Fermionic quantum theory and superselection rules for operational probabilistic theories

Alessandro Tosini, QUIT group, Pavia University

Joint work with

G.M. D'Ariano, F. Manessi, P. Perinotti

Supported by

Outline

- 1. Are fermions systems of the usual quantum theory?
- 2. Fermions as "bricks" of a new operational probabilistic theory
- 3. Informational features:
 - tomography in fermionic quantum theory
 - fermionic entanglement
- 4. A definition of superselection for a general probabilistic theory:
 - fermionic and real QT as special cases
- 5. Future perspectives

1. Are fermions systems of the usual quantum theory?

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

The question is, if we wrote a Hamiltonian which involved only these operators, locally coupled to corresponding operators on the other space-time points, could we imitate every quantum mechanical system which is discrete and has a finite number of degrees of freedom? I know, almost certainly, that we could do that for any quantum mechanical system which involves Bose particles. I'm not sure whether Fermi particles could be described by such a system. So I leave that open. Well, that's an example of what I meant by a general quantum mechanical simulator. I'm not sure that it's sufficient, because I'm not sure that it takes care of Fermi particles.

1. Are fermions systems of the usual quantum theory?

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

The question is, if we wrote a Hamiltonian which involved only these operators, locally coupled to corresponding operators on the other space-time points, could we imitate every quantum mechanical system which is discrete and has a finite number of degrees of freedom? I know, almost certainly, that we could do that for any quantum mechanical system which involves Bose particles. I'm not sure whether Fermi particles could be described by such a system. So I leave that open. Well, that's an example of what I meant by a general quantum mechanical simulator. I'm not sure that it's sufficient, because I'm not sure that it takes care of Fermi particles.

1. Are fermions systems of the usual quantum theory?

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

The question is, if we wrote a Hamiltonian which involved only these operators, locally coupled to corresponding operators on the other space-time points, could we imitate every quantum mechanical system which is discrete and has a finite number of degrees of freedom? I know, almost certainly, that we could do that for any quantum mechanical system which involves Bose particles. I'm not sure whether Fermi particles could be described by such a system. So I leave that open. Well, that's an example of what I meant by a general quantum mechanical simulator. I'm not sure that it's sufficient, because I'm not sure that it takes care of Fermi particles.

а.

Quantum theory

Quantum theory

Relativity: fermionic field

Fermions are anti-commuting systems

 $\{\varphi_i, \varphi_j\} = 0 \quad \{\varphi_i, \varphi_i^{\dagger}\} = \delta_{ij}I$

Quantum theory

Relativity: fermionic field

Fermions are anti-commuting systems

 $\{\varphi_i, \varphi_j\} = 0 \quad \{\varphi_i, \varphi_i^{\dagger}\} = \delta_{ij}I$

Fermions satisfy a parity superselection rule

Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, 101–105

Relativity: fermionic field

Fermions are anti-commuting systems

$$\{\varphi_i, \varphi_j\} = 0 \quad \{\varphi_i, \varphi_i^{\dagger}\} = \delta_{ij}I$$

Quantum theory

"Qubits" are commuting systems

Fermions satisfy a *parity superselection rule*

Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, 101–105

Relativity: fermionic field

Fermions are anti-commuting systems

$$\{\varphi_i, \varphi_j\} = 0 \quad \{\varphi_i, \varphi_i^{\dagger}\} = \delta_{ij}I$$

Fermions satisfy a *parity superselection rule*

Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, 101–105

Quantum theory

"Qubits" are commuting systems

No a priori superselection

 $|\psi\rangle =$ |even particles $\rangle + |\text{odd particles}\rangle$

Relativity: fermionic field

2 Fermions are anti-commuting systems

$$\{\varphi_i, \varphi_j\} = 0 \quad \{\varphi_i, \varphi_i^{\dagger}\} = \delta_{ij}I$$

Quantum theory

"Qubits" are commuting systems

Fermions satisfy a *parity superselection rule*

Wick, G. C., Wightman, A. S., and Wigner, E. P., 1952, Phys. Rev. 88, 101-105

No a priori superselection

 $|\psi\rangle =$ $|\text{even particles}\rangle + |\text{odd particles}\rangle$

S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298, 210 (2002)

S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298, 210 (2002)

Price to pay for anti-commutation

S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298, 210 (2002)

Price to pay for anti-commutation

2 Warnings: Where does parity superselection come from? What do I map via the Jordan-Wigner map?

Elementary systems: local fermionic modes

i-th local fermionic mode

States and maps in terms of the fields φ_i , φ_i^{\dagger}

Construction of the theory:

i-th local fermionic mode

States and maps in terms of the fields φ_i , φ_i^{\dagger}

$$\begin{array}{ll} \text{maps?} & \mathcal{T}(\rho) = \sum_{i} s_{i} K_{i} \rho K_{i}^{\dagger} \checkmark & \mbox{"field algebra"} \\ \text{states?} & \rho := \sum_{j} K_{j} |\Omega\rangle \left< \Omega | K_{j}^{\dagger} \right. \\ & \mbox{vacuum} \end{array}$$

Construction of the theory:

i-th local fermionic mode

States and maps in terms of the fields φ_i , φ_i^{\dagger}

$$\begin{array}{ll} \text{maps?} & \mathcal{T}(\rho) = \sum_{i} s_{i} K_{i} \rho K_{i}^{\dagger} \checkmark & \text{kraus operator} \\ \text{``field algebra''} \end{array}$$

$$\begin{array}{l} \text{states?} & \rho := \sum_{j} K_{j} |\Omega\rangle \left\langle \Omega | K_{j}^{\dagger} \right\rangle \\ \text{vacuum} \end{array}$$

Operational assumptions:

The field φ must be "physical": Maps with single Kraus $\alpha \varphi + \beta \varphi^{\dagger}$ are maps of the theory

Construction of the theory:

i-th local fermionic mode

States and maps in terms of the fields φ_i , φ_i^{\dagger}

Operational assumptions:

Elementary systems:

local fermionic modes

The field φ must be "physical": Maps with single Kraus $\alpha \varphi + \beta \varphi^{\dagger}$ are maps of the theory Notion of local operations: A map made of fields on some modes => Local on that modes

G. M. D'Ariano, F. Manessi, P. Perinotti and A. Tosini, IJMPA (2014)

Any state is of the form:

$$\rho = \begin{pmatrix} p\rho_e & 0\\ 0 & (1-p)\rho_o \end{pmatrix}$$

3. Informational features: tomography for fermionic quantum theory

3. Informational features: tomography for fermionic quantum theory

Local tomography:

Alice and Bob determine the state by local measurements

 $D_{\rm AB} = D_{\rm A} D_{\rm B}$

3. Informational features: tomography for fermionic quantum theory

Local tomography:

Alice and Bob determine the state by local measurements

 $D_{\rm AB} = D_{\rm A} D_{\rm B}$

Non-local tomography: local measurements are not enough

L. Hardy and W. K. Wootters, Foundations of Physics 42, 454 (2012)

Fermionic quantum theory

Local tomography

 $D_{\rm AB} = D_{\rm A} D_{\rm B}$

G. M. D'Ariano, F. Manessi, P. Perinotti and A. Tosini, IJMPA (2014)

Fermionic quantum theory

Local tomography

 $D_{\rm AB} = D_{\rm A} D_{\rm B}$

Fermionic quantum theory

 $D_{AB} = D_A D_B$

Fermionic quantum theory

1) Fix a notion of entanglement: **non-separability**

2) Quantify amount of entanglement in operational terms: we choose **Entanglement of formation**

1) Fix a notion of entanglement: **non-separability**

2) Quantify amount of entanglement in operational terms: we choose **Entanglement of formation**

How much entanglement in ρ ?

Quantum entanglement of formation

Fermionic entanglement of formation

1) Fix a notion of entanglement: **non-separability**

2) Quantify amount of entanglement in operational terms: we choose **Entanglement of formation**

How much entanglement in ρ ?

Fermionic entanglement of formation

1) Fix a notion of entanglement: **non-separability**

2) Quantify amount of entanglement in operational terms: we choose **Entanglement of formation**

How much entanglement in ρ ?

Fermionic entanglement of formation

1) Fix a notion of entanglement: **non-separability**

2) Quantify amount of entanglement in operational terms: we choose Entanglement of formation

How much entanglement in ρ ?

Quantum entanglement of formation

$$|\Psi\rangle_{res}^{\otimes N} \xrightarrow{\text{LOCC}} \rho^{\otimes M}$$
N resource states M copies of ρ
 $E(\rho) = \lim_{M \to \infty} \frac{N(M)}{M}$
 $E(\rho) = 0 \iff \rho$ separable
 $E(\rho) = 1 \iff \rho$ maximally entangled

Fermionic entanglement of formation

$$\begin{split} \Psi \rangle_{res}^{\otimes N} \xrightarrow{\text{Ferm. LOCC}} \rho^{\otimes M} \\ E_{\rm F}(\rho) &= \lim_{M \to \infty} \frac{N(M)}{M} \end{split}$$

G. M. D'Ariano, F. Manessi, P. Perinotti and A. Tosini, IJMPA (2014)
3. Informational features: fermionic entanglement

1) Fix a notion of entanglement: **non-separability**

2) Quantify amount of entanglement in operational terms: we choose Entanglement of formation

How much entanglement in ρ ?

Quantum entanglement of formation
$$|\Psi\rangle_{res}^{\otimes N} \xrightarrow{LOCC} \rho^{\otimes M}$$
 $N \text{resource states}$ $M \text{ copies of } \rho$ $E(\rho) = \lim_{M \to \infty} \frac{N(M)}{M}$ $E(\rho) = 0 \iff \rho$ separable $E(\rho) = 1 \iff \rho$ maximally entangled

Fermionic entanglement of formation

$$|\Psi\rangle_{res}^{\otimes N} \xrightarrow{\text{Ferm. LOCC}} \rho^{\otimes M}$$
$$E_{\rm F}(\rho) = \lim_{M \to \infty} \frac{N(M)}{M}$$

Proposition:

$$E_{\rm F}(\rho) \ge p_e E(\rho_e) + p_o E(\rho_o)$$

$$\sum_{p_e \rho_e} p_o \rho_o$$

G. M. D'Ariano, F. Manessi, P. Perinotti and A. Tosini, IJMPA (2014)

$$\begin{split} |\Psi_{e}\rangle &= \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right) \\ \rho_{\star} &= \frac{1}{2} |\Psi_{e}\rangle \langle \Psi_{e}| + \frac{1}{2} |\Psi_{o}\rangle \langle \Psi_{o} \\ |\Psi_{o}\rangle \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle\right) \\ \rho_{e} & \rho_{o} \end{split}$$

$$|\Psi_e\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right)$$
$$|\Psi_o\rangle \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle\right)$$

$$\rho_{\star} = \frac{1}{2} |\Psi_e\rangle \langle \Psi_e| + \frac{1}{2} |\Psi_o\rangle \langle \Psi_o|$$

$$\rho_e \qquad \rho_o$$

As qubits state it has no entanglement

$$\left|\pm\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0\right\rangle \pm \left|1\right\rangle\right)$$

$$E(\rho_{\star}) = 0$$

$$\rho_{\star} = \frac{1}{2} |+\rangle \langle +|^{\otimes 2} + \frac{1}{2} |-\rangle \langle -|^{\otimes 2}$$

$$|\Psi_e\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right)$$
$$|\Psi_o\rangle \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle\right)$$

$$\rho_{\star} = \frac{1}{2} |\Psi_e\rangle \langle \Psi_e| + \frac{1}{2} |\Psi_o\rangle \langle \Psi_o|$$
$$\rho_e \qquad \rho_o$$

As qubits state it has no entanglement

$$|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle)$$

$$\rho_{\star} = \frac{1}{2} |+\rangle \langle +|^{\otimes 2} + \frac{1}{2} |-\rangle \langle -|^{\otimes 2}$$

 $E(\rho_{\star}) = 0$

As Fermionic state has max entanglement

$$|\Psi_e\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right)$$
$$|\Psi_o\rangle \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle\right)$$

$$\rho_{\star} = \frac{1}{2} |\Psi_e\rangle \langle \Psi_e| + \frac{1}{2} |\Psi_o\rangle \langle \Psi_o|$$

$$\rho_e \qquad \rho_o$$

As qubits state it has no entanglement

$$|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle)$$

As Fermionic state has max entanglement

$$E(\rho_{\star}) = 0$$

``

$$\rho_{\star} = \frac{1}{2} |+\rangle \langle +|^{\otimes 2} + \frac{1}{2} |-\rangle \langle -|^{\otimes 2} \rangle$$

$$p_e \rho_e + p_o \rho_o$$
$$E_F(\rho) \ge p_e E(\rho_e) + p_o E(\rho_o)$$

$$|\Psi_e\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right)$$
$$|\Psi_o\rangle \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle\right)$$

$$\rho_{\star} = \frac{1}{2} |\Psi_e\rangle \langle \Psi_e| + \frac{1}{2} |\Psi_o\rangle \langle \Psi_o|$$

$$\rho_e \qquad \rho_o$$

As qubits state it has no entanglement

$$|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle)$$

As Fermionic state has max entanglement

$$E(\rho_{\star}) = 0$$

$$\rho_{\star} = \frac{1}{2} |+\rangle \langle +|^{\otimes 2} + \frac{1}{2} |-\rangle \langle -|^{\otimes 2}$$

 $p_e \rho_e + p_o \rho_o$ $E_F(\rho) \ge p_e E(\rho_e) + p_o E(\rho_o)$

$$E_{\rm F}(\rho_{\star}) \ge \frac{1}{2} \underbrace{E(\rho_{e})}_{1} + \frac{1}{2} \underbrace{E(\rho_{o})}_{1}$$

Quantum entanglement is monogamous

3-qubits: $|\Psi
angle_{
m ABC}$

Quantum entanglement is monogamous

3-qubits:
$$|\Psi\rangle_{ABC} = |\Psi\rangle_{AB} \otimes |\Psi\rangle_{C}$$

Quantum entanglement is monogamous

3-qubits:
$$|\Psi\rangle_{ABC} = |\Psi\rangle_{AB} \otimes |\Psi\rangle_{C}$$

 $E(\rho_{AB}) + E(\rho_{AC}) \leqslant 1$
1 0

V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

Quantum entanglement is monogamous

3-qubits:
$$|\Psi\rangle_{ABC} = |\Psi\rangle_{AB} \otimes |\Psi\rangle_{C}$$

 $E(\rho_{AB}) + E(\rho_{AC}) \leqslant 1$
1 0

V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

Fermionic entanglement is not monogamous

3-LFMs:

 $|\Psi\rangle_{ABC} = \frac{1}{2}(|001\rangle + |010\rangle + |100\rangle + |111\rangle)$

Quantum entanglement is monogamous

3-qubits:
$$|\Psi\rangle_{ABC} = |\Psi\rangle_{AB} \otimes |\Psi\rangle_{C}$$

 $E(\rho_{AB}) + E(\rho_{AC}) \leqslant 1$
1 0

V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

Fermionic entanglement is not monogamous

3-LFMs:

$$|\Psi\rangle_{ABC} = \frac{1}{2}(|001\rangle + |010\rangle + |100\rangle + |111\rangle)$$

 $\rho_{AB} = \rho_{AC} = \rho_{BC} = \rho_{\star} \qquad E_F(\rho_{\star}) = 1$

system $A \in \Theta$ fully specified by its set of states St(A)

 $\begin{array}{ll} \text{system } A\in\Theta & \text{ fully specified by its set of states } St(A) \\ \text{system } \bar{A}\in\bar{\Theta} & St(\bar{A}) \ \text{linear section of } St(A) \end{array}$

 $\begin{array}{ll} \text{system } A\in\Theta & \text{ fully specified by its set of states } St(A) \\ \text{system } \bar{A}\in\bar{\Theta} & St(\bar{A}) \ \text{linear section of } St(A) \end{array}$

$$\sigma: \Theta \to \bar{\Theta} \qquad (\mathbf{A}, \operatorname{St}(\mathbf{A})) \mapsto (\bar{\mathbf{A}}, \operatorname{St}(\bar{\mathbf{A}}))$$
$$\operatorname{St}(\bar{\mathbf{A}}) := \{ \rho \in \operatorname{St}(\mathbf{A}) \mid (s_i^{\sigma} | \rho) = 0, \quad i = 1, \dots, V_{\mathbf{A}}^{\sigma} \}$$

 $\begin{array}{ll} \text{system } A\in\Theta & \text{ fully specified by its set of states } St(A) \\ \text{system } \bar{A}\in\bar{\Theta} & St(\bar{A}) \ \text{linear section of } St(A) \end{array}$

$$\sigma: \Theta \to \overline{\Theta} \qquad (\mathbf{A}, \operatorname{St}(\mathbf{A})) \mapsto (\overline{\mathbf{A}}, \operatorname{St}(\overline{\mathbf{A}}))$$
$$\operatorname{St}(\overline{\mathbf{A}}) := \{\rho \in \operatorname{St}(\mathbf{A}) \mid (s_i^{\sigma} | \rho) = 0, \quad i = 1, \dots, V_{\mathbf{A}}^{\sigma}\}$$

 $\begin{array}{ll} \text{system } A\in\Theta & \text{ fully specified by its set of states } St(A) \\ \text{system } \bar{A}\in\bar{\Theta} & St(\bar{A}) & \text{linear section of } St(A) \end{array}$

number of

Open question: how does the tomography of the theory change after superselection?

Open question: how does the tomography of the theory change after superselection?

Question:

Open question: how does the tomography of the theory change after superselection?

Question:

The intuition

Open question: how does the tomography of the theory change after superselection?

Question:

The intuition

Open question: how does the tomography of the theory change after superselection?

Question:

Open question: how does the tomography of the theory change after superselection?

Question:

linear constraint
$${
m Tr}[
ho\sigma_y]=0$$

Real and Fermionic quantum theory are (the only two) minimal SSR of QT

Real and Fermionic quantum theory are (the only two) minimal SSR of QT

minimal SSR => bilocal tomography

G. M. D'Ariano, F. Manessi, P. Perinotti and A. Tosini, IJMPA (2014) L. Hardy and W. K. Wootters, Foundations of Physics 42, 454 (2012)

Quantum Theory has been proved to be an operational theory of information processing

Hardy, L. quant-ph/0101012 (2001) CPD. Phys. Rev. A 84, 012311 (2011) Masanes, L., Muller, M.P. New J. Phys. 13(6), 063001 (2011) Dakic, B., Brukner, C. In: Halvorson, H. (ed.) Deep Beauty pp. 365–392 CUP (2011)

┿

Axioms regarding how information can or cannot be manipulated

Quantum Theory has been proved to be an operational theory of information processing

Hardy, L. quant-ph/0101012 (2001) CPD. Phys. Rev. A 84, 012311 (2011) Masanes, L., Muller, M.P. New J. Phys. 13(6), 063001 (2011) Dakic, B., Brukner, C. In: Halvorson, H. (ed.) Deep Beauty pp. 365–392 CUP (2011)

┿

Axioms regarding how information can or cannot be manipulated

Question: informational derivation of Fermionic quantum theory ?

Quantum Theory has been proved to be an operational theory of information processing

Hardy, L. quant-ph/0101012 (2001) CPD. Phys. Rev. A 84, 012311 (2011) Masanes, L., Muller, M.P. New J. Phys. 13(6), 063001 (2011) Dakic, B., Brukner, C. In: Halvorson, H. (ed.) Deep Beauty pp. 365–392 CUP (2011)

Axioms regarding how information can or cannot be manipulated

Question: informational derivation of Fermionic quantum theory?

Quantum Theory has been proved to be an operational theory of information processing

Hardy, L. quant-ph/0101012 (2001) CPD. Phys. Rev. A 84, 012311 (2011) Masanes, L., Muller, M.P. New J. Phys. 13(6), 063001 (2011) Dakic, B., Brukner, C. In: Halvorson, H. (ed.) Deep Beauty pp. 365–392 CUP (2011)

Axioms regarding how information can or cannot be manipulated

Question: informational derivation of Fermionic quantum theory?

Question: extend the operational informational framework to Quantum Field Theory

Alternative to Algebraic Quantum Field theory

Haag, R., Local quantum physics, volume 2, Springer Berlin, 1996.