Effect algebras, presheaves, non-locality and contextuality

Sam Staton \& Sander Uijlen
University of Oxford, Radboud Universiteit, Nijmegen

(1) Non-locality

(2) Effect algebras

(3) Presheaves
(4) ???
(5) Profit

Non locality

- Imagine two observers

Non locality

- Imagine two observers

Alice

Bob

Non locality

- Imagine two observers

Alice

Bob

Non locality

- Imagine two observers

Alice

Bob

- They make a choice of setting and each obtains 0 or 1 as outcome.

Non locality

- Imagine two observers

Alice

Bob

- They make a choice of setting and each obtains 0 or 1 as outcome.
- For example: $\mathrm{a}_{0}: 1 \wedge \mathrm{~b}_{1}: 0$

Bell table

- Tabulate frequencies of joint outcomes.

Bell table

- Tabulate frequencies of joint outcomes.

	00	01	10	11
$a_{0} b_{0}$	$1 / 2$	0	0	$1 / 2$
$a_{1} b_{0}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{0} b_{1}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{1} b_{1}$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Probability $\mathrm{a}_{0}: 1 \wedge \mathrm{~b}_{1}: 0$ is $1 / 8$

Bell table

- Tabulate frequencies of joint outcomes.

	00	01	10	11
$a_{0} b_{0}$	$1 / 2$	0	0	$1 / 2$
$a_{1} b_{0}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{0} b_{1}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{1} b_{1}$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Probability $\mathrm{a}_{0}: 1 \wedge \mathrm{~b}_{1}: 0$ is $1 / 8$

Fact: this table cannot be obtained in a classical way, but can be obtained in QM.

No signaling probability tables

	00	01	10	11
$a_{0} b_{0}$	$1 / 2$	0	0	$1 / 2$
$a_{1} b_{0}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{0} b_{1}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{1} b_{1}$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

- Probability: rows sum to 1
- No signaling (marginalization): Bob does not know what Alice chose as setting. e.g.:
$p\left(\mathrm{a}_{0}: 0 \wedge \mathrm{~b}_{0}: 0\right)+p\left(\mathrm{a}_{0}: 1 \wedge \mathrm{~b}_{0}: 0\right)=p\left(\mathrm{a}_{1}: 0 \wedge \mathrm{~b}_{0}: 0\right)+p\left(\mathrm{a}_{1}: 1 \wedge \mathrm{~b}_{0}: 0\right)$

Classical finite probability theory

- Classically: consider state spaces

$$
\begin{aligned}
& S_{\mathrm{A}}=\left\{f:\left\{\mathrm{a}_{0}, \mathrm{a}_{1}\right\} \rightarrow\{0,1\}\right\} \\
& S_{\mathrm{B}}=\left\{f:\left\{\mathrm{b}_{0}, \mathrm{~b}_{1}\right\} \rightarrow\{0,1\}\right\}
\end{aligned}
$$

Classical finite probability theory

- Classically: consider state spaces

$$
\begin{aligned}
& S_{\mathrm{A}}=\left\{f:\left\{\mathrm{a}_{0}, \mathrm{a}_{1}\right\} \rightarrow\{0,1\}\right\} \\
& S_{\mathrm{B}}=\left\{f:\left\{\mathrm{b}_{0}, \mathrm{~b}_{1}\right\} \rightarrow\{0,1\}\right\}
\end{aligned}
$$

- Consider joint probability distributions.

Classical finite probability theory

- Classically: consider state spaces

$$
\begin{aligned}
& S_{\mathrm{A}}=\left\{f:\left\{\mathrm{a}_{0}, \mathrm{a}_{1}\right\} \rightarrow\{0,1\}\right\} \\
& S_{\mathrm{B}}=\left\{f:\left\{\mathrm{b}_{0}, \mathrm{~b}_{1}\right\} \rightarrow\{0,1\}\right\}
\end{aligned}
$$

- Consider joint probability distributions.

Standard finite probability theory: (X, Ω)

- Finite space X.
- Boolean sub-algebra Ω of $\mathcal{P}(X)$.

Classical finite probability theory

- Classically: consider state spaces

$$
\begin{aligned}
& S_{\mathrm{A}}=\left\{f:\left\{\mathrm{a}_{0}, \mathrm{a}_{1}\right\} \rightarrow\{0,1\}\right\} \\
& S_{\mathrm{B}}=\left\{f:\left\{\mathrm{b}_{0}, \mathrm{~b}_{1}\right\} \rightarrow\{0,1\}\right\}
\end{aligned}
$$

- Consider joint probability distributions.

Standard finite probability theory: (X, Ω)

- Finite space X.
- Boolean sub-algebra Ω of $\mathcal{P}(X)$.
- Probability distribution $p: \Omega \rightarrow[0,1]$ satisfying
- $p(X)=1$,
- $p\left(\bigcup_{i} A_{i}\right)=\sum_{i} p\left(A_{i}\right) \quad$ if $\quad A_{i} \cap A_{j}=\emptyset, i \neq j$

Need for generalization

- Classically we assume knowledge about a_{0} and a_{1} simultaneously.
- This is not the case in QM.

Need for generalization

- Classically we assume knowledge about a_{0} and a_{1} simultaneously.
- This is not the case in QM.
- Need a generalization of (finite) probability theory.

Need for generalization

- Classically we assume knowledge about a_{0} and a_{1} simultaneously.
- This is not the case in QM.
- Need a generalization of (finite) probability theory.
- Note: the map $p: \Omega \rightarrow[0,1]$ makes no use of X as surrounding space.

Need for generalization

- Classically we assume knowledge about a_{0} and a_{1} simultaneously.
- This is not the case in QM.
- Need a generalization of (finite) probability theory.
- Note: the map $p: \Omega \rightarrow[0,1]$ makes no use of X as surrounding space.
\rightarrow Replace Ω by something more general capturing the 'measure-only-once' phenomenon.

(1) Non-locality

(2) Effect algebras

(4) ???

Effect algebras

Definition

An effect algebra $(E, \otimes, 0,1)$ comprises a partial commutative, associative monoid $(E, \otimes, 0)$, such that

- $\forall e \in E \quad \exists$ unique e^{\perp} s.t. $e \otimes e^{\perp}=1=0^{\perp}$
- if $a \otimes 1$ exists, then $a=0$,

Effect algebras

Definition

An effect algebra $(E, \otimes, 0,1)$ comprises a partial commutative, associative monoid $(E, \otimes, 0)$, such that

- $\forall e \in E \quad \exists$ unique e^{\perp} s.t. $e \otimes e^{\perp}=1=0^{\perp}$
- if $a \otimes 1$ exists, then $a=0$,

An effect algebra morphism $f: E_{1} \rightarrow E_{2}$ preserves \otimes and 1 (and therefore also 0 and $\left.(-)^{\perp}\right)$.

Effect algebras

Definition

An effect algebra $(E, \otimes, 0,1)$ comprises a partial commutative, associative monoid $(E, \otimes, 0)$, such that

- $\forall e \in E \quad \exists$ unique e^{\perp} s.t. $e \otimes e^{\perp}=1=0^{\perp}$
- if $a \otimes 1$ exists, then $a=0$,

An effect algebra morphism $f: E_{1} \rightarrow E_{2}$ preserves \otimes and 1 (and therefore also 0 and $\left.(-)^{\perp}\right)$.

Note the partiality of \otimes.

Generalized finite probability theory

Motivating example:

- $(\Omega, \uplus, \emptyset, X)$
- $\left([0,1],+_{\leq 1}, 0,1\right)$
are effect algebras

Generalized finite probability theory

Motivating example:

- $(\Omega, \uplus, \emptyset, X)$
- $\left([0,1],+_{\leq 1}, 0,1\right)$
are effect algebras

$$
\text { - } p:(\Omega, \uplus, \emptyset, X) \rightarrow\left([0,1],+_{\leq 1}, 0,1\right)
$$

is an effect algebra morphism.

Generalized finite probability theory

Motivating example:

- $(\Omega, \uplus, \emptyset, X)$
- $\left([0,1],+_{\leq 1}, 0,1\right)$
are effect algebras

$$
\text { - } p:(\Omega, \uplus, \emptyset, X) \rightarrow\left([0,1],+_{\leq 1}, 0,1\right)
$$

is an effect algebra morphism.
\rightarrow Effect algebras are generalized probability spaces, effect algebra morphisms to $[0,1]$ are probability distributions.

More generalization needed

- Only probabilities, no possibilities (Hardy).
- Relate to other work (Abramsky \& Brandenburger).
- Any good good list has at least three points.

(1) Non-locality

(2) Effect algebras

(3) Presheaves
(4) ???

Presheaves as probability spaces

Ω is a finite Boolean space, so $\Omega \cong \mathcal{P}(N)$ for some $N \in \mathbb{N}$.

Presheaves as probability spaces

Ω is a finite Boolean space, so $\Omega \cong \mathcal{P}(N)$ for some $N \in \mathbb{N}$.

$$
p: \Omega \rightarrow[0,1] \quad \Leftrightarrow \quad q: N \rightarrow[0,1]
$$

with $\sum_{i} q(i)=1$.

Presheaves as probability spaces

Ω is a finite Boolean space, so $\Omega \cong \mathcal{P}(N)$ for some $N \in \mathbb{N}$.

$$
p: \Omega \rightarrow[0,1] \quad \Leftrightarrow \quad q: N \rightarrow[0,1]
$$

with $\sum_{i} q(i)=1$.
Define

$$
D(N)=\left\{q: N \rightarrow[0,1] \mid \sum_{i} q(i)=1\right\}
$$

Presheaves as probability spaces

Ω is a finite Boolean space, so $\Omega \cong \mathcal{P}(N)$ for some $N \in \mathbb{N}$.

$$
p: \Omega \rightarrow[0,1] \quad \Leftrightarrow \quad q: N \rightarrow[0,1]
$$

with $\sum_{i} q(i)=1$.
Define

$$
D(N)=\left\{q: N \rightarrow[0,1] \mid \sum_{i} q(i)=1\right\}
$$

- D extends to a functor $D: \mathbb{N} \rightarrow$ Set.

Presheaves as probability spaces

Ω is a finite Boolean space, so $\Omega \cong \mathcal{P}(N)$ for some $N \in \mathbb{N}$.

$$
p: \Omega \rightarrow[0,1] \quad \Leftrightarrow \quad q: N \rightarrow[0,1]
$$

with $\sum_{i} q(i)=1$.
Define

$$
D(N)=\left\{q: N \rightarrow[0,1] \mid \sum_{i} q(i)=1\right\}
$$

- D extends to a functor $D: \mathbb{N} \rightarrow$ Set.
- Yoneda: $[\operatorname{Hom}(N,-) \rightarrow D] \cong D(N)$.

Presheaves as probability spaces

Ω is a finite Boolean space, so $\Omega \cong \mathcal{P}(N)$ for some $N \in \mathbb{N}$.

$$
p: \Omega \rightarrow[0,1] \quad \Leftrightarrow \quad q: N \rightarrow[0,1]
$$

with $\sum_{i} q(i)=1$.
Define

$$
D(N)=\left\{q: N \rightarrow[0,1] \mid \sum_{i} q(i)=1\right\}
$$

- D extends to a functor $D: \mathbb{N} \rightarrow$ Set.
- Yoneda: $[\operatorname{Hom}(N,-) \rightarrow D] \cong D(N)$.
- Functors $F: \mathbb{N} \rightarrow$ Set are "measure spaces", natural transformations $F \rightarrow D$ are "probability distributions".

Connection

Generalization via effect algebras, $(E, \otimes, 0,1)$ and presheaves.

Connection

Generalization via effect algebras, $(E, \otimes, 0,1)$ and presheaves.

Definition

An n-test in an effect algebra is an n-tuple

$$
\left(e_{1}, \ldots, e_{n}\right), \text { s.t. } e_{1} \otimes \ldots \otimes e_{n}=1
$$

Connection

Generalization via effect algebras, $(E, \otimes, 0,1)$ and presheaves.

Definition

An n-test in an effect algebra is an n-tuple

$$
\left(e_{1}, \ldots, e_{n}\right), \text { s.t. } e_{1} \otimes \ldots \boxtimes e_{n}=1
$$

$$
\begin{gathered}
T: \text { EA } \rightarrow[\mathbb{N}, \text { Set }] \\
T(E)(n)=\{\text { n-tests in } E\}
\end{gathered}
$$

Connection

Generalization via effect algebras, $(E, \otimes, 0,1)$ and presheaves.

Definition

An n-test in an effect algebra is an n-tuple

$$
\left(e_{1}, \ldots, e_{n}\right), \text { s.t. } e_{1} \otimes \ldots \boxtimes e_{n}=1
$$

$$
\begin{gathered}
T: \text { EA } \rightarrow[\mathbb{N}, \text { Set }] \\
T(E)(n)=\{\text { n-tests in } \mathrm{E}\} \\
T \text { extends to a functor. }
\end{gathered}
$$

Theorem

Test functor is full, faithful and has a left adjoint.

(1) Non-locality

(3) Presheaves
(4) ???

Effect algebraic description

Define an effect algebra E_{A} for Alice

Similarly E_{B} for Bob.

Effect algebraic description

Define an effect algebra E_{A} for Alice

Similarly E_{B} for Bob.
Mix them together in the tensor product. $\mathrm{a}_{1}: 1 \wedge \mathrm{~b}_{0}: 1$

Effect algebraic description

Define Boolean algebra B_{A} with atoms

$$
\mathrm{a}_{0}: i \wedge \mathrm{a}_{1}: j, \quad i, j \in\{0,1\}
$$

Effect algebraic description

Define Boolean algebra B_{A} with atoms

$$
\mathrm{a}_{0}: i \wedge \mathrm{a}_{1}: j, \quad i, j \in\{0,1\}
$$

- Information of a_{0} and a_{1}.
- "Deterministic hidden variables."
- Classical description.
B_{A} is the free completion of E_{A}.

No signaling probability tables

| | 00 | 01 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{a}_{0} \mathrm{~b}_{0}$ | $1 / 2$ | 0 | 0 | $1 / 2$ |
| $\mathrm{a}_{1} \mathrm{~b}_{0}$ | $3 / 8$ | $1 / 8$ | $1 / 8$ | $3 / 8$ |
| $\mathrm{a}_{0} \mathrm{~b}_{1}$ | $3 / 8$ | $1 / 8$ | $1 / 8$ | $3 / 8$ |
| $\mathrm{a}_{1} \mathrm{~b}_{1}$ | $1 / 8$ | $3 / 8$ | $3 / 8$ | $1 / 8$ |

Theorem

The following structures are equivalent:

- No-signaling probability table
- Bimorphism $E_{\mathrm{A}}, E_{\mathrm{B}} \rightarrow[0,1]$
- Effect algebra morphism $t: E_{\mathrm{A}} \otimes E_{\mathrm{B}} \rightarrow[0,1]$

(Non) factorization

- A table is classically realizable if it factors via a Boolean algebra.

(Non) factorization

- A table is classically realizable if it factors via a Boolean algebra.
- Quantum realizable if it factors through projections on a Hilbert space.

(Non) factorization

- A table is classically realizable if it factors via a Boolean algebra.
- Quantum realizable if it factors through projections on a Hilbert space.

Paradox translates to

transporting non-factorization

For an adjunction $L \dashv R$ we have

transporting non-factorization

For an adjunction $L \dashv R$ we have

Test functor has a left adjoint and $L T \cong I d$.

- Transport from effect algebras to presheaves.

Slice category

Work relative to particular object. Here: $T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$

Slice category

Work relative to particular object.
Here: $T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$
Slice category $[\mathbb{N}$, Set $] / T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$

Slice category

Work relative to particular object.
Here: $T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$
Slice category $[\mathbb{N}$, Set $] / T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$

- Adjunction:

$$
[\mathbb{N}, \text { Set }] \stackrel{\left(-\times T(B), \pi_{2}\right)}{T}[\mathbb{N}, \text { Set }] / T(B)
$$

Slice category

Work relative to particular object.
Here: $T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$
Slice category $[\mathbb{N}$, Set $] / T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$

- Adjunction:

$$
[\mathbb{N}, \text { Set }] \stackrel{\left(-\times T(B), \pi_{2}\right)}{T}[\mathbb{N}, \text { Set }] / T(B)
$$

Transport non-factoring to the slice category $[\mathbb{N}$, Set $] / T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$

$$
\left(T\left(E_{\mathrm{A}} \otimes E_{\mathrm{B}}\right), T i\right) \xrightarrow[\left(T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right), \mathrm{id}\right) \longrightarrow]{\langle T t, T i\rangle} \longrightarrow\left(D \times T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right), \pi_{2}\right)
$$

Slice category

Work relative to particular object.
Here: $T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$
Slice category $[\mathbb{N}$, Set $] / T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$

- Adjunction:

$$
[\mathbb{N}, \text { Set }] \stackrel{\left(-\times T(B), \pi_{2}\right)}{T}[\mathbb{N}, \text { Set }] / T(B)
$$

Transport non-factoring to the slice category $[\mathbb{N}, \mathbf{S e t}] / T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right)$

$$
\left(T\left(E_{\mathrm{A}} \otimes E_{\mathrm{B}}\right), T i\right) \xrightarrow[\left(T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right), \mathrm{id}\right) \longrightarrow]{\langle T t, T i\rangle} \longrightarrow\left(D \times T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right), \pi_{2}\right)
$$

- $\left(T\left(B_{\mathrm{A}} \otimes B_{\mathrm{B}}\right), i d\right)$ is terminal.
- "The local section $\langle T t, T i\rangle$ has no global section."

(1) Non-locality

(2) Effect algebras
(3) Presheaves
(4) ???

(5) Profit

Other work and other paradoxes

- Sequence of adjunctions linking to Abramsky \& Brandenburger approach
- By considering maps into $\{0,1\}$ where $1+1=1$ (not an effect algebra) we reconstruct the Hardy Paradox in a similar way.
- Looking at $[\mathbb{N}, \operatorname{Set}] / T(\operatorname{Proj\mathcal {H}})$ and maps into $\{0,1\}$ (as effect algebra) we reconstruct Kochen-Specker paradox.

Slogan:

Different contextuality scenarios arise from different slices of the presheaf category $[\mathbb{N}$, Set].

