Contextuality, Cohomology, and Paradox (arXiv:1502.03097)

Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Ray Lal, and Shane Mansfield (speaking)

QPL2015
17 July, 2015

Outline

(1) Topological model for contextuality.
(2 Cohomology: Contextuality is like "impossible figures".
(3) Relation to QM no-go theorems.

Bell Non-Locality

Bell-type setup. Input-output box for $(2,2,2)$ scenario:

Distribution $p\left(o_{A}, o_{B} \mid a_{i}, b_{j}\right)$ for each context $\left\{a_{i}, b_{j}\right\}$.

So a probability table:

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{0}, b_{0}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{0}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{1}, b_{0}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{1}, b_{1}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{0}, b_{0}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{0}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{1}, b_{0}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{1}, b_{1}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Possiblility table: non-zero $\mapsto 1$ ("possible")
 $0 \quad \mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{0}, b_{0}\right)$	$1 / 2$	0	0	$1 / 2$
$\left(a_{0}, b_{1}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{1}, b_{0}\right)$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$\left(a_{1}, b_{1}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Possiblility table: non-zero $\mapsto 1$ ("possible") $0 \quad \mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{0}, b_{0}\right)$	1	0	0	1
$\left(a_{0}, b_{1}\right)$	1	1	1	1
$\left(a_{1}, b_{0}\right)$	1	1	1	1
$\left(a_{1}, b_{1}\right)$	1	1	1	1

Possiblility table: non-zero $\mapsto 1$ ("possible")

$$
0 \quad \mapsto 0 \text { ("impossible"). }
$$

Support of a probability table is a possibility table. Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{0}, b_{0}\right)$	1	0	0	1
$\left(a_{0}, b_{1}\right)$	1	1	1	1
$\left(a_{1}, b_{0}\right)$	1	1	1	1
$\left(a_{1}, b_{1}\right)$	1	1	1	1

Possiblility table: non-zero $\mapsto 1$ ("possible")

$$
0 \quad \mapsto 0 \text { ("impossible"). }
$$

Support of a probability table is a possibility table. Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.
A table may be logically non-local / contextual.

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{0}, b_{0}\right)$	1	0	0	1
$\left(a_{0}, b_{1}\right)$	1	1	1	1
$\left(a_{1}, b_{0}\right)$	1	1	1	1
$\left(a_{1}, b_{1}\right)$	1	1	1	1

Possiblility table: non-zero $\mapsto 1$ ("possible")
$0 \quad \mapsto 0$ ("impossible").
Support of a probability table is a possibility table.
Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.

A table may be logically non-local / contextual.
E.g. model by Hardy 1993:

	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\left(a_{0}, b_{0}\right)$	1	1	1	1
$\left(a_{0}, b_{1}\right)$	0	1	1	1
$\left(a_{1}, b_{0}\right)$	0	1	1	1
$\left(a_{1}, b_{1}\right)$	1	1	1	0

No local probability table has this support.
(Logical non-locality / contextuality implies probabilistic one.)

Theorem (Fine 1982 / Abramsky-Brandenburger 2011).
A table $p\left(\cdot \mid a_{i}, b_{j}\right)_{i, j \in\{0,1\}}$ is local iff

Theorem (Fine 1982 / Abramsky-Brandenburger 2011).
A table $p\left(\cdot \mid a_{i}, b_{j}\right)_{i, j \in\{0,1\}}$ is local iff

- There is a distribution $p\left(\cdot \mid a_{0}, a_{1}, b_{0}, b_{1}\right)$ that gives each $p\left(\cdot \mid a_{i}, b_{j}\right)$ as a marginal, e.g.,

$$
p\left(o_{A}, o_{B} \mid a_{0}, b_{0}\right)=\sum_{o, o^{\prime}} p\left(o_{A}, o, o_{B}, o^{\prime} \mid a_{0}, a_{1}, b_{0}, b_{1}\right)
$$

Theorem (Fine 1982 / Abramsky-Brandenburger 2011).
A table $p\left(\cdot \mid a_{i}, b_{j}\right)_{i, j \in\{0,1\}}$ is local iff

- There is a distribution $p\left(\cdot \mid a_{0}, a_{1}, b_{0}, b_{1}\right)$ that gives each $p\left(\cdot \mid a_{i}, b_{j}\right)$ as a marginal, e.g.,

$$
p\left(o_{A}, o_{B} \mid a_{0}, b_{0}\right)=\sum_{o, o^{\prime}} p\left(o_{A}, o, o_{B}, o^{\prime} \mid a_{0}, a_{1}, b_{0}, b_{1}\right)
$$

- i.e. a distribution over deterministic

$$
\begin{gathered}
\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(0,0,0,0)}, \\
\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(0,0,0,1)}, \\
\vdots \\
\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,1,1,1)} ;
\end{gathered}
$$

Theorem (Fine 1982 / Abramsky-Brandenburger 2011).
A table $p\left(\cdot \mid a_{i}, b_{j}\right)_{i, j \in\{0,1\}}$ is local iff

- There is a distribution $p\left(\cdot \mid a_{0}, a_{1}, b_{0}, b_{1}\right)$ that gives each $p\left(\cdot \mid a_{i}, b_{j}\right)$ as a marginal, e.g.,

$$
p\left(o_{A}, o_{B} \mid a_{0}, b_{0}\right)=\sum_{o, o^{\prime}} p\left(o_{A}, o, o_{B}, o^{\prime} \mid a_{0}, a_{1}, b_{0}, b_{1}\right)
$$

- i.e. a distribution over deterministic

$$
\begin{gathered}
\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(0,0,0,0)}, \\
\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(0,0,0)}, \\
\vdots \\
\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,1,1,1)} ;
\end{gathered}
$$

- i.e. the table is a convex combination of the deterministic tables for such λ 's.

Theorem (Fine 1982 / Abramsky-Brandenburger 2011).
A table $p\left(\cdot \mid a_{i}, b_{j}\right)_{i, j \in\{0,1\}}$ is local iff

- There is a distribution $p\left(\cdot \mid a_{0}, a_{1}, b_{0}, b_{1}\right)$ that gives each $p\left(\cdot \mid a_{i}, b_{j}\right)$ as a marginal, e.g.,

$$
p\left(o_{A}, o_{B} \mid a_{0}, b_{0}\right)=\sum_{o, o^{\prime}} p\left(o_{A}, o, o_{B}, o^{\prime} \mid a_{0}, a_{1}, b_{0}, b_{1}\right)
$$

Upshot. A no-signalling but non-local table is

- "Locally consistent":
able to assign probabilities / possibilities consistently to the family of measurement contexts $\left\{a_{i}, b_{j}\right\}$;

Theorem (Fine 1982 / Abramsky-Brandenburger 2011).
A table $p\left(\cdot \mid a_{i}, b_{j}\right)_{i, j \in\{0,1\}}$ is local iff

- There is a distribution $p\left(\cdot \mid a_{0}, a_{1}, b_{0}, b_{1}\right)$ that gives each $p\left(\cdot \mid a_{i}, b_{j}\right)$ as a marginal, e.g.,

$$
p\left(o_{A}, o_{B} \mid a_{0}, b_{0}\right)=\sum_{o, o^{\prime}} p\left(o_{A}, o, o_{B}, o^{\prime} \mid a_{0}, a_{1}, b_{0}, b_{1}\right) ;
$$

Upshot. A no-signalling but non-local table is

- "Locally consistent":
able to assign probabilities / possibilities consistently to the family of measurement contexts $\left\{a_{i}, b_{j}\right\}$;
- "Globally inconsistent":
not able to
to the set $\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}$ of all measurements.

Theorem (Fine 1982 / Abramsky-Brandenburger 2011).
A table $p\left(\cdot \mid a_{i}, b_{j}\right)_{i, j \in\{0,1\}}$ is local iff

- There is a distribution $p\left(\cdot \mid a_{0}, a_{1}, b_{0}, b_{1}\right)$ that gives each $p\left(\cdot \mid a_{i}, b_{j}\right)$ as a marginal, e.g.,

$$
p\left(o_{A}, o_{B} \mid a_{0}, b_{0}\right)=\sum_{o, o^{\prime}} p\left(o_{A}, o, o_{B}, o^{\prime} \mid a_{0}, a_{1}, b_{0}, b_{1}\right) ;
$$

Upshot. A no-signalling but non-local table is

- "Locally consistent":
able to assign probabilities / possibilities consistently to the family of measurement contexts $\left\{a_{i}, b_{j}\right\}$;
- "Globally inconsistent":
not able to
to the set $\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}$ of all measurements.
Topology on the set of measurements.

Topological Model for Contextuality

Topological spaces of variables and of their values.

Topological Model for Contextuality

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

Topological Model for Contextuality

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

For each variable x,

Topological Model for Contextuality

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

For each variable x, a dependent type $F(x)$ of values.

Topological Model for Contextuality

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

For each variable x, a dependent type
$F(x)$ of values.
"Bundle" $\sum_{x \in X} F(x)$

When we ask several questions, answers may obey constraints:

When we ask several questions, answers may obey constraints:

- laws of physics,
e.g., Charles's law
- laws of logic

When we ask several questions, answers may obey constraints:

- laws of physics, e.g., Charles's law
- laws of logic

Distinguish good and bad ways of connecting dots in bundles
... just like "continuous sections"!

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

$a_{0} \bullet$

- b_{0}

Hardy model: a_{1}

- b_{1}

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Logical contextuality: Not all sections extend to global ones.

Hardy model:

	00	01	10	11
$a_{0} b_{0}$	1	1	1	1
$a_{0} b_{1}$	0	1	1	1
$a_{1} b_{0}$	0	1	1	1
$a_{1} b_{1}$	1	1	1	0

Global section: $\lambda_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \mapsto(1,0,1,0)}$.

Logical contextuality: Not all sections extend to global ones.
Local consistency, global inconsistency

Hardy:

Logical contextuality: Not all sections extend to global.

PR box:

	00	01	10	11
$a_{0} b_{0}$	1	0	0	1
$a_{0} b_{1}$	1	0	0	1
$a_{1} b_{0}$	1	0	0	1
$a_{1} b_{1}$	0	1	1	0

Logical contextuality: Not all sections extend to global.

PR box:

	00	01	10	11
$a_{0} b_{0}$	1	0	0	1
$a_{0} b_{1}$	1	0	0	1
$a_{1} b_{0}$	1	0	0	1
$a_{1} b_{1}$	0	1	1	0

Logical contextuality: Not all sections extend to global.

	00	01	10	11
$a_{0} b_{0}$	1	0	0	1
$a_{0} b_{1}$	1	0	0	1
$a_{1} b_{0}$	1	0	0	1
$a_{1} b_{1}$	0	1	1	0

Logical contextuality: Not all sections extend to global.

	00	01	10	11
$a_{0} b_{0}$	1	0	0	1
$a_{0} b_{1}$	1	0	0	1
$a_{1} b_{0}$	1	0	0	1
$a_{1} b_{1}$	0	1	1	0

Logical contextuality: Not all sections extend to global.

Logical contextuality: Not all sections extend to global.

Logical contextuality: Not all sections extend to global.

Hardy:

PR box:

Logical contextuality: Not all sections extend to global.

Hardy:

PR box:

Logical contextuality: Not all sections extend to global.

Hardy:

PR box:

Logical contextuality: Not all sections extend to global.

Hardy:

PR box:

Logical contextuality: Not all sections extend to global.
Strong contextuality: No global section at all.

Hardy:

PR box:

Logical contextuality: Not all sections extend to global.
Strong contextuality: No global section at all.
Hieararchy of contextuality:
Probabilistic \supsetneq Logical \supsetneq Strong contextuality

Hardy:

Logical contextuality: Not all sections extend to global.
Strong contextuality: No global section at all.
Hieararchy of contextuality:
Probabilistic \supsetneq Logical \supsetneq Strong contextuality

Contextuality in Logical Paradoxes

Read bundles $\pi: \sum_{x \in X} F(x) \rightarrow X$ in logic terms: $x \in X \quad$ are sentences, $\mathrm{tt}, \mathrm{ff} \in F(x)$ are truth values.

Contextuality in Logical Paradoxes

Read bundles $\pi: \sum_{x \in X} F(x) \rightarrow X$ in logic terms: $x \in X \quad$ are sentences, $\mathrm{tt}, \mathrm{ff} \in F(x)$ are truth values.
"West is true"

- "North is false"
"South is true" \bullet
"East is true"

Contextuality in Logical Paradoxes

Read bundles $\pi: \sum_{x \in X} F(x) \rightarrow X$ in logic terms:
$x \in X \quad$ are sentences, $\mathrm{tt}, \mathrm{ff} \in F(x)$ are truth values.

Contextuality in Logical Paradoxes

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X .
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X .
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X .
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X .
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X .
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X
$$

(2) Presheaf

$$
F: C(X)^{\mathrm{op}} \rightarrow \text { Sets. }
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X
$$

(2) Presheaf

$$
F: C(X)^{\mathrm{op}} \rightarrow \text { Sets. }
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X
$$

(2) Presheaf

$$
F: C(X)^{\mathrm{op}} \rightarrow \text { Sets. }
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X
$$

(2) Presheaf

$$
F: C(X)^{\mathrm{op}} \rightarrow \text { Sets. }
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X
$$

(2) Presheaf

$$
F: C(X)^{\mathrm{op}} \rightarrow \text { Sets. }
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X
$$

(2) Presheaf

$$
F: C(X)^{\mathrm{op}} \rightarrow \text { Sets. }
$$

(With some axioms, e.g. no-signalling.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X
$$

(2) Presheaf

$$
F: C(X)^{\mathrm{op}} \rightarrow \text { Sets. }
$$

(With some axioms, e.g. no-signalling.)
(Global sections can be defined suitably.)

How to Formally Define ...

Bundles that correspond to no-signalling possibility tables.
Two equivalent formulations:

(1) Map of simplicial complexes

$$
\pi: \sum_{x \in X} F(x) \rightarrow X .
$$

(2) Presheaf

$$
F: C(X)^{\mathrm{op}} \rightarrow \text { Sets. }
$$

(With some axioms, e.g. no-signalling.)
(Global sections can be defined suitably.)
(2) makes it possible to apply cohomology.

Cohomology of Contextuality

Local consistency, global inconsistency...

Penrose 1991, "On the Cohomology of Impossible Figures".

Cohomological test for contextuality:

"Čech cohomology" gives a group homomorphism γ that assigns to each section s an "obstruction" γ_{s} s.th.

Cohomological test for contextuality:

"Čech cohomology" gives a group homomorphism γ that assigns to each section s an "obstruction" γ_{s} s.th.
s extends to a "cocycle" $\Longleftrightarrow \gamma_{s}=0$.

Cohomological test for contextuality:
"Čech cohomology" gives a group homomorphism γ that assigns to each section s an "obstruction" γ_{s} s.th.
s extends to a "cocycle" $\Longleftrightarrow \gamma_{s}=0$.

Cohomological test for contextuality:
"Čech cohomology" gives a group homomorphism γ that assigns to each section s an "obstruction" γ_{s} s.th.
s extends to a "cocycle" $\Longleftrightarrow \gamma_{s}=0$.

Cohomological test for contextuality:
"Čech cohomology" gives a group homomorphism γ that assigns to each section s an "obstruction" γ_{s} s.th.
s extends to a "cocycle" $\Longleftrightarrow \gamma_{s}=0$.
s extends to global

Cohomological test for contextuality:
"Čech cohomology" gives a group homomorphism γ that assigns to each section s an "obstruction" γ_{s} s.th.
s extends to a "cocycle" $\Longleftrightarrow \gamma_{s}=0$. $\Uparrow \uplus$
s extends to global

Cohomological test for contextuality:
"Čech cohomology" gives a group homomorphism γ that assigns to each section s an "obstruction" γ_{s} s.th.
s extends to a "cocycle" $\Longleftrightarrow \gamma_{s}=0$. $\Uparrow \uplus$
s extends to global

- False positives, e.g. in Hardy model:

Cohomological test for contextuality:

"Čech cohomology" gives a group homomorphism γ that assigns to each section s an "obstruction" γ_{s} s.th.
s extends to a "cocycle" $\Longleftrightarrow \gamma_{s}=0$.
$\Uparrow \uplus$
s extends to global

- False positives, e.g. in Hardy model.
- Works for many cases; e.g. PR box:

"All vs Nothing" Argument

"All vs Nothing" Argument

Joint outcomes may / may not satisfy parity equations:

$$
\begin{aligned}
& (0,0) \leadsto x \oplus y=0 \\
& (0,1) \leadsto x \oplus y=1 \\
& (1,0) \leadsto x \oplus y=1 \\
& (1,1) \leadsto x \oplus y=0
\end{aligned}
$$

"All vs Nothing" Argument

Joint outcomes may / may not satisfy parity equations:

$$
\begin{gathered}
(0,0) \sim x \oplus y=0 \\
(0,1) \leadsto x \oplus y=1 \\
(1,0) \leadsto x \oplus y=1 \\
(1,1) \sim x \oplus y=0 \\
a_{0} \oplus b_{0}=0 \\
a_{0} \oplus b_{1}=0 \\
a_{1} \oplus b_{0}=0 \\
a_{1} \oplus b_{1}=1
\end{gathered}
$$

"All vs Nothing" Argument

Joint outcomes may / may not satisfy parity equations:

$$
\begin{gathered}
(0,0) \leadsto x \oplus y=0 \\
(0,1) \leadsto x \oplus y=1 \\
(1,0) \leadsto x \oplus y=1 \\
(1,1) \leadsto x \oplus y=0 \\
a_{0} \oplus b_{0}=0 \\
a_{0} \oplus b_{1}=0 \\
a_{1} \oplus b_{0}=0 \\
a_{1} \oplus b_{1}=1 \\
\bigoplus \text { LHS's }=\bigoplus \text { RHS's }
\end{gathered}
$$

"All vs Nothing" Argument

Joint outcomes may / may not satisfy parity equations:

$$
\begin{aligned}
& (0,0) \leadsto x \oplus y=0 \\
& (0,1) \leadsto x \oplus y=1 \\
& (1,0) \leadsto x \oplus y=1 \\
& (1,1) \leadsto x \oplus y=0
\end{aligned}
$$

$$
a_{0} \oplus b_{0}=0
$$

$$
a_{0} \oplus b_{1}=0
$$

$$
a_{1} \oplus b_{0}=0
$$

$$
a_{1} \oplus b_{1}=1
$$

\bigoplus LHS's $\neq \bigoplus$ RHS's

The equations are inconsistent,

"All vs Nothing" Argument

Joint outcomes may / may not satisfy parity equations:

$$
\begin{gathered}
(0,0) \leadsto x \oplus y=0 \\
(0,1) \leadsto x \oplus y=1 \\
(1,0) \leadsto x \oplus y=1 \\
(1,1) \leadsto x \oplus y=0 \\
a_{0} \oplus b_{0}=0 \\
a_{0} \oplus b_{1}=0 \\
a_{1} \oplus b_{0}=0 \\
a_{1} \oplus b_{1}=1 \\
\bigoplus \text { LHS's } \neq \bigoplus \text { RHS's }
\end{gathered}
$$

The equations are inconsistent, i.e. no global assignment to $a_{0}, a_{1}, b_{0}, b_{1}$,
i.e. strongly contextual!
"All vs nothing" arguments in QM can be formulated the same way.

- GHZ state: $a_{0} \oplus b_{0} \oplus c_{0}=0$ $a_{0} \oplus b_{1} \oplus c_{1}=1$
$a_{1} \oplus b_{0} \oplus c_{1}=1$
$a_{1} \oplus b_{1} \oplus c_{0}=1$
\bigoplus LHS's $=0 \neq 1=\bigoplus$ RHS's
- Kochen-Specker-type:

18 variables, each occurs twice, so \bigoplus LHS's $=0$; 9 equations, all of parity 1 , so \bigoplus RHS's $=1$.

Beyond QM, some NS tables suggest generalization.

Beyond QM, some NS tables suggest generalization.

- "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$
\begin{aligned}
a_{0}+2 b_{0} & \equiv 0 \bmod 3 & a_{1}+2 c_{0} & \equiv 0 \bmod 3 \\
a_{0}+b_{1}+c_{0} & \equiv 2 \bmod 3 & a_{0}+b_{1}+c_{1} & \equiv 2 \bmod 3 \\
a_{1}+b_{0}+c_{1} & \equiv 2 \bmod 3 & a_{1}+b_{1}+c_{1} & \equiv 2 \bmod 3
\end{aligned}
$$

Beyond QM, some NS tables suggest generalization.

- "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$
\begin{aligned}
a_{0}+2 b_{0} & \equiv 0 \bmod 3 & a_{1}+2 c_{0} & \equiv 0 \bmod 3 \\
a_{0}+b_{1}+c_{0} & \equiv 2 \bmod 3 & a_{0}+b_{1}+c_{1} & \equiv 2 \bmod 3 \\
a_{1}+b_{0}+c_{1} & \equiv 2 \bmod 3 & a_{1}+b_{1}+c_{1} & \equiv 2 \bmod 3 \\
\sum \text { LHS's } & \equiv 0 \bmod 3 & \sum \text { RHS's } & \equiv 2 \bmod 3
\end{aligned}
$$

Beyond QM, some NS tables suggest generalization.

- "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$
\begin{aligned}
a_{0}+2 b_{0} & \equiv 0 \bmod 3 & a_{1}+2 c_{0} & \equiv 0 \bmod 3 \\
a_{0}+b_{1}+c_{0} & \equiv 2 \bmod 3 & a_{0}+b_{1}+c_{1} & \equiv 2 \bmod 3 \\
a_{1}+b_{0}+c_{1} & \equiv 2 \bmod 3 & a_{1}+b_{1}+c_{1} & \equiv 2 \bmod 3 \\
\sum \text { LHS's } & \equiv 0 \bmod 3 & \sum \text { RHS's } & \equiv 2 \bmod 3
\end{aligned}
$$

Generalized all-vs-nothing argument uses any commutative ring R (e.g. \mathbb{Z}_{n}) instead of \mathbb{Z}_{2} :

Beyond QM, some NS tables suggest generalization.

- "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$
\begin{array}{rlrl}
a_{0}+2 b_{0} & \equiv 0 \bmod 3 & a_{1}+2 c_{0} & \equiv 0 \bmod 3 \\
a_{0}+b_{1}+c_{0} & \equiv 2 \bmod 3 & a_{0}+b_{1}+c_{1} & \equiv 2 \bmod 3 \\
a_{1}+b_{0}+c_{1} & \equiv 2 \bmod 3 & a_{1}+b_{1}+c_{1} & \equiv 2 \bmod 3 \\
\sum \text { LHS's } & \equiv 0 \bmod 3 & \sum \text { RHS's } \equiv 2 \bmod 3
\end{array}
$$

Generalized all-vs-nothing argument uses any commutative ring R (e.g. \mathbb{Z}_{n}) instead of \mathbb{Z}_{2} :

- Linear equations $k_{0} x_{0}+\cdots+k_{m} x_{m}=p \quad\left(k_{0}, \ldots, k_{m}, p \in R\right)$.

Beyond QM, some NS tables suggest generalization.

- "Box 25" of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

$$
\begin{array}{rlr}
a_{0}+2 b_{0} \equiv 0 \bmod 3 & a_{1}+2 c_{0} \equiv 0 \bmod 3 \\
a_{0}+b_{1}+c_{0} \equiv 2 \bmod 3 & a_{0}+b_{1}+c_{1} \equiv 2 \bmod 3 \\
a_{1}+b_{0}+c_{1} \equiv 2 \bmod 3 & a_{1}+b_{1}+c_{1} \equiv 2 \bmod 3 \\
\sum \text { LHS's } \equiv 0 \bmod 3 & \sum \text { RHS's } \equiv 2 \bmod 3
\end{array}
$$

Generalized all-vs-nothing argument uses any commutative ring R (e.g. \mathbb{Z}_{n}) instead of \mathbb{Z}_{2} :

- Linear equations $k_{0} x_{0}+\cdots+k_{m} x_{m}=p \quad\left(k_{0}, \ldots, k_{m}, p \in R\right)$.
- Equations are inconsistent if a subset of them is s.th.
- coefficients k of each variable x add up to 0 ,
- parities p do not.
"Strongly contextual by AvN argument" is explained by "strongly contextual by cohomology":

Theorem.

Let \mathcal{M} be a no-signalling bundle model. Then

- \mathcal{M} admits a generalized AvN argument in a ring R implies
- Cohomology (using R) has $\gamma_{s}=0$ for no section s in \mathcal{M}.
"Strongly contextual by AvN argument" is explained by "strongly contextual by cohomology":

Theorem.
Let \mathcal{M} be a no-signalling bundle model. Then

- \mathcal{M} admits a generalized AvN argument in a ring R implies
- Cohomology (using R) has $\gamma_{s}=0$ for no section s in \mathcal{M}.

Hieararchy of strong contextuality:
$\mathrm{AvN} \subsetneq$ gen. $\mathrm{AvN} \subsetneq$ cohom. $\mathrm{SC} \subseteq \mathrm{SC}$
"Strongly contextual by AvN argument" is explained by "strongly contextual by cohomology":

Theorem.
Let \mathcal{M} be a no-signalling bundle model. Then

- \mathcal{M} admits a generalized AvN argument in a ring R implies
- Cohomology (using R) has $\gamma_{s}=0$ for no section s in \mathcal{M}.

Hieararchy of strong contextuality:
$\mathrm{AvN} \subsetneq$ gen. $\mathrm{AvN} \subsetneq$ cohom. $\mathrm{SC} \subseteq \mathrm{SC}$ UI?
$S C \cap Q$

Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality-local consistency, global inconsistencyis topological in nature, expressed nicely with bundles.

Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality-local consistency, global inconsistencyis topological in nature, expressed nicely with bundles.
- They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.

Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality-local consistency, global inconsistencyis topological in nature, expressed nicely with bundles.
- They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.

Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality-local consistency, global inconsistencyis topological in nature, expressed nicely with bundles.
- They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.
- We have the all-vs-nothing argument in QM precisely formulated and generalized. It shows strong contextuality of a large class of models.

Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality-local consistency, global inconsistencyis topological in nature, expressed nicely with bundles.
- They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.
- We have the all-vs-nothing argument in QM precisely formulated and generalized. It shows strong contextuality of a large class of models.
- Their contextuality is captured by cohomology.

References

[1] Abramsky, Barbosa, Kishida, Lal, and Mansfield (2015), "Contextuality, cohomology and paradox", arXiv:1502.03097
[2] Abramsky and Brandenburger (2011), "The sheaf-theoretic structure of non-locality and contextuality", $N J P$
[3] Abramsky, Mansfield, and Barbosa (2011), "The cohomology of nonlocality and contextuality", QPL2011
[4] Hardy (1993), "Nonlocality for two particles without inequalities for almost all entangled states", $P R L$
[5] Fine (1982), "Hidden variables, joint probability, and the Bell inequalities", $P R L$
[6] Penrose (1991), "On the cohomology of impossible figures", Structural Topology
[7] Mermin (1990), "Extreme quantum entanglement in a superposition of macroscopically distinct states", $P R L$
[8] Pironio, Bancal, and Scarani (2011), "Extremal correlations of the tripartite no-signaling polytope", J. Phys. A: Math. Theor.

