Formalization of quantum protocols using Coq

Jaap Boender
Rajagopal Nagarajan
Florian Kammüller

July 17, 2015

Motivation for Interactive Theorem Proving (ITP)

- Automated Reasoning
- High Expressivity
- Trade off to automation
- Good applications: complex models, tedious reasoning, and high risk of faults (and impact of failures) in details

Coq

- Constructive type theory as logical basis:
- For example, $A \vee \neg A$ is not a theorem!
- Proof is construction: executable code (OCAML) can be extracted
- Higher level of expressivity: dependent types
- Code-Extraction interesting for prototypes

Classical Reasoning and Curry Howard Paradigm

- Curry Howard paradigm in Coq
- Proofs as terms and propositions as types
- E.g. $\lambda x . x$: $P \Rightarrow P$
- E.g. inl : $A \Rightarrow A \vee B$
- Proof checking \equiv type checking
- Automated proof \equiv type inference

Formalisation in Coq

- Needs complex numbers and matrices
- When we started, no library provided both

Formalisation in Coq

- Needs complex numbers and matrices
- When we started, no library provided both
- Selected CoRN
- Complex numbers
- Fast arithmetic
- Matrices implementable with typeclasses

Formalisation in Coq, part II

- CoRN not the ideal solution
- No real development recently
- Little documentation
- Constructive

Formalisation in Coq, part II

- CoRN not the ideal solution
- No real development recently
- Little documentation
- Constructive
- Now switching to Ssreflect

Qubits and Gates in Coq

- Definition qubit (n:nat) := \{ v:vector (2^n) | length v [=] [1] \}
- Definition gate (n:nat) := \{ m:matrix (2^n) ($\left.2^{\wedge} n\right)$ | unitary m \}
- Function apply (n:nat): (qubit n) -> (gate n) -> (qubit n)
- Apply needs to construct proof that resulting qubit is a qubit

The coin flipping game

The normal version:

- One coin (initially heads), two players
- Three turns (Q, then P, then Q)
- Heads: P wins, tails: Q wins
- Each player can either flip the coin or not
- No one can see the coin
- Therefore, no winning strategy

The QUANTUM coin flipping game

The QUANTUM version:

- One QUANTUM coin (initially $|1\rangle$), two players
- Three turns (Q, then P, then Q)
- $|0\rangle$: P wins, $|1\rangle$: Q wins
- Each player can either flip the coin or not
- Q can additionally apply the Hadamard gate
- No one can see the QUANTUM coin
- Now, Q has a winning strategy

Protocol example: coin flipping

Inductive Pchoice: Set := N: Pchoice | X: Pchoice. Inductive Qchoice: Set := Pch: Pchoice -> Qchoice
| H: Qchoice.
Inductive game: Set := Game:
Qchoice -> Pchoice -> Qchoice -> game.
Function play: game -> qubit 1.
Definition Qwins (g : game) :=

$$
\text { play g \{=\} (base_q 1). }
$$

Theorem winning: exists q q': Qchoice, forall p: Pchoice, Qwins (Game q p q').

Entanglement in Coq

- Definition: state cannot be expressed as tensor product of smaller states
- Proving non-existence of something constructively is hard!
- Alternative definition by probabilities
- Qubit is entangled if measuring one bit affects probabilities of other bits
- Prove equivalence of two notions (hard?)

Entanglement

Definition entangled_tp $\{\mathrm{n}\}$ (q: qubit n$)$: $=$
~exists m (q1: qubit m) (q2: qubit (n-m)), out_matrix q1 \{o\} out_matrix q2 \{==\} out_matrix q.

Definition entangled_p $\{\mathrm{n}\}$ ($\mathrm{q}: ~ q u b i t \mathrm{n}$) ($\mathrm{p} 1:$ nat | $\mathrm{p} 1<\mathrm{n}$) ($\mathrm{p} 2:$ nat $\mid \mathrm{p} 2<\mathrm{n}$) : $=$ forall v, exists pr, exists res,
List.In (pr, res)
(outcome_evaluation [1] q (measure p1 empty empty))
^ probability q p2 v [~=] probability res p2
V.

Definition entangled $\{\mathrm{n}\}$ (q: qubit n) : $=$ exists p1 p2, (`p1) <> (`p2) ^ entangled_p q p1 p2.

Measurement

- Here we run into a problem with CoRN
- Measuring uses division
- Constructive: need to prove that we're not dividing by zero
- This not necessarily true

Measurement

- Here we run into a problem with CoRN
- Measuring uses division
- Constructive: need to prove that we're not dividing by zero
- This not necessarily true

```
Axiom sum_pair1:
    forall {n} (i: nat | i < n) (q: qubit n),
    fst (sum_pair (`i) q) [=] [0] or
    [0] [<] fst (sum_pair (`i) q).
```


Measurement part II

```
Program Definition measure \{n\} (i: nat | i < n)
    (q: qubit \(n\) ) : list (IR * qubit \(n\) ) :=
    match sum_pair1 i q with
    | inl _ => (* zero *) [([1], q)]\%list
    | inr sum0_gt =>
    match sum_pair2 i q with
    | inl _ => (* zero *) [([1], q)]\%list
    | inr sum1_gt \(=>\) [(fst (sum_pair i q), existT _ (nqv
('i) negb (fst (sum_pair i q)) sum0_gt q) _);
    (snd (sum_pair i q), existT _ (nqv (`i) (fun \(x=>x\) )
(snd (sum_pair i q)) sum1_gt q) _)]\%list
        end
    end.
```


Quantum teleportation: Alice

Definition firstgate: (gate 3) := c_not_gate \{o\} identity.
Definition sndgate: (gate 3) := hadamard $\{0\}$ identity $\{0\}$ identity.
Definition Alice_spoor: (spoor 3) :=
transform firstgate (transform sndgate empty).
Definition Alice ($\mathrm{p} 1:$ nat | $\mathrm{p} 1<3$) ($\mathrm{p} 2:$ nat | $\mathrm{p} 2<3$)
(phi: qubit 1): list (IR * qubit 3) :=
outcome_evaluation [1] (comp3 phi)
(measure p1 (measure p2 Alice_spoor empty) empty)

Quantum teleportation: Bob

Definition Bob (psix: qubit 3) (x y: bool): qubit 2
:=
match x, y with

```
    | false,false => apply psix
        (identity {o} identity {o} identity)
    | false,true => apply psix
        (identity {o} identity {o} x_gate)
    | true,false => apply psix
        (identity {o} identity {o} z_gate)
    | true,true => apply psix
        (identity {o} identity {o} y_gate)
    end.
```


Future work

- Convert development to Ssreflect
- Think about representing processes
- Properly do quantum teleportation

Quantum teleportation: protocol

- Coq function Alice
- joins input qubit phi with entangled pair $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- applies to resulting qubit triplet two gates c_not_gate $\{0\}$ identity and hadamard $\{0\}$ identity $\{0\}$ identity
- Sends classical bits $00,01,10$, or 11 depending on results of measuring first two qubits
- Depending on received pair of classical bits, Coq function Bob applies I, X, Z, or Y

| (x, y) | Bob's action | restored |
| :--- | :--- | :--- | :--- |
| $(0,0)$ | $I(a\|0\rangle+b\|1\rangle)$ | $=a\|0\rangle+b\|1\rangle$ |
| $(0,1)$ | $X(a\|1\rangle+b\|0\rangle)$ | $=a\|0\rangle+b\|1\rangle$ |
| $(1,0)$ | $Z(a\|0\rangle-b\|1\rangle)$ | $=a\|0\rangle+b\|1\rangle$ |
| $(1,1)$ | $Y(a\|1\rangle-b\|0\rangle)$ | $=a\|0\rangle+b\|1\rangle$ |

- We can prove that Bob's after Alice's function preserve phi - i.e., "teleport" it from first two third position in the triple Theorem teleportation:
forall phi: qubit 1, exists z: qubit 2, Bob (Alice phi) $\{=\}$ (z \{o\} phi).

