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Motivation for Interactive Theorem Proving (ITP)

• Automated Reasoning
• High Expressivity
• Trade off to automation
• Good applications: complex models, tedious reasoning,

and high risk of faults (and impact of failures) in details
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Coq

• Constructive type theory as logical basis:
• For example, A ∨ ¬A is not a theorem!
• Proof is construction: executable code (OCAML) can be

extracted
• Higher level of expressivity: dependent types

• Code-Extraction interesting for prototypes
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Classical Reasoning and Curry Howard
Paradigm

• Curry Howard paradigm in Coq
• Proofs as terms and propositions as types
• E.g. λx .x : P ⇒ P
• E.g. inl : A⇒ A ∨ B
• Proof checking ≡ type checking
• Automated proof ≡ type inference
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Formalisation in Coq

• Needs complex numbers and matrices
• When we started, no library provided both

• Selected CoRN
• Complex numbers
• Fast arithmetic
• Matrices implementable with typeclasses
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Formalisation in Coq, part II

• CoRN not the ideal solution
• No real development recently
• Little documentation
• Constructive

• Now switching to Ssreflect
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Qubits and Gates in Coq

• Definition qubit (n:nat) :=
{ v:vector (2ˆn) | length v [=] [1] }

• Definition gate (n:nat) :=
{ m:matrix (2ˆn) (2ˆn) | unitary m }

• Function apply (n:nat):
(qubit n) -> (gate n) -> (qubit n)

• Apply needs to construct proof that resulting qubit is a qubit
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The coin flipping game

The normal version:
• One coin (initially heads), two players
• Three turns (Q, then P, then Q)
• Heads: P wins, tails: Q wins
• Each player can either flip the coin or not
• No one can see the coin
• Therefore, no winning strategy
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The QUANTUM coin flipping game

The QUANTUM version:
• One QUANTUM coin (initially |1〉), two players
• Three turns (Q, then P, then Q)
• |0〉: P wins, |1〉: Q wins
• Each player can either flip the coin or not
• Q can additionally apply the Hadamard gate
• No one can see the QUANTUM coin
• Now, Q has a winning strategy
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Protocol example: coin flipping

Inductive Pchoice: Set := N: Pchoice | X: Pchoice.
Inductive Qchoice: Set := Pch: Pchoice -> Qchoice
| H: Qchoice.

Inductive game: Set := Game:
Qchoice -> Pchoice -> Qchoice -> game.

Function play: game -> qubit 1.
Definition Qwins (g: game) :=
play g {=} (base_q 1).

Theorem winning: exists q q’: Qchoice,
forall p: Pchoice, Qwins (Game q p q’).
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Entanglement in Coq

• Definition: state cannot be expressed as tensor product of
smaller states

• Proving non-existence of something constructively is hard!
• Alternative definition by probabilities
• Qubit is entangled if measuring one bit affects probabilities

of other bits
• Prove equivalence of two notions (hard?)
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Entanglement

Definition entangled_tp {n} (q: qubit n) :=
˜exists m (q1: qubit m) (q2: qubit (n-m)),
out_matrix q1 {o} out_matrix q2 {==} out_matrix

q.

Definition entangled_p {n} (q: qubit n)
(p1: nat | p1 < n) (p2: nat | p2 < n) :=

forall v, exists pr, exists res,
List.In (pr, res)
(outcome_evaluation [1] q (measure p1 empty

empty))
∧ probability q p2 v [˜=] probability res p2

v.

Definition entangled {n} (q: qubit n) :=
exists p1 p2, (‘p1) <> (‘p2) ∧ entangled_p q p1

p2.
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Measurement

• Here we run into a problem with CoRN
• Measuring uses division
• Constructive: need to prove that we’re not dividing by zero
• This not necessarily true

Axiom sum_pair1:
forall {n} (i: nat | i < n) (q: qubit n),
fst (sum_pair (‘i) q) [=] [0] or
[0] [<] fst (sum_pair (‘i) q).
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Measurement part II

Program Definition measure {n} (i: nat | i < n)
(q: qubit n): list (IR * qubit n) :=
match sum_pair1 i q with
| inl _ => (* zero *) [([1], q)]%list
| inr sum0_gt =>

match sum_pair2 i q with
| inl _ => (* zero *) [([1], q)]%list
| inr sum1_gt => [(fst (sum_pair i q), existT _ (nqv

(‘i) negb (fst (sum_pair i q)) sum0_gt q) _);
(snd (sum_pair i q), existT _ (nqv (‘i) (fun x => x)

(snd (sum_pair i q)) sum1_gt q) _)]%list
end

end.
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Quantum teleportation: Alice

Definition firstgate: (gate 3) :=
c_not_gate {o} identity.

Definition sndgate: (gate 3) :=
hadamard {o} identity {o} identity.

Definition Alice_spoor: (spoor 3) :=
transform firstgate (transform sndgate empty).

Definition Alice (p1: nat | p1<3) (p2: nat | p2<3)
(phi: qubit 1): list (IR * qubit 3) :=
outcome_evaluation [1] (comp3 phi)
(measure p1 (measure p2 Alice_spoor empty) empty).

15



Quantum teleportation: Bob

Definition Bob (psix: qubit 3) (x y: bool): qubit 2
:=

match x, y with
| false,false => apply psix
(identity {o} identity {o} identity)
| false,true => apply psix
(identity {o} identity {o} x_gate)
| true,false => apply psix
(identity {o} identity {o} z_gate)
| true,true => apply psix
(identity {o} identity {o} y_gate)
end.
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Future work

• Convert development to Ssreflect
• Think about representing processes
• Properly do quantum teleportation
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Quantum teleportation: protocol
• Coq function Alice

• joins input qubit phi with entangled pair 1√
2
(|00〉+ |11〉)

• applies to resulting qubit triplet two gates c_not_gate
{o} identity and hadamard {o} identity {o}
identity

• Sends classical bits 00,01,10, or 11 depending on results
of measuring first two qubits

• Depending on received pair of classical bits, Coq function
Bob applies I, X, Z, or Y

(x , y) Bob′s action restored

(0, 0) I(a |0〉+ b |1〉) = a |0〉+ b |1〉
(0, 1) X(a |1〉+ b |0〉) = a |0〉+ b |1〉
(1, 0) Z (a |0〉 − b |1〉) = a |0〉+ b |1〉
(1, 1) Y (a |1〉 − b |0〉) = a |0〉+ b |1〉

• We can prove that Bob’s after Alice’s function preserve phi
– i.e., “teleport” it from first two third position in the triple
Theorem teleportation:
forall phi: qubit 1, exists z: qubit 2,
Bob (Alice phi) {=} (z {o} phi).
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