Contextuality, Cohomology, and Paradox (arXiv:1502.03097)

Samson ABRAMSKY, Rui Soares BARBOSA, Kohei KISHIDA, Ray LAL, and Shane MANSFIELD (speaking)

QPL2015 17 July, 2015

Outline

- 1 Topological model for contextuality.
- 2 Cohomology: Contextuality is like "impossible figures".
- **3** Relation to QM no-go theorems.

Bell Non-Locality

Distribution $p(o_A, o_B | a_i, b_j)$ for each **context** $\{a_i, b_j\}$.

So a probability table:

	(0 , 0)	(<mark>0</mark> , 1)	(1 , 0)	(1 , 1)
(a_0, b_0)	1/2	0	0	1/2
(a_0, b_1)	3/8	$^{1}/_{8}$	$^{1}/_{8}$	3/8
(a_1, b_0)	³ /8	$^{1}/_{8}$	$^{1}/_{8}$	3/8
(a_1, b_1)	¹ /8	3/8	3/8	1/8

	(<mark>0, 0</mark>)	(<mark>0</mark> , 1)	(<mark>1,0</mark>)	(1,1)
(a_0, b_0)	1/2	0	0	$^{1}/_{2}$
(a_0, b_1)	³ /8	$^{1}/_{8}$	$^{1}/_{8}$	3/8
(a_1, b_0)	3/8	$^{1}/_{8}$	$^{1}/_{8}$	3/8
(a_1, b_1)	$^{1}/_{8}$	3/8	3/8	1/8

Possiblility table: non-zero $\mapsto 1$ ("possible") $0 \mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

Possiblility table: non-zero $\mapsto 1$ ("possible") $0 \mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

Possiblility table: non-zero $\mapsto 1$ ("possible") $0 \quad \mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.

	(<mark>0, 0</mark>)	(<mark>0</mark> , 1)	(1 , 0)	(<mark>1</mark> , 1)
(a_0, b_0)	1	0	0	1
(a_0, b_1)	1	1	1	1
(a_1, b_0)	1	1	1	1
(a_1, b_1)	1	1	1	1

Possiblility table: non-zero $\mapsto 1$ ("possible") $0 \quad \mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.

A table may be **logically non-local / contextual**.

	(<mark>0, 0</mark>)	(<mark>0</mark> , 1)	(1, 0)	(1 , 1)
(a_0, b_0)	1	0	0	1
(a_0, b_1)	1	1	1	1
(a_1, b_0)	1	1	1	1
(a_1, b_1)	1	1	1	1

Possiblility table: non-zero \mapsto 1 ("possible") 0 \mapsto 0 ("impossible").

Support of a probability table is a possibility table.

Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.

A table may be **logically non-local / contextual**. E.g. model by Hardy 1993:

	(<mark>0, 0</mark>)	(<mark>0</mark> , 1)	(1 , 0)	(<mark>1</mark> , 1)
(a_0, b_0)	1	1	1	1
(a_0, b_1)	0	1	1	1
(a_1, b_0)	0	1	1	1
(a_1, b_1)	1	1	1	0

No local probability table has this support.

(Logical non-locality / contextuality implies probabilistic one.)

• There is a distribution $p(\cdot | a_0, a_1, b_0, b_1)$ that gives each $p(\cdot | a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B | a_0, b_0) = \sum_{o, o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);$$

• There is a distribution $p(\cdot | a_0, a_1, b_0, b_1)$ that gives each $p(\cdot | a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B | a_0, b_0) = \sum_{o, o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);$$

• i.e. a distribution over deterministic $\lambda_{(a_0,a_1,b_0,b_1)\mapsto(0,0,0,0)},$ $\lambda_{(a_0,a_1,b_0,b_1)\mapsto(0,0,0,1)},$:

 $\lambda_{(a_0,a_1,b_0,b_1)\mapsto(1,1,1,1)};$

• There is a distribution $p(\cdot | a_0, a_1, b_0, b_1)$ that gives each $p(\cdot | a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B | a_0, b_0) = \sum_{o, o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);$$

- i.e. a distribution over deterministic $\lambda_{(a_0,a_1,b_0,b_1)\mapsto(0,0,0,0)},$ $\lambda_{(a_0,a_1,b_0,b_1)\mapsto(0,0,0,1)},$ \vdots $\lambda_{(a_0,a_1,b_0,b_1)\mapsto(1,1,1,1)};$ $\lambda_{(a_0,a_1,b_0,b_1)\mapsto(1,1,1,1)};$
- i.e. the table is a convex

combination of the deterministic tables for such λ 's.

• There is a distribution $p(\cdot | a_0, a_1, b_0, b_1)$ that gives each $p(\cdot | a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B | a_0, b_0) = \sum_{o, o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);$$

Upshot. A no-signalling but non-local table is

• "Locally consistent":

able to assign probabilities / possibilities consistently to the family of measurement contexts $\{a_i, b_j\}$;

• There is a distribution $p(\cdot | a_0, a_1, b_0, b_1)$ that gives each $p(\cdot | a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B | a_0, b_0) = \sum_{o, o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);$$

Upshot. A no-signalling but non-local table is

• "Locally consistent":

able to assign probabilities / possibilities consistently to the family of measurement contexts $\{a_i, b_j\}$;

• "Globally inconsistent":

not able to

to the set $\{a_0, a_1, b_0, b_1\}$ of all measurements.

• There is a distribution $p(\cdot | a_0, a_1, b_0, b_1)$ that gives each $p(\cdot | a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B | a_0, b_0) = \sum_{o, o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);$$

Upshot. A no-signalling but non-local table is

• "Locally consistent":

able to assign probabilities / possibilities consistently to the family of measurement contexts $\{a_i, b_j\}$;

• "Globally inconsistent":

not able to

to the set $\{a_0, a_1, b_0, b_1\}$ of all measurements.

Topology on the set of measurements.

Topological spaces of variables and of their values.

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

For each variable *x*,

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

For each variable x, a dependent type F(x) of values.

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

For each variable x, a dependent type F(x) of values.

"Bundle"
$$\sum_{x \in X} F(x)$$

When we ask several questions, answers may obey constraints:

When we ask several questions, answers may obey constraints:

- laws of physics, e.g., Charles's law
- laws of logic

- laws of physics, e.g., Charles's law
- laws of logic

Distinguish good and bad ways of connecting dots in bundles ... just like "continuous sections"!

Hardy model:

	00	01	10	11
a_0b_0	1	1	1	1
a_0b_1	0	1	1	1
a_1b_0	0	1	1	1
a_1b_1	1	1	1	0

	00	01	10	11
a_0b_0	1	1	1	1
a_0b_1	0	1	1	1
a_1b_0	0	1	1	1
a_1b_1	1	1	1	0

Hardy model:

	00	01	10	11
a_0b_0	1	1	1	1
a_0b_1	0	1	1	1
a_1b_0	0	1	1	1
a_1b_1	1	1	1	0

	00	01	10	11
a_0b_0	1	1	1	1
a_0b_1	0	1	1	1
a_1b_0	0	1	1	1
a_1b_1	1	1	1	0

Global section: $\lambda_{(a_0,a_1,b_0,b_1)\mapsto(1,0,1,0)}$.

Local consistency, global inconsistency

PR box:

	00	01	10	11
a_0b_0	1	0	0	1
a_0b_1	1	0	0	1
a_1b_0	1	0	0	1
a_1b_1	0	1	1	0

Logical contextuality: Not all sections extend to global. Strong contextuality: No global section at all.

Logical contextuality: Not all sections extend to global. Strong contextuality: No global section at all.

Hieararchy of contextuality:

Probabilistic \supseteq Logical \supseteq Strong contextuality

Logical contextuality: Not all sections extend to global. Strong contextuality: No global section at all.

Hieararchy of contextuality:

Probabilistic \supseteq Logical \supseteq Strong contextuality

Read bundles $\pi : \sum_{x \in X} F(x) \to X$ in logic terms: $x \in X$ are sentences, tt, ff $\in F(x)$ are truth values.

Read bundles $\pi : \sum_{x \in X} F(x) \to X$ in logic terms: $x \in X$ are sentences, tt, ff $\in F(x)$ are truth values.

Read bundles $\pi : \sum_{x \in X} F(x) \to X$ in logic terms: $x \in X$ are sentences, tt, ff $\in F(x)$ are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

• Map of simplicial complexes $\pi : \sum_{x \in X} F(x) \to X.$

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

• Map of simplicial complexes $\pi : \sum_{x \in X} F(x) \to X.$

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

• Map of simplicial complexes $\pi : \sum_{x \in X} F(x) \to X.$

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

• Map of simplicial complexes $\pi : \sum_{x \in X} F(x) \to X.$

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

• Map of simplicial complexes $\pi : \sum_{x \in X} F(x) \to X.$

Bundles that correspond to no-signalling possibility tables.

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

 Map of simplicial complexes $\pi:\sum F(x)\to X.$ Presheaf $F: C(X)^{\mathrm{op}} \to \mathbf{Sets}.$ (With some axioms, e.g. no-signalling.) (Global sections can be defined suitably.)

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

2 makes it possible to apply cohomology.

Cohomology of Contextuality

Local consistency, global inconsistency...

Penrose 1991, "On the Cohomology of Impossible Figures".

"Čech cohomology" gives a group homomorphism γ that assigns to each section *s* an "obstruction" γ_s s.th.

s extends to a "cocycle" $\iff \gamma_s = 0.$

"Čech cohomology" gives a group homomorphism γ that assigns to each section *s* an "obstruction" γ_s s.th.

s extends to a "cocycle" $\iff \gamma_s = 0.$

"Čech cohomology" gives a group homomorphism γ that assigns to each section *s* an "obstruction" γ_s s.th.

s extends to a "cocycle" $\iff \gamma_s = 0.$

s extends to a "cocycle"
$$\iff \gamma_s = 0.$$

s extends to global

- s extends to a "cocycle" $\iff \gamma_s = 0.$ $\uparrow \Downarrow$ s extends to global
- False positives, e.g. in Hardy model:

- s extends to a "cocycle" $\iff \gamma_s = 0.$ $\uparrow \Downarrow$ s extends to global
- False positives, e.g. in Hardy model.
- Works for many cases; e.g. PR box:

Joint outcomes may / may not satisfy parity equations:

 $(0,0) \rightsquigarrow x \oplus y = 0$ $(0,1) \rightsquigarrow x \oplus y = 1$ $(1,0) \rightsquigarrow x \oplus y = 1$ $(1,1) \rightsquigarrow x \oplus y = 0$

Joint outcomes may / may not satisfy parity equations:

$$(0,0) \implies x \oplus y = 0$$

$$(0,1) \implies x \oplus y = 1$$

$$(1,0) \implies x \oplus y = 1$$

$$(1,1) \implies x \oplus y = 0$$

$$a_0 \oplus b_0 = 0$$

$$a_0 \oplus b_1 = 0$$

$$a_1 \oplus b_0 = 0$$

$$a_1 \oplus b_1 = 1$$

Joint outcomes may / may not satisfy parity equations:

 $(0,0) \rightarrow x \oplus y = 0$ $(0,1) \rightarrow x \oplus y = 1$ $(1,0) \rightarrow x \oplus y = 1$ $(1,1) \rightarrow x \oplus y = 0$ $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $a_1 \oplus b_1 = 1$ $\bigoplus LHS's = \bigoplus RHS's$

The equations are inconsistent,

The equations are inconsistent,

- i.e. no global assignment to a_0 , a_1 , b_0 , b_1 ,
- i.e. strongly contextual!

"All vs nothing" arguments in QM can be formulated the same way.

- GHZ state: $a_0 \oplus b_0 \oplus c_0 = 0$ $a_0 \oplus b_1 \oplus c_1 = 1$ $a_1 \oplus b_0 \oplus c_1 = 1$ $a_1 \oplus b_1 \oplus c_0 = 1$ $\bigoplus LHS's = 0 \neq 1 = \bigoplus RHS's$
- Kochen-Specker-type:

18 variables, each occurs twice, so \bigoplus LHS's = 0; 9 equations, all of parity 1, so \bigoplus RHS's = 1.

• "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$\begin{array}{ll} a_0 + 2b_0 \equiv 0 \mod 3 & a_1 + 2c_0 \equiv 0 \mod 3 \\ a_0 + b_1 + c_0 \equiv 2 \mod 3 & a_0 + b_1 + c_1 \equiv 2 \mod 3 \\ a_1 + b_0 + c_1 \equiv 2 \mod 3 & a_1 + b_1 + c_1 \equiv 2 \mod 3 \end{array}$$

• "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$a_0 + 2b_0 \equiv 0 \mod 3 \qquad a_1 + 2c_0 \equiv 0 \mod 3$$
$$a_0 + b_1 + c_0 \equiv 2 \mod 3 \qquad a_0 + b_1 + c_1 \equiv 2 \mod 3$$
$$a_1 + b_0 + c_1 \equiv 2 \mod 3 \qquad a_1 + b_1 + c_1 \equiv 2 \mod 3$$
$$\sum \text{LHS's} \equiv 0 \mod 3 \qquad \sum \text{RHS's} \equiv 2 \mod 3$$

• "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$a_0 + 2b_0 \equiv 0 \mod 3 \qquad a_1 + 2c_0 \equiv 0 \mod 3$$
$$a_0 + b_1 + c_0 \equiv 2 \mod 3 \qquad a_0 + b_1 + c_1 \equiv 2 \mod 3$$
$$a_1 + b_0 + c_1 \equiv 2 \mod 3 \qquad a_1 + b_1 + c_1 \equiv 2 \mod 3$$
$$\sum \text{LHS's} \equiv 0 \mod 3 \qquad \sum \text{RHS's} \equiv 2 \mod 3$$

Generalized all-vs-nothing argument uses any commutative ring R (e.g. \mathbb{Z}_n) instead of \mathbb{Z}_2 :

• "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$a_0 + 2b_0 \equiv 0 \mod 3 \qquad a_1 + 2c_0 \equiv 0 \mod 3$$
$$a_0 + b_1 + c_0 \equiv 2 \mod 3 \qquad a_0 + b_1 + c_1 \equiv 2 \mod 3$$
$$a_1 + b_0 + c_1 \equiv 2 \mod 3 \qquad a_1 + b_1 + c_1 \equiv 2 \mod 3$$
$$\sum \text{LHS's} \equiv 0 \mod 3 \qquad \sum \text{RHS's} \equiv 2 \mod 3$$

Generalized all-vs-nothing argument uses any commutative ring R (e.g. \mathbb{Z}_n) instead of \mathbb{Z}_2 :

• Linear equations $k_0x_0 + \cdots + k_mx_m = p$ $(k_0, \ldots, k_m, p \in R)$.

• "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$a_0 + 2b_0 \equiv 0 \mod 3 \qquad a_1 + 2c_0 \equiv 0 \mod 3$$
$$a_0 + b_1 + c_0 \equiv 2 \mod 3 \qquad a_0 + b_1 + c_1 \equiv 2 \mod 3$$
$$a_1 + b_0 + c_1 \equiv 2 \mod 3 \qquad a_1 + b_1 + c_1 \equiv 2 \mod 3$$
$$\sum \text{LHS's} \equiv 0 \mod 3 \qquad \sum \text{RHS's} \equiv 2 \mod 3$$

Generalized all-vs-nothing argument uses any commutative ring R (e.g. \mathbb{Z}_n) instead of \mathbb{Z}_2 :

- Linear equations $k_0x_0 + \cdots + k_mx_m = p$ $(k_0, \ldots, k_m, p \in R)$.
- Equations are inconsistent if a subset of them is s.th.
 - coefficients *k* of each variable *x* add up to 0,
 - parities *p* do not.

"Strongly contextual by AvN argument" is explained by "strongly contextual by cohomology":

Theorem.

Let $\ensuremath{\mathcal{M}}$ be a no-signalling bundle model. Then

- *M* admits a generalized AvN argument in a ring *R* implies
 - Cohomology (using *R*) has $\gamma_s = 0$ for no section *s* in \mathcal{M} .
"Strongly contextual by AvN argument" is explained by "strongly contextual by cohomology":

Theorem.

Let \mathcal{M} be a no-signalling bundle model. Then

- *M* admits a generalized AvN argument in a ring *R* implies
 - Cohomology (using *R*) has $\gamma_s = 0$ for no section *s* in \mathcal{M} .

Hieararchy of strong contextuality:

 $AvN \ \subsetneq \ gen. \ AvN \ \subsetneq \ cohom. \ SC \ \subseteq \ SC$

"Strongly contextual by AvN argument" is explained by "strongly contextual by cohomology":

Theorem.

Let \mathcal{M} be a no-signalling bundle model. Then

- *M* admits a generalized AvN argument in a ring *R* implies
 - Cohomology (using *R*) has $\gamma_s = 0$ for no section *s* in \mathcal{M} .

Hieararchy of strong contextuality:

AvN \subsetneq gen. AvN \subsetneq cohom. SC \subseteq SC \cup I ? SC \cap Q

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

• Contextuality—local consistency, global inconsistency is topological in nature, expressed nicely with bundles.

- Contextuality—local consistency, global inconsistency is topological in nature, expressed nicely with bundles.
 - They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.

- Contextuality—local consistency, global inconsistency is topological in nature, expressed nicely with bundles.
 - They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.

- Contextuality—local consistency, global inconsistency is topological in nature, expressed nicely with bundles.
 - They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.
- We have the all-vs-nothing argument in QM precisely formulated and generalized. It shows strong contextuality of a large class of models.

- Contextuality—local consistency, global inconsistency is topological in nature, expressed nicely with bundles.
 - They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.
- We have the all-vs-nothing argument in QM precisely formulated and generalized. It shows strong contextuality of a large class of models.
- Their contextuality is captured by cohomology.

References

- [1] Abramsky, Barbosa, Kishida, Lal, and Mansfield (2015), "Contextuality, cohomology and paradox", arXiv:1502.03097
- [2] Abramsky and Brandenburger (2011), "The sheaf-theoretic structure of non-locality and contextuality", *NJP*
- [3] Abramsky, Mansfield, and Barbosa (2011), "The cohomology of nonlocality and contextuality", *QPL2011*
- [4] Hardy (1993), "Nonlocality for two particles without inequalities for almost all entangled states", *PRL*
- [5] Fine (1982), "Hidden variables, joint probability, and the Bell inequalities", *PRL*
- [6] Penrose (1991), "On the cohomology of impossible figures", *Structural Topology*
- [7] Mermin (1990), "Extreme quantum entanglement in a superposition of macroscopically distinct states", *PRL*
- [8] Pironio, Bancal, and Scarani (2011), "Extremal correlations of the tripartite no-signaling polytope", J. Phys. A: Math. Theor.