
Complete positivity and
natural representation of
quantum computations
QPL’15

Mathys Rennela (Radboud University)
Sam Staton (Oxford University)
15th July 2015

Page 1 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality



Outline

Types for quantum computation

How to build representations of completely positive maps

Application: Quantum domain theory

Concluding remarks

Page 2 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality



Where we are, sofar

Types for quantum computation

How to build representations of completely positive maps

Application: Quantum domain theory

Concluding remarks



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.
• C*-algebra = algebra of physical observables

(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C

Page 3 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.

• C*-algebra = algebra of physical observables
(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C

Page 3 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.
• C*-algebra = algebra of physical observables

(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C

Page 3 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.
• C*-algebra = algebra of physical observables

(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C

Page 3 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.
• C*-algebra = algebra of physical observables

(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C

Page 3 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.
• C*-algebra = algebra of physical observables

(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C

Page 3 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.
• C*-algebra = algebra of physical observables

(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C

Page 3 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Types as C*-algebras

I A type A is interpreted as a C*-algebra JAK.
• C*-algebra = algebra of physical observables

(measurable quantities of a physical system).

I Bool: JboolK = C⊕ C

I Qubit: JqubitK = M2 = B(C2)

I Tensor: Jx : A, y : BK = A⊗ B

I Void: J()K = C

I Natural numbers: JnatK = ⊕n∈N C

Page 3 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)

• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.

I

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)
• unital: preserves the unit.

• positive: preserves observables
I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.

I

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)
• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.

I

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)
• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.
I

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)

• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.

I

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)

• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.
I M2n (f ) : M2n (B)→ M2n (A) positive.

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)

• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.
I idJqubitK⊗n ⊗f : JqubitK⊗n ⊗ JBK→ JqubitK⊗n ⊗ JAK positive.

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)

• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.
I idJqubitK⊗n ⊗f : JqubitK⊗n ⊗ JBK→ JqubitK⊗n ⊗ JAK positive.

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Programs as completely positive maps

I f = Jx : A ` t : BK : JBK→ JAK (predicate transformer)

• unital: preserves the unit.
• positive: preserves observables

I positive element: a = x∗x for some x .
I observables are determined by positive elements.

• completely positive: allows to run the computation on a
subsystem of a bigger system.
I idJqubitK⊗n ⊗f : JqubitK⊗n ⊗ JBK→ JqubitK⊗n ⊗ JAK positive.

I Complete positivity is at the core of quantum computation

I Our contribution: a method to consider complete positive maps as
natural families of positive maps.

Page 4 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Types for quantum computation



Where we are, sofar

Types for quantum computation

How to build representations of completely positive maps

Application: Quantum domain theory

Concluding remarks



What is a representation?

I Representation of C in R

• Natural isomorphism

C(A,B) ∼= R(F (A),F (B))

for A,B objects in C

I Biggest advantage: it gives more structure to types without altering
the interpretation of programs.

Page 5 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



What is a representation?

I Representation of C in R

• full and faithful functor

F : C→ R

Natural isomorphism

C(A,B) ∼= R(F (A),F (B))

for A,B objects in C

I Biggest advantage: it gives more structure to types without altering
the interpretation of programs.

Page 5 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



What is a representation?

I Representation of C in R

• Natural isomorphism

C(A,B) ∼= R(F (A),F (B))

for A,B objects in C

I Biggest advantage: it gives more structure to types without altering
the interpretation of programs.

Page 5 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



What is a representation?

I Representation of C in R

• Natural isomorphism

C(A,B) ∼= R(F (A),F (B))

for A,B objects in C

I Biggest advantage: it gives more structure to types without altering
the interpretation of programs.

Page 5 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



States and effects duality: the “Nijmegen triangle”

(
predicate

transformers

) --
>

(
state

transformers

)
mm

(
computations

)Pred

gg

Stat

77

I This view works in many settings, including probabilistic and
quantum computation.

I Goal: Make this view compositional for quantum computation

Page 6 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



States and effects duality: the “Nijmegen triangle”

(
predicate

transformers

) --
>

(
state

transformers

)
mm

(
computations

)Pred

gg

Stat

77

I This view works in many settings, including probabilistic and
quantum computation.

I Goal: Make this view compositional for quantum computation

Page 6 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



States and effects duality: the “Nijmegen triangle”

(
predicate

transformers

) --
>

(
state

transformers

)
mm

(
computations

)Pred

gg

Stat

77

I This view works in many settings, including probabilistic and
quantum computation.

I Goal: Make this view compositional for quantum computation

Page 6 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



States and effects duality: the “Nijmegen triangle”

(
predicate

transformers

) --
>

(
state

transformers

)
mm

(
computations

)Pred

gg

Stat

77

I This view works in many settings, including probabilistic and
quantum computation.

I Goal: Make this view compositional for quantum computation

Page 6 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Examples of representations (for positive maps)

I C∗-AlgPU: category of C*-algebras and positive unital maps.

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgPU

Pred

ee

Stat

::

I Pred and Stat are representations (i.e. full and faithful).

Page 7 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Examples of representations (for positive maps)

I C∗-AlgPU: category of C*-algebras and positive unital maps.

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgPU

Pred

ee

Stat

::

I Pred and Stat are representations (i.e. full and faithful).

Page 7 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Examples of representations (for positive maps)

I C∗-AlgPU: category of C*-algebras and positive unital maps.

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgPU

Pred

ee

Stat

::

I Pred and Stat are representations (i.e. full and faithful).

Page 7 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Examples of representations (for positive maps)

I C∗-AlgPU: category of C*-algebras and positive unital maps.

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgPU

Pred

ee

Stat

::

I Pred and Stat are representations (i.e. full and faithful).

Page 7 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Representation for completely positive maps?

I C∗-AlgCPU: category of C*-algebras and completely positive unital
maps

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgCPU

Pred

ee

Stat

99

I Pred and Stat are NOT representations.

Page 8 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Representation for completely positive maps?

I C∗-AlgCPU: category of C*-algebras and completely positive unital
maps

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgCPU

Pred

ee

Stat

99

I Pred and Stat are NOT representations.

Page 8 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Representation for completely positive maps?

I C∗-AlgCPU: category of C*-algebras and completely positive unital
maps

(
effect

modules

) ,,
>

(
convex
sets

)
mm

C∗-AlgCPU

Pred

ee

Stat

99

I Pred and Stat are NOT representations.

Page 8 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Main theorem

I NIsom: category of natural numbers and isometries (i.e. matrices
F ∈ Mm×n such that F ∗F = I ), which induce completely positive
unital maps F ∗_F : Mm → Mn.

I Functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n
• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NIsom,C∗-AlgPU].

Page 9 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Main theorem

I NIsom: category of natural numbers and isometries (i.e. matrices
F ∈ Mm×n such that F ∗F = I ), which induce completely positive
unital maps F ∗_F : Mm → Mn.

I Functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n
• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NIsom,C∗-AlgPU].

Page 9 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Main theorem

I NIsom: category of natural numbers and isometries (i.e. matrices
F ∈ Mm×n such that F ∗F = I ), which induce completely positive
unital maps F ∗_F : Mm → Mn.

I Functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n
• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NIsom,C∗-AlgPU].

Page 9 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Main theorem

I NIsom: category of natural numbers and isometries (i.e. matrices
F ∈ Mm×n such that F ∗F = I ), which induce completely positive
unital maps F ∗_F : Mm → Mn.

I Functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n
• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NIsom,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NIsom,C∗-AlgPU].

Page 9 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Variation on the index category

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n

• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

Page 10 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Variation on the index category

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n

• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

Page 10 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Variation on the index category

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n

• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

Page 10 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Variation on the index category

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU]
• (C*-algebra) 7→ (indexed family of C*-algebras)

M(A) = {Mn(A)}n

• (CPU-map) 7→ (natural family of PU-maps)

M(f : A→ B) = {Mn(f ) : Mn(A)→ Mn(B)}n

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

Page 10 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



A recipe for representations of completely positive
unital maps

I Take a representation F of C∗-AlgPU in a category R.
• F : C∗-AlgPU → R full and faithful.
• Examples:

I Pred : C∗-AlgPU → (effect modules)
I Stat : C∗-Algop

PU → (convex sets)

I Mix it with our representation M of C∗-AlgCPU in
[NIsom,C∗-AlgPU]

• Theorem: M : C∗-AlgCPU → [NIsom,C∗-AlgPU] full and
faithful.

I You get a representation of C∗-AlgCPU in [NIsom,R] !

I Crucial point: Representing a completely positive map as a natural
family of maps rather than as a unique map.

Page 11 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



A recipe for representations of completely positive
unital maps

I Take a representation F of C∗-AlgPU in a category R.
• F : C∗-AlgPU → R full and faithful.

• Examples:
I Pred : C∗-AlgPU → (effect modules)
I Stat : C∗-Algop

PU → (convex sets)

I Mix it with our representation M of C∗-AlgCPU in
[NIsom,C∗-AlgPU]

• Theorem: M : C∗-AlgCPU → [NIsom,C∗-AlgPU] full and
faithful.

I You get a representation of C∗-AlgCPU in [NIsom,R] !

I Crucial point: Representing a completely positive map as a natural
family of maps rather than as a unique map.

Page 11 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



A recipe for representations of completely positive
unital maps

I Take a representation F of C∗-AlgPU in a category R.
• F : C∗-AlgPU → R full and faithful.
• Examples:

I Pred : C∗-AlgPU → (effect modules)
I Stat : C∗-Algop

PU → (convex sets)

I Mix it with our representation M of C∗-AlgCPU in
[NIsom,C∗-AlgPU]

• Theorem: M : C∗-AlgCPU → [NIsom,C∗-AlgPU] full and
faithful.

I You get a representation of C∗-AlgCPU in [NIsom,R] !

I Crucial point: Representing a completely positive map as a natural
family of maps rather than as a unique map.

Page 11 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



A recipe for representations of completely positive
unital maps

I Take a representation F of C∗-AlgPU in a category R.
• F : C∗-AlgPU → R full and faithful.
• Examples:

I Pred : C∗-AlgPU → (effect modules)
I Stat : C∗-Algop

PU → (convex sets)

I Mix it with our representation M of C∗-AlgCPU in
[NIsom,C∗-AlgPU]

• Theorem: M : C∗-AlgCPU → [NIsom,C∗-AlgPU] full and
faithful.

I You get a representation of C∗-AlgCPU in [NIsom,R] !

I Crucial point: Representing a completely positive map as a natural
family of maps rather than as a unique map.

Page 11 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



A recipe for representations of completely positive
unital maps

I Take a representation F of C∗-AlgPU in a category R.
• F : C∗-AlgPU → R full and faithful.
• Examples:

I Pred : C∗-AlgPU → (effect modules)
I Stat : C∗-Algop

PU → (convex sets)

I Mix it with our representation M of C∗-AlgCPU in
[NIsom,C∗-AlgPU]

• Theorem: M : C∗-AlgCPU → [NIsom,C∗-AlgPU] full and
faithful.

I You get a representation of C∗-AlgCPU in [NIsom,R] !

I Crucial point: Representing a completely positive map as a natural
family of maps rather than as a unique map.

Page 11 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



A recipe for representations of completely positive
unital maps

I Take a representation F of C∗-AlgPU in a category R.
• F : C∗-AlgPU → R full and faithful.
• Examples:

I Pred : C∗-AlgPU → (effect modules)
I Stat : C∗-Algop

PU → (convex sets)

I Mix it with our representation M of C∗-AlgCPU in
[NIsom,C∗-AlgPU]

• Theorem: M : C∗-AlgCPU → [NIsom,C∗-AlgPU] full and
faithful.

I You get a representation of C∗-AlgCPU in [NIsom,R] !

I Crucial point: Representing a completely positive map as a natural
family of maps rather than as a unique map.

Page 11 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
How to build representations of completely positive maps



Where we are, sofar

Types for quantum computation

How to build representations of completely positive maps

Application: Quantum domain theory

Concluding remarks



Convex dcpos

I Convex set (X , ⊕r : X 2 → X )

x ⊕r y = r · x + (1− r) · y (r ∈ [0, 1])

(+ extra conditions which describe the convex structure of X ).

I A convex dcpo is a convex set equipped with a dcpo structure such
that the functions that constitute its convex structure are
Scott-continuous.

I dConv: category of convex dcpos and affine Scott-continuous maps
between them.

I Example: unit interval of the reals.

Page 12 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Convex dcpos

I Convex set (X , ⊕r : X 2 → X )

x ⊕r y = r · x + (1− r) · y (r ∈ [0, 1])

(+ extra conditions which describe the convex structure of X ).

I A convex dcpo is a convex set equipped with a dcpo structure such
that the functions that constitute its convex structure are
Scott-continuous.

I dConv: category of convex dcpos and affine Scott-continuous maps
between them.

I Example: unit interval of the reals.

Page 12 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Convex dcpos

I Convex set (X , ⊕r : X 2 → X )

x ⊕r y = r · x + (1− r) · y (r ∈ [0, 1])

(+ extra conditions which describe the convex structure of X ).

I A convex dcpo is a convex set equipped with a dcpo structure such
that the functions that constitute its convex structure are
Scott-continuous.

I dConv: category of convex dcpos and affine Scott-continuous maps
between them.

I Example: unit interval of the reals.

Page 12 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Convex dcpos

I Convex set (X , ⊕r : X 2 → X )

x ⊕r y = r · x + (1− r) · y (r ∈ [0, 1])

(+ extra conditions which describe the convex structure of X ).

I A convex dcpo is a convex set equipped with a dcpo structure such
that the functions that constitute its convex structure are
Scott-continuous.

I dConv: category of convex dcpos and affine Scott-continuous maps
between them.

I Example: unit interval of the reals.

Page 12 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Convex dcpos

I Convex set (X , ⊕r : X 2 → X )

x ⊕r y = r · x + (1− r) · y (r ∈ [0, 1])

(+ extra conditions which describe the convex structure of X ).

I A convex dcpo is a convex set equipped with a dcpo structure such
that the functions that constitute its convex structure are
Scott-continuous.

I dConv: category of convex dcpos and affine Scott-continuous maps
between them.

I Example: unit interval of the reals.

Page 12 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Representing state spaces as convex dcpos

I W*-algebras are C*-algebras with nice domain-theoretic properties.
• cf. [Rennela, MFPS XXX, 2014]

I
I

Page 13 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Representing state spaces as convex dcpos

I W*-algebras are C*-algebras with nice domain-theoretic properties.
• cf. [Rennela, MFPS XXX, 2014]

I
I

Page 13 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Representing state spaces as convex dcpos

I W*-algebras are C*-algebras with nice domain-theoretic properties.
• cf. [Rennela, MFPS XXX, 2014]

I W∗-AlgPU: category of W*-algebras and (normal) positive unital
maps

I W∗-AlgCPU: category of W*-algebras and (normal) completely
positive unital maps

I

Page 13 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Representing state spaces as convex dcpos

I W*-algebras are C*-algebras with nice domain-theoretic properties.
• cf. [Rennela, MFPS XXX, 2014]

I W∗-AlgPU: category of W*-algebras and (normal) positive unital
maps

I W∗-AlgCPU: category of W*-algebras and (normal) completely
positive unital maps

I NS(A) = W∗-AlgPU(A,C) for a W*-algebra A

Page 13 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Representing state spaces as convex dcpos

I W*-algebras are C*-algebras with nice domain-theoretic properties.
• cf. [Rennela, MFPS XXX, 2014]

I W∗-AlgPU: category of W*-algebras and (normal) positive unital
maps

I W∗-AlgCPU: category of W*-algebras and (normal) completely
positive unital maps

I The functor NS : W∗-Algop
PU → dConv

taking A to NS(A)

is full and faithful.

Page 13 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Representing state spaces as convex dcpos

I W*-algebras are C*-algebras with nice domain-theoretic properties.
• cf. [Rennela, MFPS XXX, 2014]

I W∗-AlgPU: category of W*-algebras and (normal) positive unital
maps

I W∗-AlgCPU: category of W*-algebras and (normal) completely
positive unital maps

I The functor NS : W∗-Algop
CPU → [Nop

CPU,dConv]

taking A to {NS(Mn(A))}n

is full and faithful.

Page 13 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Quantum (pre)domains

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 14 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Quantum (pre)domains

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 14 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Quantum (pre)domains

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 14 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Quantum (pre)domains

I NCPU: category whose objects are natural numbers and where a
morphism m→ n is a completely positive unital map Mm → Mn.

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 14 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in (classical)
domain theory

Set
identity on objects

,,

flat predomain

��

> Pfn
(_)+1

ll

flat domain

��
Predom

(_)⊥
,,> Dom!

forgetful

mm

I Predomain: set + partial order + least upper bounds of ω-chains.

I Domain: predomain with a least element.

Page 15 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in (classical)
domain theory

Set
identity on objects

,,

flat predomain

��

> Pfn
(_)+1

ll

flat domain

��
Predom

(_)⊥
,,> Dom!

forgetful

mm

I Predomain: set + partial order + least upper bounds of ω-chains.

I Domain: predomain with a least element.

Page 15 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in (classical)
domain theory

Set
identity on objects

,,

flat predomain

��

> Pfn
(_)+1

ll

flat domain

��
Predom

(_)⊥
,,> Dom!

forgetful

mm

I Predomain: set + partial order + least upper bounds of ω-chains.

I Domain: predomain with a least element.

Page 15 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in (classical)
domain theory

Set
identity on objects

,,

flat predomain

��

> Pfn
(_)+1

ll

flat domain

��
Predom

(_)⊥
,,> Dom!

forgetful

mm

I Predomain: set + partial order + least upper bounds of ω-chains.

I Domain: predomain with a least element.

Page 15 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in quantum domain
theory

W∗-AlgCPU

identity on objects
--

NS

��

> W∗-AlgCPSU
(_)⊕C

mm

NS(_)⊥

��
QPredom

(_)⊥
--> QDom!

forgetful

mm

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 16 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in quantum domain
theory

W∗-AlgCPU

identity on objects
--

NS

��

> W∗-AlgCPSU
(_)⊕C

mm

NS(_)⊥

��
QPredom

(_)⊥
--> QDom!

forgetful

mm

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 16 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Motivation: introducing lifting in quantum domain
theory

W∗-AlgCPU

identity on objects
--

NS

��

> W∗-AlgCPSU
(_)⊕C

mm

NS(_)⊥

��
QPredom

(_)⊥
--> QDom!

forgetful

mm

I Quantum predomain: functor D : Nop
CPU → dConv such that

D(f ⊕r g) = D(f )⊕r D(g) r ∈ [0, 1]

I Quantum domain: quantum predomain D such that D(1) has a least
element.

Page 16 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Application: Quantum domain theory



Where we are, sofar

Types for quantum computation

How to build representations of completely positive maps

Application: Quantum domain theory

Concluding remarks



Next step: Improving quantum domains

I Axiomatization of the algebraic structure of quantum domains

A⊕ A→ M2(A) in W∗-AlgCPU
=================================
NS(M2(A))⇒ NS(A)⊕NS(A) in QDom

cf. S. Staton. POPL’15.

I Algebraic compactness and quantum (pre)domains (to appear).

Page 17 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Next step: Improving quantum domains

I Axiomatization of the algebraic structure of quantum domains

A⊕ A→ M2(A) in W∗-AlgCPU
=================================
NS(M2(A))⇒ NS(A)⊕NS(A) in QDom

cf. S. Staton. POPL’15.

I Algebraic compactness and quantum (pre)domains (to appear).

Page 17 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Next step: Improving quantum domains

I Axiomatization of the algebraic structure of quantum domains

A⊕ A→ M2(A) in W∗-AlgCPU
=================================
NS(M2(A))⇒ NS(A)⊕NS(A) in QDom

cf. S. Staton. POPL’15.

I Algebraic compactness and quantum (pre)domains (to appear).

Page 17 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Next step: Improving quantum domains

I Axiomatization of the algebraic structure of quantum domains

A⊕ A→ M2(A) in W∗-AlgCPU
=================================
NS(M2(A))⇒ NS(A)⊕NS(A) in QDom

cf. S. Staton. POPL’15.

I Algebraic compactness and quantum (pre)domains (to appear).

Page 17 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Next step: Improving quantum domains

I Axiomatization of the algebraic structure of quantum domains

A⊕ A→ M2(A) in W∗-AlgCPU
=================================
NS(M2(A))⇒ NS(A)⊕NS(A) in QDom

cf. S. Staton. POPL’15.

I Algebraic compactness and quantum (pre)domains (to appear).

Page 17 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Main points

I C*-algebras with completely positive maps are a widely accepted
model of first-order quantum computation.

I There are representations of various categories of C*-algebras with
positive maps.

I Our contribution is a general method for extending these
representations to completely positive maps.

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

I Trick for quantum domain theory: replacing Scott-continuous maps
by natural families of Scott-continuous maps.

Page 18 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Main points

I C*-algebras with completely positive maps are a widely accepted
model of first-order quantum computation.

I There are representations of various categories of C*-algebras with
positive maps.

I Our contribution is a general method for extending these
representations to completely positive maps.

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

I Trick for quantum domain theory: replacing Scott-continuous maps
by natural families of Scott-continuous maps.

Page 18 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Main points

I C*-algebras with completely positive maps are a widely accepted
model of first-order quantum computation.

I There are representations of various categories of C*-algebras with
positive maps.

I Our contribution is a general method for extending these
representations to completely positive maps.

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

I Trick for quantum domain theory: replacing Scott-continuous maps
by natural families of Scott-continuous maps.

Page 18 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Main points

I C*-algebras with completely positive maps are a widely accepted
model of first-order quantum computation.

I There are representations of various categories of C*-algebras with
positive maps.

I Our contribution is a general method for extending these
representations to completely positive maps.

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

I Trick for quantum domain theory: replacing Scott-continuous maps
by natural families of Scott-continuous maps.

Page 18 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Main points

I C*-algebras with completely positive maps are a widely accepted
model of first-order quantum computation.

I There are representations of various categories of C*-algebras with
positive maps.

I Our contribution is a general method for extending these
representations to completely positive maps.

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

I Trick for quantum domain theory: replacing Scott-continuous maps
by natural families of Scott-continuous maps.

Page 18 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks



Main points

I C*-algebras with completely positive maps are a widely accepted
model of first-order quantum computation.

I There are representations of various categories of C*-algebras with
positive maps.

I Our contribution is a general method for extending these
representations to completely positive maps.

Theorem
The functor M : C∗-AlgCPU → [NCPU,C∗-AlgPU] yields a representation
of C∗-AlgCPU in [NCPU,C∗-AlgPU].

I Trick for quantum domain theory: replacing Scott-continuous maps
by natural families of Scott-continuous maps.

Page 18 of 18 Rennela, Staton 15th July 2015 Complete positivity as naturality
Concluding remarks


	Types for quantum computation
	How to build representations of completely positive maps
	Application: Quantum domain theory
	Concluding remarks

