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Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.
• C*-algebra = algebra of physical observables

(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C
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Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)

• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.

I

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.
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What is a representation?

I Representation of C in R

• Natural isomorphism

C(A,B) ∼= R(F (A),F (B))

for A,B objects in C

I Biggest advantage: it gives more structure to types without altering
the interpretation of programs.
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States and effects duality: the “Nijmegen triangle”

(
predicate

transformers

) --
>

(
state

transformers

)
mm

(
computations

)Pred

gg

Stat

77

I This view works in many settings, including probabilistic and
quantum computation.

I Goal: Make this view compositional for quantum computation
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Examples of representations (for positive maps)

I C∗-AlgPU: category of C*-algebras and positive unital maps.

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgPU

Pred

ee

Stat

::

I Pred and Stat are representations (i.e. full and faithful).
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Representation for completely positive maps?

I C∗-AlgCPU: category of C*-algebras and completely positive unital
maps

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgCPU

Pred

ee

Stat

99

I Pred and Stat are NOT representations.

Page 8 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Representation for completely positive maps?

I C∗-AlgCPU: category of C*-algebras and completely positive unital
maps

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgCPU

Pred

ee

Stat

99

I Pred and Stat are NOT representations.

Page 8 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Representation for completely positive maps?

I C∗-AlgCPU: category of C*-algebras and completely positive unital
maps

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgCPU

Pred

ee

Stat

99

I Pred and Stat are NOT representations.

Page 8 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Main theorem

I NIsom: category of natural numbers and isometries (i.e. matrices
F ∈ Mm×n such that F ∗F = I ), which induce completely positive
unital maps F ∗_F : Mm → Mn.

I Functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n
• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NIsom,C∗-AlgPU].
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Variation on the index category

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n

• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].
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A recipe for representations of completely positive
unital maps

I Take a representation F of C∗-AlgPU in a category R.
• F : C∗-AlgPU → R full and faithful.
• Examples:

I Pred : C∗-AlgPU → (effect modules)
I Stat : C∗-Algop

PU → (convex sets)

I Mix it with our representation M of C∗-AlgCPU in
[NIsom,C∗-AlgPU]

• Theorem: M : C∗-AlgCPU → [NIsom,C∗-AlgPU] full and
faithful.

I You get a representation of C∗-AlgCPU in [NIsom,R] !

I Crucial point: Representing a completely positive map as a natural
family of maps rather than as a unique map.
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Concluding remarks



Convex dcpos

I Convex set (X , ⊕r : X 2 → X )

x ⊕r y = r · x + (1− r) · y (r ∈ [0, 1])

(+ extra conditions which describe the convex structure of X ).

I A convex dcpo is a convex set equipped with a dcpo structure such
that the functions that constitute its convex structure are
Scott-continuous.

I dConv: category of convex dcpos and affine Scott-continuous maps
between them.

I Example: unit interval of the reals.
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Representing state spaces as convex dcpos

I W*-algebras are C*-algebras with nice domain-theoretic properties.
• cf. [Rennela, MFPS XXX, 2014]

I
I
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I W∗-AlgPU: category of W*-algebras and (normal) positive unital
maps

I W∗-AlgCPU: category of W*-algebras and (normal) completely
positive unital maps

I

Page 13 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Representing state spaces as convex dcpos

I W*-algebras are C*-algebras with nice domain-theoretic properties.
• cf. [Rennela, MFPS XXX, 2014]

I W∗-AlgPU: category of W*-algebras and (normal) positive unital
maps

I W∗-AlgCPU: category of W*-algebras and (normal) completely
positive unital maps

I NS(A) = W∗-AlgPU(A,C) for a W*-algebra A
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I The functor NS : W∗-Algop
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is full and faithful.
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taking A to {NS(Mn(A))}n

is full and faithful.

Page 13 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Quantum (pre)domains

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.
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Motivation: introducing lifting in (classical)
domain theory

Set
identity on objects

,,

flat predomain

��

> Pfn
(_)+1

ll

flat domain

��
Predom

(_)⊥
,,> Dom!

forgetful

mm

I Predomain: set + partial order + least upper bounds of ω-chains.

I Domain: predomain with a least element.
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Motivation: introducing lifting in quantum domain
theory

W∗-AlgCPU

identity on objects
--

NS

��

> W∗-AlgCPSU
(_)⊕C

mm

NS(_)⊥

��
QPredom

(_)⊥
--> QDom!

forgetful

mm

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 16 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in quantum domain
theory

W∗-AlgCPU

identity on objects
--

NS

��

> W∗-AlgCPSU
(_)⊕C

mm

NS(_)⊥

��
QPredom

(_)⊥
--> QDom!

forgetful

mm

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 16 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in quantum domain
theory

W∗-AlgCPU

identity on objects
--

NS

��

> W∗-AlgCPSU
(_)⊕C

mm

NS(_)⊥

��
QPredom

(_)⊥
--> QDom!

forgetful

mm

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 16 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Where we are, sofar

Types for quantum computation

How to build representations of completely positive maps

Application: Quantum domain theory

Concluding remarks



Next step: Improving quantum domains

I Axiomatization of the algebraic structure of quantum domains

A⊕ A→ M2(A) in W∗-AlgCPU
=================================
NS(M2(A))⇒ NS(A)⊕NS(A) in QDom

cf. S. Staton. POPL’15.

I Algebraic compactness and quantum (pre)domains (to appear).
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Main points

I C*-algebras with completely positive maps are a widely accepted
model of first-order quantum computation.

I There are representations of various categories of C*-algebras with
positive maps.

I Our contribution is a general method for extending these
representations to completely positive maps.

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

I Trick for quantum domain theory: replacing Scott-continuous maps
by natural families of Scott-continuous maps.
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