Categorical Semantics for Schrödinger's Equation arXiv:1501.06489

Stefano Gogioso

Quantum Group University of Oxford

16 July 2015

3.1

Introduction

In this talk we will cover:

э

Introduction

In this talk we will cover:

• Strong complementarity and representation theory.

Introduction

In this talk we will cover:

- Strong complementarity and representation theory.
- Quantum dynamical systems as Eilenberg-Moore algebras.

Introduction

In this talk we will cover:

- Strong complementarity and representation theory.
- Quantum dynamical systems as Eilenberg-Moore algebras.
- Quantum symmetries and their invariant observables.

3.1

Introduction

In this talk we will cover:

- Strong complementarity and representation theory.
- Quantum dynamical systems as Eilenberg-Moore algebras.
- Quantum symmetries and their invariant observables.
- Schrödinger's Equation and Eilenberg-Moore morphisms.

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Section 1

Representation Theory in CQM

Stefano Gogioso Categorical Semantics for Schrödinger's Equation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

†-Frobenius algebras

A †-Frobenius algebra is a Frobenius algebra where the monoid (★, ♦) and the co-monoid (∀, ●) are adjoint.

イロト イポト イラト イラト

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

†-Frobenius algebras

- A †-Frobenius algebra is a Frobenius algebra where the monoid (★, ♦) and the co-monoid (∀, ●) are adjoint.
- A †-Frobenius algebra is **quasi-special** if it is special up to some invertible scalar *N*:

$$=$$
 $\langle N \rangle$

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

†-Frobenius algebras

- A †-Frobenius algebra is a Frobenius algebra where the monoid (★, ♦) and the co-monoid (∀, ●) are adjoint.
- A †-Frobenius algebra is **quasi-special** if it is special up to some invertible scalar *N*:

$$=$$
 $\langle N \rangle$

• \dagger -qSFA \equiv "quasi-special \dagger -Frobenius algebra"

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

†-Frobenius algebras

- A †-Frobenius algebra is a Frobenius algebra where the monoid (★, ♦) and the co-monoid (∀, ●) are adjoint.
- A †-Frobenius algebra is **quasi-special** if it is special up to some invertible scalar *N*:

$$=$$
 (N)

- \dagger -qSFA \equiv "quasi-special \dagger -Frobenius algebra"
- \dagger -qSCFA \equiv "quasi-special commutative \dagger -Frobenius algebra"

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Strong Complementarity

We will say that a pair of \dagger -qSFAs are **strongly complementary** if they satisfy the following (unscaled) bialgebra equations:

(4月) (1日) (日)

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Strong Complementarity

We will say that a pair of \dagger -qSFAs are **strongly complementary** if they satisfy the following (unscaled) bialgebra equations:

An **internal group** $(\mathcal{G}, \bullet, \bullet)$ in a \dagger -SMC consists of two strongly complementary \dagger -qSFA \bullet (the **group structure**) and \dagger -SCFA \bullet (the **point structure**), with enough \bullet -classical points. We say that an internal group is **abelian** if \bullet is commutative.

(日)

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Group of Classical Points

Lemma

Let $(\mathcal{G}, \bullet, \circ)$ be an internal group in a \dagger -SMC. Then the monoid (\bigstar, \bullet) acts as a group $(K_{\circ}, \bigstar, \bullet)$ on the \circ -classical points (the **group elements**), with the antipode \diamond acting as group inverse.

< 日 > < 同 > < 三 > < 三 >

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Group of Classical Points

Lemma

Let $(\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC. Then the monoid (\bigstar, \bullet) acts as a group $(K_{\bullet}, \bigstar, \bullet)$ on the \bullet -classical points (the **group elements**), with the antipode \diamondsuit acting as group inverse.

- 4 同 2 4 日 2 4 日 2

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Multiplicative Characters

The **multiplicative characters** for an internal group $(\mathcal{G}, \bullet, \bullet)$ in a †-SMC are the co-states $\langle \chi | : \mathcal{G} \to I$ such that:

- 4 周 ト 4 戸 ト 4 戸 ト

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Multiplicative Characters

The **multiplicative characters** for an internal group $(\mathcal{G}, \bullet, \bullet)$ in a †-SMC are the co-states $\langle \chi | : \mathcal{G} \to I$ such that:

Lemma

The co-monoid (\forall , φ) acts as a group on the multiplicative characters, with the antipode φ acting as group inverse.

< 日 > < 同 > < 三 > < 三 >

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Resolution of the Identity

From now on, we work in †-SMCs enriched over finite commutative monoids, with appropriate distributivity laws,
 e.g. a ⊗ (b + c) = a ⊗ b + a ⊗ c, or a · (b + c) = a · b + a · c

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Resolution of the Identity

- From now on, we work in †-SMCs enriched over finite commutative monoids, with appropriate distributivity laws,
 e.g. a ⊗ (b + c) = a ⊗ b + a ⊗ c, or a · (b + c) = a · b + a · c
- When talking about a resolution of the identity, we mean a finite family |x⟩_{x∈X} of orthogonal, normalisable states s.t.:

$$\sum_{x \in X} \frac{1}{\langle x | x \rangle} |x\rangle \langle x| = id$$

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Resolution of the Identity

- From now on, we work in †-SMCs enriched over finite commutative monoids, with appropriate distributivity laws,
 e.g. a ⊗ (b + c) = a ⊗ b + a ⊗ c, or a · (b + c) = a · b + a · c
- When talking about a resolution of the identity, we mean a finite family |x⟩_{x∈X} of orthogonal, normalisable states s.t.:

$$\sum_{x\in X}rac{1}{\langle x|x
angle}|x
angle\langle x|=id$$

When talking about a partition of a state |ψ⟩, we mean a finite family |x⟩_{x∈X} of orthogonal, normalisable states s.t.:

$$\sum_{x\in X}rac{1}{\langle x|x
angle }|x
angle =|\psi
angle$$

- 4 周 ト 4 戸 ト 4 戸 ト

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Resolution of the Identity

Lemma

Let $(\mathcal{G}, \bullet, \bullet)$ be an internal group. The following are equivalent:

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Resolution of the Identity

Lemma

Let $(\mathcal{G}, \bullet, \bullet)$ be an internal group. The following are equivalent:

(i) The multiplicative characters form a resolution of the identity

$$rac{1}{N}\sum_{\chi}|\chi
angle\langle\chi|=\mathit{id}_{\mathcal{G}}$$

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Resolution of the Identity

Lemma

Let $(\mathcal{G}, \bullet, \bullet)$ be an internal group. The following are equivalent:

(i) The multiplicative characters form a resolution of the identity

$$rac{1}{N}\sum_{\chi}|\chi
angle\langle\chi|=\mathit{id}_{\mathcal{G}}$$

(i) The multiplicative characters form a partition of the co-unit

$$\frac{1}{N}\sum_{\chi}\langle\chi|=\mathbf{P}$$

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Resolution of the Identity

Lemma

Let $(\mathcal{G}, \bullet, \bullet)$ be an internal group. The following are equivalent:

(i) The multiplicative characters form a resolution of the identity

$$rac{1}{N}\sum_{\chi}|\chi
angle\langle\chi|=\mathit{id}_{\mathcal{G}}$$

(i) The multiplicative characters form a partition of the co-unit

$$\frac{1}{N}\sum_{\chi}\langle\chi|=\mathbf{P}$$

Fact: if either one holds, then • is necessarily commutative.

- 4 同 6 4 日 6 4 日 6

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Multiplicative Characters in fdHilb

 \bullet Let $(\mathcal{G}, \bullet, \bullet)$ be an abelian internal group in fdHilb

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Multiplicative Characters in fdHilb

- \bullet Let $(\mathcal{G}, \bullet, \bullet)$ be an abelian internal group in fdHilb
- Then the multiplicative characters ⟨χ| : G → C are the linear extensions to G of the multiplicative characters χ ∈ G[∧] of the finite abelian group G = (K₀, , ,) ≅ ⊕_{x:X}ℤ_{N_x}:

$$egin{array}{cccc} \langle \chi | & : & \mathcal{G} & \longrightarrow & \mathbb{C} \ & |g
angle & \mapsto & \chi(g) \end{array}$$

(人間) システレ イテレ

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Multiplicative Characters in fdHilb

- \bullet Let $(\mathcal{G}, \bullet, \bullet)$ be an abelian internal group in fdHilb
- Then the multiplicative characters ⟨χ| : G → C are the linear extensions to G of the multiplicative characters χ ∈ G[∧] of the finite abelian group G = (K₀, , ,) ≅ ⊕_{x:X}ℤ_{N_x}:

$$egin{array}{cccc} \langle \chi | & : & \mathcal{G} & \longrightarrow & \mathbb{C} \ & |g
angle & \mapsto & \chi(g) \end{array}$$

• If $G \cong \mathbb{Z}_n$, they take the familiar (non-canonical) form:

$$\langle \chi_E | g \rangle = e^{-i \frac{2\pi}{N} E g}$$
 for $E \in \mathbb{Z}_N$

イロト イポト イラト イラト

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Representations and Characters - no time today :(

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Representations and Characters - no time today :(

- In fdHilb, a resolution of the identity into unitary irreducible representations exists by Peter-Weyl Theorem.

伺 ト イ ヨ ト イ ヨ

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Representations and Characters - no time today :(

- In fdHilb, a resolution of the identity into unitary irreducible representations exists by Peter-Weyl Theorem.
- The entire theory of symmetries and invariants can be developed in fdHilb for arbitrary finite symmetry groups.

- 4 同 1 4 日 1 4 日

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Representations and Characters - no time today :(

- In fdHilb, a resolution of the identity into unitary irreducible representations exists by Peter-Weyl Theorem.
- The entire theory of symmetries and invariants can be developed in fdHilb for arbitrary finite symmetry groups.
- Today we focus on abelian internal groups, and in particular the abelian symmetry group $G = \mathbb{Z}_N$ of finite-dimensional cyclic time evolution

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Dynamical Systems (1/2)

Consider an internal group $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ in a \dagger -SMC. We define a \mathbb{G} -dynamical system on a system \mathcal{H} to be an Eilenberg-Moore algebra $\bigstar : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$ for [the monad induced by] $(\mathcal{G}, \bigstar, \bullet)$:

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Dynamical Systems (1/2)

Consider an internal group $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ in a \dagger -SMC. We define a \mathbb{G} -dynamical system on a system \mathcal{H} to be an Eilenberg-Moore algebra $\bigstar : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$ for [the monad induced by] $(\mathcal{G}, \bigstar, \bullet)$:

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Dynamical Systems (2/2)

Consider an internal group $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ in a \dagger -SMC. We define a \mathbb{G} -dynamical system on a system \mathcal{H} to be an Eilenberg-Moore algebra \blacklozenge : $\mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$ for [the monad induced by] $(\mathcal{G}, \bigstar, \bullet)$:

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Unitary Dynamical Systems

We say that a \mathbb{G} -dynamical system is **unitary** if it satisfies the following additional equation:

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Unitary Dynamical Systems

We say that a \mathbb{G} -dynamical system is **unitary** if it satisfies the following additional equation:

Equivalently, we could ask for it to be a o-controlled unitary.
Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Quantum Dynamical Systems

• The definition is not restricted to abelian internal groups.

A ►

30.00

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Quantum Dynamical Systems

- The definition is not restricted to abelian internal groups.
- In fdHilb, unitary dynamical systems are unitary symmetries of finite-dimensional quantum systems.

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Quantum Dynamical Systems

- The definition is not restricted to abelian internal groups.
- In fdHilb, unitary dynamical systems are unitary symmetries of finite-dimensional quantum systems.
- In particular, the abelian case $G = \mathbb{Z}_N$ gives time evolution $(U_t)_{t \in \mathbb{Z}_N}$ of cyclic finite-dimensional quantum systems.

・ 戸 ト ・ ヨ ト ・ ヨ

Strong Complementarity Multiplicative Characters Quantum Dynamical Systems

Quantum Dynamical Systems

- The definition is not restricted to abelian internal groups.
- In fdHilb, unitary dynamical systems are unitary symmetries of finite-dimensional quantum systems.
- In particular, the abelian case $G = \mathbb{Z}_N$ gives time evolution $(U_t)_{t \in \mathbb{Z}_N}$ of cyclic finite-dimensional quantum systems.

\Rightarrow Categorical Quantum Dynamics ?

(4 同) (4 回) (4 回)

Dbservables Dynamics-Observables Duality Symmetries and Invariants

Section 2

Symmetries and Invariants

Stefano Gogioso Categorical Semantics for Schrödinger's Equation

Observables Dynamics-Observables Duality Symmetries and Invariants

Observables (1/3)

Consider a \dagger -qSFA \bullet on a system \mathcal{G} in a \dagger -SMC. We define a \bullet -classical observable on a system \mathcal{H} to be a self-adjoint Eilenberg-Moore co-algebra \neq : $\mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ for $(\mathcal{G}, \neq, \bullet)$:

(4月) (1日) (日)

Observables Dynamics-Observables Duality Symmetries and Invariants

Observables (1/3)

Consider a \dagger -qSFA \bullet on a system \mathcal{G} in a \dagger -SMC. We define a \bullet -classical observable on a system \mathcal{H} to be a self-adjoint Eilenberg-Moore co-algebra \neq : $\mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ for $(\mathcal{G}, \neq, \bullet)$:

Observables Dynamics-Observables Duality Symmetries and Invariants

Observables (2/3)

Consider a \dagger -qSFA \bullet on a system \mathcal{G} in a \dagger -SMC. We define a \bullet -classical observable on a system \mathcal{H} to be a self-adjoint Eilenberg-Moore co-algebra $\neq : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ for $(\mathcal{G}, \neq, \bullet)$:

Observables Dynamics-Observables Duality Symmetries and Invariants

Observables (3/3)

Consider a \dagger -qSFA \bullet on a system \mathcal{G} in a \dagger -SMC. We define a \bullet -classical observable on a system \mathcal{H} to be a \bullet -self-adjoint Eilenberg-Moore co-algebra $\neq : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ for $(\mathcal{G}, \neq, \bullet)$:

Observables Dynamics-Observables Duality Symmetries and Invariants

Projector-valued Spectra

Theorem

Let \neq : $\mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ be a \bullet -classical observable (in a \dagger -SMC enriched over finite commutative monoids),

(日) (同) (三) (三)

Observables Dynamics-Observables Duality Symmetries and Invariants

Projector-valued Spectra

Theorem

Let $\psi : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ be a \bullet -classical observable (in a \dagger -SMC enriched over finite commutative monoids), and assume there is a partition of the co-unit $\frac{1}{N} \sum_{\chi} \langle \chi | = \phi$ into characters of \bullet .

< ロ > < 同 > < 回 > < 回 >

Observables Dynamics-Observables Duality Symmetries and Invariants

Projector-valued Spectra

Theorem

Let $i : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ be a \bullet -classical observable (in a \dagger -SMC enriched over finite commutative monoids), and assume there is a partition of the co-unit $\frac{1}{N} \sum_{\chi} \langle \chi | = \phi$ into characters of \bullet . Then:

with $(P_{\chi} : \mathcal{H} \to \mathcal{H})_{\chi}$ a complete family of self-adjoint idempotents.

・ロト ・同ト ・ヨト ・ヨト

Observables Dynamics-Observables Duality Symmetries and Invariants

Observables in fdHilb

In fdHilb, the
 -classical observables (<u>commutative</u>
 -) are the complete families of projectors indexed by
 -classical points.

<日本

Observables Dynamics-Observables Duality Symmetries and Invariants

Observables in fdHilb

- In fdHilb, the

 classical observables (<u>commutative</u>
) are the complete families of projectors indexed by
 classical points.
- In particular, ¥ is a (non-degenerate) •-classical observable.

- 4 周 ト 4 戸 ト 4 戸 ト

Observables Dynamics-Observables Duality Symmetries and Invariants

Observables in fdHilb

- In fdHilb, the
 -classical observables (<u>commutative</u>
 -) are the complete families of projectors indexed by
 -classical points.
- In particular, \forall is a (non-degenerate) •-classical observable.
- If G = (G, ●, ●) is an abelian internal group, the projectors are indexed by the multiplicative characters (which form a basis).

(人間) システレ イテレ

Observables Dynamics-Observables Duality Symmetries and Invariants

Observables in fdHilb

- In fdHilb, the
 -classical observables (<u>commutative</u>
 -) are the complete families of projectors indexed by
 -classical points.
- In particular, ¥ is a (non-degenerate) •-classical observable.
- If G = (G, ●, ●) is an abelian internal group, the projectors are indexed by the multiplicative characters (which form a basis).
- If C = (G, ●, ●) is any internal group, the projectors are indexed by the characters (not a basis, but a matched family).

・ロト ・同ト ・ヨト ・ヨト

Observables Dynamics-Observables Duality Symmetries and Invariants

Dynamics-Observables Duality

Theorem

Let $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC. Then a map $\mathbf{H} : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$ is a unitary \mathbb{G} -dynamical system if and only if $\mathbf{H} := \mathbf{H}^{\dagger} : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ is a \bullet -classical observable.

We call \mathbf{n}^{\dagger} the **Hamiltonian** of the unitary dynamical system \mathbf{n} .

・ロト ・同ト ・ヨト ・ヨト

Observables Dynamics-Observables Duality Symmetries and Invariants

Hamiltonians in fdHilb (1/2)

• If the symmetry is given by some finite group *G*, the projectors of the Hamiltonian are labelled by the characters of *G*.

- 4 周 ト 4 戸 ト 4 戸 ト

Observables Dynamics-Observables Duality Symmetries and Invariants

Hamiltonians in fdHilb (1/2)

- If the symmetry is given by some finite group *G*, the projectors of the Hamiltonian are labelled by the characters of *G*.
- In fdHilb and for $G \cong \mathbb{Z}_N$, a quantum dynamical system \blacklozenge is a family of unitaries $(U^t)_{t \in \mathbb{Z}_N}$, with U the generating unitary.

(4月) (1日) (日)

Observables Dynamics-Observables Duality Symmetries and Invariants

Hamiltonians in fdHilb (1/2)

- If the symmetry is given by some finite group *G*, the projectors of the Hamiltonian are labelled by the characters of *G*.
- In fdHilb and for $G \cong \mathbb{Z}_N$, a quantum dynamical system \models is a family of unitaries $(U^t)_{t \in \mathbb{Z}_N}$, with U the generating unitary.
- The (multiplicative) characters G[∧] will label the allowed energy levels for the system as χ_E(t) = e^{-i^{2π}/NEt}.

- 4 周 ト 4 戸 ト 4 戸 ト

Observables Dynamics-Observables Duality Symmetries and Invariants

Hamiltonians in fdHilb (2/2)

• The projector P_E on the E energy eigenspace is given by:

$$P_E = \frac{1}{N} \sum_{t \in \mathbb{Z}_N} e^{i \frac{2\pi}{N} E t} U^t$$

- 4 同 2 4 日 2 4 日 2

Observables Dynamics-Observables Duality Symmetries and Invariants

Hamiltonians in fdHilb (2/2)

• The projector P_E on the E energy eigenspace is given by:

$$P_E = \frac{1}{N} \sum_{t \in \mathbb{Z}_N} e^{j \frac{2\pi}{N} E t} U^t$$

• This is the same as the projector $(id_{\mathcal{H}} \otimes \langle \chi_E |) \cdot \mathbf{n}^{\dagger}$.

イロト イポト イラト イラト

Observables Dynamics-Observables Duality Symmetries and Invariants

Hamiltonians in fdHilb (2/2)

• The projector P_E on the E energy eigenspace is given by:

$$P_E = \frac{1}{N} \sum_{t \in \mathbb{Z}_N} e^{j \frac{2\pi}{N} E t} U^t$$

- This is the same as the projector $(id_{\mathcal{H}} \otimes \langle \chi_E |) \cdot \mathbf{n}^{\dagger}$.
- Therefore [†] is indeed the CQM observable corresponding to the traditional Hamiltonian for the quantum system.

(人間) とうり くうり

Observables Dynamics-Observables Duality Symmetries and Invariants

Symmetries and Invariants

Theorem

Let $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC and consider a unitary \mathbb{G} -dynamical system $\clubsuit : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$. Then a \bullet -classical observable $\clubsuit : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ commutes with \clubsuit (it is an **invariant**) if and only if it commutes with the Hamiltonian $\clubsuit^{\dagger} : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$

- 4 周 ト 4 戸 ト 4 戸 ト

Observables Dynamics-Observables Duality Symmetries and Invariants

Symmetries and Invariants

Theorem

Let $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC and consider a unitary \mathbb{G} -dynamical system $\clubsuit : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$. Then a \bullet -classical observable $\clubsuit : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ commutes with \clubsuit (it is an **invariant**) if and only if it commutes with the Hamiltonian $\clubsuit^{\dagger} : \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$

This makes the Hamiltonian \mathbf{k}^{\dagger} the most general invariant for \mathbf{k} .

(人間) システレ イテレ

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Section 3

Schrödinger's Equation

Stefano Gogioso Categorical Semantics for Schrödinger's Equation

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Orbits

Let $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC and consider a unitary \mathbb{G} -dynamical system $\downarrow : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$. The **orbit** of state $|\varphi\rangle : I \to \mathcal{H}$ under \downarrow is the following morphism $\Psi : \mathcal{G} \to \mathcal{H}$:

- 4 同 6 4 日 6 4 日 6

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Orbits

Theorem

Let $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC and consider a unitary \mathbb{G} -dynamical system $\clubsuit : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$. The orbits of states are exactly the Eilenberg-Moore morphisms $\bigstar \to \clubsuit$.

(日) (同) (三) (三)

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Orbits

Theorem

Let $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC and consider a unitary \mathbb{G} -dynamical system $\clubsuit : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$. The orbits of states are exactly the Eilenberg-Moore morphisms $\bigstar \to \clubsuit$.

Proof. [Orbit \Rightarrow EM morphism]

・ロト ・同ト ・ヨト ・ヨト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Orbits

Theorem

Let $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC and consider a unitary \mathbb{G} -dynamical system $\clubsuit : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$. The orbits of states are exactly the Eilenberg-Moore morphisms $\bigstar \to \clubsuit$.

Proof. [EM morphism \Rightarrow orbit]

・ロト ・同ト ・ヨト ・ヨト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Hamiltonian Eigenstates

Theorem

Let $\mathbb{G} = (\mathcal{G}, \bullet, \bullet)$ be an internal group in a \dagger -SMC and consider a unitary \mathbb{G} -dynamical system $\mathbf{h} : \mathcal{H} \otimes \mathcal{G} \to \mathcal{H}$. A state $|\psi_{\chi}\rangle$ is an eigenstate of the Hamiltonian with eigenvalue χ , i.e.

$$\bigstar^{\dagger} \cdot |\psi_{\chi}\rangle = |\psi_{\chi}\rangle \otimes |\chi\rangle$$

if and only if it is in the form $|\psi_{\chi}\rangle = \Psi \cdot |\chi\rangle$ for an orbit $\Psi : \mathcal{G} \to \mathcal{H}$

イロト イポト イラト イラト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation in fdHilb (1/2)

• The time-dependent Schrödinger's equation is written as:

 $i\hbar\partial_t|\Psi(t)
angle=H|\Psi(t)
angle$

(日) (同) (三) (三)

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation in fdHilb (1/2)

• The time-dependent Schrödinger's equation is written as:

 $i\hbar\partial_t|\Psi(t)
angle=H|\Psi(t)
angle$

• Which means that the unitary time evolution is:

$$|\Psi(t)
angle = U(t)|\Psi(0)
angle = \exp\left[-irac{1}{\hbar}Ht
ight]|\Psi(0)
angle$$

(日) (同) (三) (三)

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation in fdHilb (1/2)

• The time-dependent Schrödinger's equation is written as:

 $i\hbar\partial_t|\Psi(t)
angle=H|\Psi(t)
angle$

• Which means that the unitary time evolution is:

$$|\Psi(t)
angle = U(t)|\Psi(0)
angle = \exp\left[-irac{1}{\hbar}Ht
ight]|\Psi(0)
angle$$

• Unfortunately, no infinitesimal generator H exists for U(t) in finite dimensions.

イロト イポト イラト イラト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation in fdHilb (1/2)

• The time-dependent Schrödinger's equation is written as:

 $i\hbar\partial_t|\Psi(t)
angle=H|\Psi(t)
angle$

• Which means that the unitary time evolution is:

$$|\Psi(t)
angle = U(t)|\Psi(0)
angle = \exp\left[-irac{1}{\hbar}Ht
ight]|\Psi(0)
angle$$

 Unfortunately, no infinitesimal generator H exists for U(t) in finite dimensions. It's actually the wrong way to think of it.

イロト イポト イラト イラト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation in fdHilb (2/2)

• The time-independent Schrödinger's equation is written as:

 $E|\Psi_E(t)\rangle = H|\Psi_E(t)\rangle$

(日) (同) (三) (三)
Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation in fdHilb (2/2)

• The time-independent Schrödinger's equation is written as:

 $E|\Psi_E(t)\rangle = H|\Psi_E(t)\rangle$

• Equivalently, it can be written in exponentiated form:

$$e^{-i\frac{1}{\hbar}Et}|\Psi_E(0)
angle = U(t)|\Psi_E(0)
angle$$

- 4 回 ト 4 ヨト 4 ヨト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation in fdHilb (2/2)

• The time-independent Schrödinger's equation is written as:

 $E|\Psi_E(t)\rangle = H|\Psi_E(t)\rangle$

• Equivalently, it can be written in exponentiated form:

$$e^{-irac{1}{\hbar}Et}|\Psi_E(0)
angle=U(t)|\Psi_E(0)
angle$$

• This last form admits a finite-dimensional equivalent:

$$e^{-irac{2\pi}{N}Et}|\Psi_E(0)
angle = U(t)|\Psi_E(0)
angle$$

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation

In fdHilb, Schrödinger's equation can then be written as:

 $U(t)|\psi_E
angle = e^{i\,2\pi/N\,E\cdot t} |\psi_E
angle$

Where we used the fact that the Hamiltonian eigenstates are exactly those in the form $\psi_{\chi} = \Psi \cdot |\chi\rangle$.

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation

Theorem

In fdHilb, asking for a $|\Psi(t)\rangle : \mathbb{Z}_N \to \mathcal{H}$ to satisfy Schrödinger's equation is the same as asking for its linear extension $\Psi_E : \mathcal{G} \to \mathcal{H}$ to be an Eilenberg-Moore morphism $\bigstar \to \bigstar$.

・ロト ・同ト ・ヨト ・ヨト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Schrödinger's Equation

Theorem

In fdHilb, asking for a $|\Psi(t)\rangle : \mathbb{Z}_N \to \mathcal{H}$ to satisfy Schrödinger's equation is the same as asking for its linear extension $\Psi_E : \mathcal{G} \to \mathcal{H}$ to be an Eilenberg-Moore morphism $\bigstar \to \bigstar$.

We take this as our definition. We will say that a given morphism $\Psi : \mathcal{G} \to \mathcal{H}$ is a solution to **Schrödinger's equation** if and only if it is an Eilenberg-Moore morphism $\Psi : \bigstar \to \bigstar$.

・ロト ・同ト ・ヨト ・ヨト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Solutions to Schrödinger's Equation

Ψ is a solution to Schrödinger's equation if and only if it is an orbit of a state (which we shall call |ψ₀))

- 同 ト - ヨ ト - - ヨ ト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Solutions to Schrödinger's Equation

- Ψ is a solution to Schrödinger's equation if and only if it is an orbit of a state (which we shall call $|\psi_0\rangle$)
- If Ψ is a solution to Schrödinger's equation, then $\Psi \cdot |t\rangle$ is element in the orbit of $|\psi_0\rangle$ corresponding to group element t.

- 4 周 ト 4 戸 ト 4 戸 ト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Solutions to Schrödinger's Equation

- Ψ is a solution to Schrödinger's equation if and only if it is an orbit of a state (which we shall call |ψ₀))
- If Ψ is a solution to Schrödinger's equation, then $\Psi \cdot |t\rangle$ is element in the orbit of $|\psi_0\rangle$ corresponding to group element t.
- If Ψ is a sol'n to Schrödinger's equation, then $|\psi_{\chi}\rangle = \Psi \cdot |\chi\rangle$, for χ a character, is an eigenvalue of the Hamiltonian with eigenstate χ (which we shall call the χ -component of Ψ).

イロト イポト イラト イラト

Orbits of states Hamiltonian Eigenstates Schrödinger's Equation

Solutions to Schrödinger's Equation

- Ψ is a solution to Schrödinger's equation if and only if it is an orbit of a state (which we shall call |ψ₀))
- If Ψ is a solution to Schrödinger's equation, then $\Psi \cdot |t\rangle$ is element in the orbit of $|\psi_0\rangle$ corresponding to group element t.
- If Ψ is a sol'n to Schrödinger's equation, then $|\psi_{\chi}\rangle = \Psi \cdot |\chi\rangle$, for χ a character, is an eigenvalue of the Hamiltonian with eigenstate χ (which we shall call the χ -component of Ψ).
- The linear structure allows us to encode both orbit values and invariant components in the same map Ψ (which is cool).

イロト イポト イラト イラト

Conclusions

We provided a comprehensive framework for the treatment of quantum dynamics in Categorical Quantum Mechanics:

通 と く ヨ と く ヨ と

Conclusions

We provided a comprehensive framework for the treatment of quantum dynamics in Categorical Quantum Mechanics:

Quantum symmetries = unitary Eilenberg-Moore algebras +

伺 ト イ ヨ ト イ ヨ ト

Conclusions

We provided a comprehensive framework for the treatment of quantum dynamics in Categorical Quantum Mechanics:

- Quantum symmetries = unitary Eilenberg-Moore algebras +
- Hamiltonians = self-adjoint EM co-algebras \neq

伺 ト イ ヨ ト イ ヨ ト

Conclusions

We provided a comprehensive framework for the treatment of quantum dynamics in Categorical Quantum Mechanics:

- Quantum symmetries = unitary Eilenberg-Moore algebras +
- Hamiltonians = self-adjoint EM co-algebras ₩
- $\bullet\,$ in fact, adjoints $\buildrel \uparrow\,$ of the corresponding symmetries

(4月) (4日) (4日)

Conclusions

We provided a comprehensive framework for the treatment of quantum dynamics in Categorical Quantum Mechanics:

- Quantum symmetries = unitary Eilenberg-Moore algebras +
- Hamiltonians = self-adjoint EM co-algebras ₩
- in fact, adjoints $\mathbf{a}_{\mathbf{k}}^{\dagger}$ of the corresponding symmetries
- Schrödinger's eq'n = definition of EM morphisms $\bigstar \rightarrow \bigstar$

A (B) A (B) A (B) A

Conclusions

We provided a comprehensive framework for the treatment of quantum dynamics in Categorical Quantum Mechanics:

- Quantum symmetries = unitary Eilenberg-Moore algebras +
- Hamiltonians = self-adjoint EM co-algebras ₩
- in fact, adjoints $\mathbf{a}_{\mathbf{k}}^{\dagger}$ of the corresponding symmetries
- Schrödinger's eq'n = definition of EM morphisms $\bigstar \rightarrow \bigstar$
- Solutions to Schrödinger's eq'n = orbits of states under +

- ロト - (周ト - (日ト - (日ト))

Conclusions

We provided a comprehensive framework for the treatment of quantum dynamics in Categorical Quantum Mechanics:

- Quantum symmetries = unitary Eilenberg-Moore algebras +
- Hamiltonians = self-adjoint EM co-algebras ₩
- $\bullet\,$ in fact, adjoints ${\displaystyle {\stackrel{\dagger}{\doteq}}}\,^{\dagger}$ of the corresponding symmetries
- Schrödinger's eq'n = definition of EM morphisms $\bigstar \rightarrow \bigstar$
- Solutions to Schrödinger's eq'n = orbits of states under +
- \bullet + they encode the corresponding "energy" spectrum

イロン 不同 とくほう イロン

Future Work

There is a lot of ongoing and planned work:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Future Work

There is a lot of ongoing and planned work:

• Existence of finite-dimensional time observables

A 10

→ □ → → □ →

Future Work

There is a lot of ongoing and planned work:

- Existence of finite-dimensional time observables
- Synchronisation and emergence of clocks

A 10

Future Work

There is a lot of ongoing and planned work:

- Existence of finite-dimensional time observables
- Synchronisation and emergence of clocks
- Symmetries and particles

A 3 b

Future Work

There is a lot of ongoing and planned work:

- Existence of finite-dimensional time observables
- Synchronisation and emergence of clocks
- Symmetries and particles
- Infinite-dimensional generalisation

30.00

Thank You!

Thanks for Your Attention! Any Questions?