Formalization of quantum protocols using
Coq

Jaap Boender Rajagopal Nagarajan Florian Kammodller

July 17, 2015

Motivation for Interactive Theorem Proving (ITP)

Automated Reasoning
High Expressivity
Trade off to automation

Good applications: complex models, tedious reasoning,
and high risk of faults (and impact of failures) in details

Coq

e Constructive type theory as logical basis:
e For example, AV —Ais not a theorem!
e Proof is construction: executable code (OCAML) can be
extracted
o Higher level of expressivity: dependent types

e Code-Extraction interesting for prototypes

Classical Reasoning and Curry Howard
Paradigm

e Curry Howard paradigm in Coq

Proofs as terms and propositions as types
Eg. xx:P=P

Eg.inl: A= AVB

Proof checking = type checking
Automated proof = type inference

Formalisation in Coq

e Needs complex numbers and matrices
e When we started, no library provided both

Formalisation in Coq

e Needs complex numbers and matrices

e When we started, no library provided both
e Selected CoRN
e Complex numbers

o Fast arithmetic
¢ Matrices implementable with typeclasses

Formalisation in Coq, part Il

e CoRN not the ideal solution
e No real development recently
e Little documentation
e Constructive

Formalisation in Coq, part Il

e CoRN not the ideal solution

e No real development recently
e Little documentation
e Constructive

¢ Now switching to Ssreflect

Qubits and Gates in Coq

Definition qubit (n:nat) :=
{ vivector (2°n) | length v [=] [1] }

Definition gate (n:nat) :=
{ mimatrix (2°n) (2°n) | unitary m }
Function apply (n:nat):
(qubit n) -> (gate n) -> (qubit n)
Apply needs to construct proof that resulting qubit is a qubit

The coin flipping game

The normal version:

e One coin (initially heads), two players
Three turns (Q, then P, then Q)
Heads: P wins, tails: Q wins
Each player can either flip the coin or not
No one can see the coin
Therefore, no winning strategy

The QUANTUM coin flipping game

The QUANTUM version:
e One QUANTUM coin (initially |1)), two players
Three turns (Q, then P, then Q)
|0): P wins, |1): Q wins
Each player can either flip the coin or not
Q can additionally apply the Hadamard gate
No one can see the QUANTUM coin
Now, Q has a winning strategy

Protocol example: coin flipping

Inductive Pchoice: Set := N: Pchoice | X: Pchoice.

Inductive Qchoice: Set := Pch: Pchoice —> Qchoice
| H: Qchoice.

Inductive game: Set := Game:

Qchoice —-> Pchoice -> Qchoice -> game.
Function play: game —-> qubit 1.

Definition Qwins (g: game) :=

play g {=} (base_g 1).
Theorem winning: exists g g’ : Qchoice,
forall p: Pchoice, Qwins (Game g p q’).

Entanglement in Coq

Definition: state cannot be expressed as tensor product of
smaller states

Proving non-existence of something constructively is hard!
Alternative definition by probabilities

Qubit is entangled if measuring one bit affects probabilities
of other bits

Prove equivalence of two notions (hard?)

Entanglement

Definition entangled_tp {n} (g: qubit n) :=
“exists m (gl: gubit m) (g2: qubit (n-m)),

out_matrix gl {o} out_matrix g2 {==} out_matrix

q.

Definition entangled_p {n} (g: qubit n)
(pl: nat | pl < n) (pP2: nat | p2 < n) :=
forall v, exists pr, exists res,
List.In (pr, res)
(outcome_evaluation [1] g (measure pl empty
empty))
A probability g p2 v [7"=] probability res p2

Definition entangled {n} (g: qubit n) :=
exists pl p2, (‘pl) <> (‘p2) A entangled_p g pl
P2.

Measurement

Here we run into a problem with CoRN

Measuring uses division

Constructive: need to prove that we're not dividing by zero
This not necessarily true

Measurement

Here we run into a problem with CoRN

Measuring uses division
Constructive: need to prove that we're not dividing by zero
This not necessarily true

Axiom sum_pairl:

forall {n} (i: nat | i < n
fst (sum_pair (‘i) qg) [
[0] [<] fst (sum_pair (

] [O0] or

) (gq: qubit n),
‘i) aq).

Measurement part Il

Program Definition measure {n} (i:

(q:

qubit n): list

(IR * qubit

match sum_pairl i g with

| inl _ => (% zero *) [([1l], g
| inr sumO_gt =>
match sum_pair2 i g with

inl _ => (% zero x) [([1],
inr suml_gt => [(fst (sum_p
negb (fst (sum_pair i qg))

|
|
(1)

(snd

(snd

(sum_pair i q))

end

end

(sum_pair i q), existT

suml_gt q)

nat | 1 < n)

n) :=

)1%1list

q) 1%list
air i q),
sumO_gt q)
(ngv (‘1)
_)1%list

existT _ (ngqv
_)i

(fun x => Xx)

Quantum teleportation: Alice

Definition firstgate: (gate 3) :=
c_not_gate {o} identity.
Definition sndgate: (gate 3) :=
hadamard {o} identity {o} identity.
Definition Alice_spoor: (spoor 3) :=
transform firstgate (transform sndgate empty).
Definition Alice (pl: nat | pl<3) (p2: nat | p2<3)
(phi: qubit 1): list (IR x qubit 3) :=
outcome_evaluation [1] (comp3 phi)
(measure pl (measure p2 Alice_spoor empty) empty)

Quantum teleportation: Bob

Definition Bob (psix: qubit 3) (x y: bool):

match x, y with
| false,false => apply psix

(identity {o} identity {o} identity)
| false,true => apply psix

(identity {o} identity {o} x_gate)
| true, false => apply psix

(identity {o} identity {o} z_gate)

| true,true => apply psix

(identity {o} identity {o} y_gate)
end.

qubit 2

Future work

e Convert development to Ssreflect
e Think about representing processes
e Properly do quantum teleportation

Quantum teleportation: protocol

e Coqfunction Alice
« joins input qubit phi with entangled pair %(\00> +11))
o applies to resulting qubit triplet two gates c_not_gate
{o} identity and hadamard {o} identity {o}
identity
e Sends classical bits 00,01, 10, or 11 depending on results
of measuring first two qubits
e Depending on received pair of classical bits, Coq function
Bob applies |, X, Z, or Y

(x,y) Bob's action restored

(0,0) I(al0) +b[1)) = al0)+b|1)
(0,1) X(alt)+b]0)) = al0)+Db[1)
(1,0) Z(alo)—b[1)) = al0)+b|1)
(1,1) Y(al1)-bl0)) = al0)+b[1)

e We can prove that Bob’s after Alice’s function preserve phi
—i.e., “teleport” it from first two third position in the triple
Theorem teleportation:

forall phi: qubit 1, exists z: qubit 2,
Bob (Alice phi) {=} (z {o} phi).

