ≡ “quasi-special †-Frobenius algebra”

†-qSCFA ≡ “quasi-special commutative †-Frobenius algebra”
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Strong Complementarity

We will say that a pair of †-qSFAs are strongly complementary if
they satisfy the following (unscaled) bialgebra equations:

= = =
=

An internal group (G, , ) in a †-SMC consists of two strongly
complementary †-qSFA (the group structure) and †-SCFA
(the point structure), with enough -classical points. We say
that an internal group is abelian if is commutative.
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Group of Classical Points

Lemma

Let (G, , ) be an internal group in a †-SMC. Then the monoid

( , ) acts as a group (K , , ) on the -classical points (the

group elements), with the antipode acting as group inverse.

g g
=

g

=

g

=
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Multiplicative Characters

The multiplicative characters for an internal group (G, , ) in a
†-SMC are the co-states 〈χ| : G → I such that:

χ

=

χ χ χ

=

Lemma

The co-monoid ( , ) acts as a group on the multiplicative

characters, with the antipode acting as group inverse.
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Resolution of the Identity

From now on, we work in †-SMCs enriched over finite
commutative monoids, with appropriate distributivity laws,
e.g. a⊗ (b + c) = a⊗ b + a⊗ c , or a · (b + c) = a · b + a · c

When talking about a resolution of the identity, we mean a
finite family |x〉x∈X of orthogonal, normalisable states s.t.:∑

x∈X

1

〈x |x〉
|x〉〈x | = id

When talking about a partition of a state |ψ〉, we mean a
finite family |x〉x∈X of orthogonal, normalisable states s.t.:∑

x∈X

1

〈x |x〉
|x〉 = |ψ〉
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Resolution of the Identity

Lemma

Let (G, , ) be an internal group. The following are equivalent:

(i) The multiplicative characters form a resolution of the identity

1

N

∑
χ

|χ〉〈χ| = idG

(i) The multiplicative characters form a partition of the co-unit

1

N

∑
χ

〈χ| =

Fact: if either one holds, then is necessarily commutative.
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Multiplicative Characters in fdHilb

Let (G, , ) be an abelian internal group in fdHilb

Then the multiplicative characters 〈χ| : G → C are the linear
extensions to G of the multiplicative characters χ ∈ G∧ of the

finite abelian group G = (K , , ) ∼= ⊕x :XZNx :

〈χ| : G −→ C

|g〉 7→ χ(g)

If G ∼= Zn, they take the familiar (non-canonical) form:

〈χE |g〉 = e−i
2π
N

E g for E ∈ ZN
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Representations and Characters - no time today :(

For non-abelian internal groups in compact-closed categories,
there is a corresponding Lemma stating that representations

: G → H⊗H? form a resolution of the identity if and only

if the characters (∩H · ) form a partition of the co-unit .

In fdHilb, a resolution of the identity into unitary irreducible
representations exists by Peter-Weyl Theorem.

The entire theory of symmetries and invariants can be
developed in fdHilb for arbitrary finite symmetry groups.

Today we focus on abelian internal groups, and in particular
the abelian symmetry group G = ZN of finite-dimensional
cyclic time evolution
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Dynamical Systems (1/2)

Consider an internal group G = (G, , ) in a †-SMC. We define a
G-dynamical system on a system H to be an Eilenberg-Moore

algebra : H⊗ G → H for [the monad induced by] (G, , ):

=
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Dynamical Systems (2/2)

Consider an internal group G = (G, , ) in a †-SMC. We define a
G-dynamical system on a system H to be an Eilenberg-Moore

algebra : H⊗ G → H for [the monad induced by] (G, , ):

=
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Unitary Dynamical Systems

We say that a G-dynamical system is unitary if it satisfies the
following additional equation:

=

Equivalently, we could ask for it to be a -controlled unitary.
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Quantum Dynamical Systems

The definition is not restricted to abelian internal groups.

In fdHilb, unitary dynamical systems are unitary symmetries of
finite-dimensional quantum systems.

In particular, the abelian case G = ZN gives time evolution
(Ut)t∈ZN

of cyclic finite-dimensional quantum systems.

⇒ Categorical Quantum Dynamics ?
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Symmetries and Invariants
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Observables (1/3)

Consider a †-qSFA on a system G in a †-SMC. We define a
-classical observable on a system H to be a self-adjoint

Eilenberg-Moore co-algebra : H → H⊗ G for (G, , ):

=

Stefano Gogioso Categorical Semantics for Schrödinger’s Equation



Representation Theory in CQM
Symmetries and Invariants

Schrödinger’s Equation

Observables
Dynamics-Observables Duality
Symmetries and Invariants

Observables (1/3)

Consider a †-qSFA on a system G in a †-SMC. We define a
-classical observable on a system H to be a self-adjoint

Eilenberg-Moore co-algebra : H → H⊗ G for (G, , ):

=

Stefano Gogioso Categorical Semantics for Schrödinger’s Equation



Representation Theory in CQM
Symmetries and Invariants

Schrödinger’s Equation

Observables
Dynamics-Observables Duality
Symmetries and Invariants

Observables (2/3)
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Observables (3/3)

Consider a †-qSFA on a system G in a †-SMC. We define a
-classical observable on a system H to be a -self-adjoint

Eilenberg-Moore co-algebra : H → H⊗ G for (G, , ):
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Projector-valued Spectra

Theorem

Let : H → H⊗ G be a -classical observable (in a †-SMC
enriched over finite commutative monoids),

and assume there is a
partition of the co-unit 1

N

∑
χ〈χ| = into characters of . Then:

=

∑
χ

Pχ x

with (Pχ : H → H)χ a complete family of self-adjoint idempotents.
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Observables in fdHilb

In fdHilb, the -classical observables (commutative ) are the
complete families of projectors indexed by -classical points.

In particular, is a (non-degenerate) -classical observable.

If G = (G, , ) is an abelian internal group, the projectors are
indexed by the multiplicative characters (which form a basis).

If G = (G, , ) is any internal group, the projectors are
indexed by the characters (not a basis, but a matched family).
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Dynamics-Observables Duality

Theorem

Let G = (G, , ) be an internal group in a †-SMC. Then a map
: H⊗ G → H is a unitary G-dynamical system if and only if

:= † : H → H⊗ G is a -classical observable.

We call † the Hamiltonian of the unitary dynamical system .
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Hamiltonians in fdHilb (1/2)

If the symmetry is given by some finite group G , the projectors
of the Hamiltonian are labelled by the characters of G .

In fdHilb and for G ∼= ZN , a quantum dynamical system is

a family of unitaries (Ut)t∈ZN
, with U the generating unitary.

The (multiplicative) characters G∧ will label the allowed

energy levels for the system as χE (t) = e−i
2π
N
Et .
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The projector PE on the E energy eigenspace is given by:

PE =
1

N

∑
t∈ZN

e i
2π
N
E tUt

This is the same as the projector (idH ⊗ 〈χE |) · †.

Therefore † is indeed the CQM observable corresponding to
the traditional Hamiltonian for the quantum system.
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Symmetries and Invariants

Theorem

Let G = (G, , ) be an internal group in a †-SMC and consider a
unitary G-dynamical system : H⊗ G → H. Then a -classical

observable : H → H⊗G commutes with (it is an invariant)

if and only if it commutes with the Hamiltonian † : H → H⊗ G

This makes the Hamiltonian † the most general invariant for .
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Schrödinger’s Equation

Stefano Gogioso Categorical Semantics for Schrödinger’s Equation



Representation Theory in CQM
Symmetries and Invariants

Schrödinger’s Equation

Orbits of states
Hamiltonian Eigenstates
Schrödinger’s Equation

Orbits

Let G = (G, , ) be an internal group in a †-SMC and consider a
unitary G-dynamical system : H⊗ G → H. The orbit of state

|ϕ〉 : I → H under is the following morphism Ψ : G → H:

Ψ

H

G

:=

ψ

H

G
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Theorem

Let G = (G, , ) be an internal group in a †-SMC and consider a
unitary G-dynamical system : H⊗ G → H. The orbits of states
are exactly the Eilenberg-Moore morphisms → .

Proof. [Orbit ⇒ EM morphism]

Ψ
=

ψ

=

ψ

=
Ψ
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Theorem

Let G = (G, , ) be an internal group in a †-SMC and consider a
unitary G-dynamical system : H⊗ G → H. The orbits of states
are exactly the Eilenberg-Moore morphisms → .

Proof. [EM morphism ⇒ orbit]

Ψ
=

Ψ
=

Ψ

=

ψ
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Hamiltonian Eigenstates

Theorem

Let G = (G, , ) be an internal group in a †-SMC and consider a
unitary G-dynamical system : H⊗ G → H. A state |ψχ〉 is an
eigenstate of the Hamiltonian with eigenvalue χ, i.e.

† · |ψχ〉 = |ψχ〉 ⊗ |χ〉

if and only if it is in the form |ψχ〉 = Ψ · |χ〉 for an orbit Ψ : G → H
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Schrödinger’s Equation in fdHilb (1/2)

The time-dependent Schrödinger’s equation is written as:

i~∂t |Ψ(t)〉 = H|Ψ(t)〉

Which means that the unitary time evolution is:

|Ψ(t)〉 = U(t)|Ψ(0)〉 = exp

[
−i 1

~
Ht

]
|Ψ(0)〉

Unfortunately, no infinitesimal generator H exists for U(t) in
finite dimensions. It’s actually the wrong way to think of it.
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Schrödinger’s Equation in fdHilb (2/2)

The time-independent Schrödinger’s equation is written as:

E |ΨE (t)〉 = H|ΨE (t)〉

Equivalently, it can be written in exponentiated form:

e−i
1
~Et |ΨE (0)〉 = U(t)|ΨE (0)〉

This last form admits a finite-dimensional equivalent:

e−i
2π
N
Et |ΨE (0)〉 = U(t)|ΨE (0)〉
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Schrödinger’s Equation

In fdHilb, Schrödinger’s equation can then be written as:

Ψ

χ t

= Ψ

χ

t

χ

=

Ψ

χ t

U(t)|ψE 〉 = e i 2π/N E ·t |ψE 〉

Where we used the fact that the Hamiltonian eigenstates are
exactly those in the form ψχ = Ψ · |χ〉.
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Schrödinger’s Equation

Theorem

In fdHilb, asking for a |Ψ(t)〉 : ZN → H to satisfy Schrödinger’s
equation is the same as asking for its linear extension ΨE : G → H
to be an Eilenberg-Moore morphism → .

We take this as our definition. We will say that a given morphism
Ψ : G → H is a solution to Schrödinger’s equation if and only if

it is an Eilenberg-Moore morphism Ψ : → .
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Solutions to Schrödinger’s Equation

Ψ is a solution to Schrödinger’s equation if and only if it is an
orbit of a state (which we shall call |ψ0〉)

If Ψ is a solution to Schrödinger’s equation, then Ψ · |t〉 is
element in the orbit of |ψ0〉 corresponding to group element t.

If Ψ is a sol’n to Schrödinger’s equation, then |ψχ〉 = Ψ · |χ〉,
for χ a character, is an eigenvalue of the Hamiltonian with
eigenstate χ (which we shall call the χ-component of Ψ).

The linear structure allows us to encode both orbit values and
invariant components in the same map Ψ (which is cool).
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Conclusions

We provided a comprehensive framework for the treatment of
quantum dynamics in Categorical Quantum Mechanics:

Quantum symmetries = unitary Eilenberg-Moore algebras

Hamiltonians = self-adjoint EM co-algebras

in fact, adjoints † of the corresponding symmetries

Schrödinger’s eq’n = definition of EM morphisms →

Solutions to Schrödinger’s eq’n = orbits of states under

+ they encode the corresponding “energy” spectrum
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Future Work

There is a lot of ongoing and planned work:

Existence of finite-dimensional time observables

Synchronisation and emergence of clocks

Symmetries and particles

Infinite-dimensional generalisation
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Thank You!

Thanks for Your Attention!
Any Questions?
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