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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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talking about a spin-one-half lattice. 
The question is, if we wrote a Hamiltonian which involved only these 

operators, locally coupled to corresponding operators on the other space-time 
points, could we imitate every quantum mechanical system which is discrete 
and has a finite number of degrees of freedom? I know, almost certainly, 
that we could do that for any quantum mechanical system which involves 
Bose particles. I 'm not sure whether Fermi particles could be described by 
such a system. So I leave that open. Well, that's an example of what I mean t  
by a general quantum mechanical simulator. I 'm not sure that it's sufficient, 
because I 'm not sure that it takes care of Fermi particles. 
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2 Warnings: Where does parity superselection come from?

What do I map via the Jordan-Wigner map?
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Alice

Bob

? = ⇢

Local tomography:

A

B
?unknown 

state

Alice and Bob determine  
the state by local measurements

DAB = DADB

Non-local tomography: local measurements are not enough DAB > DADB
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? = ⇢
A

B
?

Local tomography
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A

B
?

+

A

B
?

DAB = DADB

DABC 6 f(DA, DB, DC, DAB, DAC, DBC)

L. Hardy and W. K. Wootters, Foundations  
of Physics 42, 454 (2012)

NOTICE: this bound is saturated

Bilocal tomography

DAB > DADB
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G. M. D’Ariano, F. Manessi, P. Perinotti and A. Tosini, IJMPA (2014)
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Question: extend the operational informational framework to Quantum Field Theory

Haag, R., Local quantum physics, volume 2,  
Springer Berlin, 1996.

Alternative to Algebraic Quantum Field theory


