A Graph Theoretic Perspective on CPM(Rel)

Dan Marsden

Friday $17^{\text {th }}$ July, 2015

Selinger's CPM Construction

Category \mathcal{C} a \dagger-compact closed monoidal category.
Positive Morphism
Endomorphism $f: A \rightarrow A$ is positive if there exists object B and morphism $g: A \rightarrow B$ such that:

Selinger's CPM Construction

Category \mathcal{C} a \dagger-compact closed monoidal category.
The Category CPM (C)

- Objects: \mathcal{C}-objects.
- Morphisms: A morphism of type $A \rightarrow B$ is a \mathcal{C}-morphism $f: A^{*} \otimes A \rightarrow B^{*} \otimes B$ such that:

is positive.

Selinger's CPM Construction

Category \mathcal{C} a \dagger-compact closed monoidal category.
Relating \mathcal{C} to $\operatorname{CPM}(\mathcal{C})$
There is a canonical functor:
$\mathcal{C} \rightarrow \mathbf{C P M}(\mathcal{C})$

A Linguistics Application

Compositional Distributional Semantics

- Non-commutative compact closed categories model grammar - pregroups (Lambek)
- Compact closed categories model semantics
- Functorial Semantics

$$
P \rightarrow \mathrm{FdHilb}_{\mathbb{R}}
$$

A Linguistics Application

Density Operators in Linguistics

- Ambiguity in language - "river bank" versus "financial bank" (Piedeleu)
- Hyponym / hypernym relationships - "dog" versus "mammal" (Balkir)
- Alternative models such as Rel

A Linguistics Application

Booleans

- Consider the two element set Bool $=\{\top, \perp\}$ as truth values
- In Rel, Bool has 4 states:

$$
\emptyset,\{\top\},\{\perp\},\{\top, \perp\}
$$

- In CPM(Rel), Bool has 5 states

What are the states in CPM(Rel)?

- (Selinger) States $I \rightarrow A$ in $\mathbf{C P M}($ Rel $)$ correspond to positive morphisms $A \rightarrow A$ in Rel, which are relations satisfying:

$$
\begin{aligned}
& R(x, y) \quad \Rightarrow \quad R(y, x) \\
& R(x, y) \quad \Rightarrow R(x, x)
\end{aligned}
$$

- Can we count these?

States for small objects in CPM(Rel)

Elements	Rel States	CPM(Rel) States
0	1	1
1	2	2
2	4	5
3	8	18
4	16	113
5	32	1450

Another Perspective on States

Graphs

For each $\mathbf{C P M}($ Rel $)$ state with corresponding positive relation $R: A \rightarrow A$ we can construct a (simple labelled undirected) graph with:

- Vertices Elements $a \in A$ such that $R(a, a)$
- Edges Pairs $\{a, b\}$ with $R(a, b)$

Remark

For this talk, graphs are undirected, have no duplicate edges, but always have self loops.

Examples

Example

The relation $R:\{a, b\} \rightarrow\{a, b\}:$

$$
R(a, a)=R(b, b)=\text { true } \quad R(a, b)=R(b, a)=\text { false }
$$

has graph:

Examples

Example

The relation $R:\{a, b\} \rightarrow\{a, b\}:$

$$
R(a, a)=R(a, b)=R(b, a)=R(b, b)=\text { true }
$$

has graph:

States as Graphs

States are Graphs

In fact the states of a set A in $\mathbf{C P M}($ Rel $)$ bijectively correspond to the graphs on subsets of elements of A. A set of n elements then has:

$$
\sum_{0 \leq i \leq n}\binom{i}{n} 2^{n(n-1) / 2}
$$

states.

Pure States Graphically

Pure States are the Complete Graphs
The following is a pure state:

Pure States Graphically

Pure States are the Complete Graphs
The following is a pure state:

The following are not pure:

Graph State Duality

Morphisms as Graphs
As there is a bijective correspondence:

$$
\xlongequal[I \rightarrow A \otimes B]{A \rightarrow B}
$$

we can consider morphisms $A \rightarrow B$ as graphs on subsets of $A \times B$.

Composition and Identities Graphically

Identities and Composition

We can define a category \mathcal{G} with objects sets and morphisms graphs on subsets of the cartesian products of the domain and codomain where:

- For each set A we define 1_{A} as the complete graph on the diagonal of $A \times A$.
- For the composition of two graphs $A \rightarrow B$ and $B \rightarrow C$
- (a, c) is a vertex if there are vertices (a, b) and (b, c) in the original graphs
- $\left\{(a, c),\left(a^{\prime}, c^{\prime}\right)\right\}$ is an edge if there are edges $\left\{(a, b),\left(a^{\prime}, b^{\prime}\right)\right\}$ and $\left\{(b, c),\left(b^{\prime}, c^{\prime}\right)\right.$ in the original graphs

Composition and Identities Graphically

Example
The composition of the graphs:

is given by the graph:

An Isomorphism of Categories

We have an isomorphism of categories:

$\operatorname{CPM}(\operatorname{Rel}) \cong \mathcal{G}$

- $\mathbf{C P M}($ Rel $)$ is a \dagger-compact monoidal category in which we can take unions of morphisms
- How do we describe this structure in terms of graphs?

Rel into \mathcal{G}

We have the canonical functor:

$$
\operatorname{Rel} \rightarrow \mathcal{G}
$$

sending a relation $R \subseteq A \times B$ to the complete graph on R. In particular, pure states are complete graphs as claimed earlier.

The \dagger Graphically

The dagger of a graph is the "same" graph with the elements of the vertex pairs swapped.

Monoidal Structure Graphically

Tensor Products
The tensor product of two graphs is the graph with:

- Vertices: Pairs of vertices from the component graphs
- Edges: There is an edge $\left\{(a, b, c, d),\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)\right\}$ if there is an edge $\left\{(a, b),\left(a^{\prime}, b^{\prime}\right)\right\}$ and an edge $\left\{(c, d),\left(c^{\prime}, d^{\prime}\right)\right\}$.

Monoidal Structure Graphically

Example

The tensor of the following pair of graphs:

Monoidal Structure Graphically

Example is given by the graph:

Order Structure Graphically

For graphs $\gamma, \gamma^{\prime}: A \rightarrow B$, we say that $\gamma \subseteq \gamma^{\prime}$ if both the edges of γ are a subset of the edges of γ^{\prime}. The union of a family of graphs $A \rightarrow B$ is given by taking the unions of the vertex and edge sets.

Order Structure Graphically

For graphs $\gamma, \gamma^{\prime}: A \rightarrow B$, we say that $\gamma \subseteq \gamma^{\prime}$ if both the edges of γ are a subset of the edges of γ^{\prime}. The union of a family of graphs $A \rightarrow B$ is given by taking the unions of the vertex and edge sets.

Ordering Example

Order Structure Graphically

For graphs $\gamma, \gamma^{\prime}: A \rightarrow B$, we say that $\gamma \subseteq \gamma^{\prime}$ if both the edges of γ are a subset of the edges of γ^{\prime}. The union of a family of graphs $A \rightarrow B$ is given by taking the unions of the vertex and edge sets.
Union Example

Conclusion

- Simple visual reasoning about CPM(ReI)
- Applications - Stefano Gogioso talk...
- Further developments - Beautiful characterization of CPM ${ }^{2}$ (Rel) states by Oscar Cunningham
- Repeated iteration of the CPM construction (Daniela Ashoush)

