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Stabilizer quantum mechanics

I preparation of qubits in state |0〉
I Clifford unitaries, generated by

S =

(
1 0
0 i

)
, H =

1√
2

(
1 1
1 −1

)
, CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


I measurements in computational basis



Elements of stabilizer ZX-calculus diagrams
I green nodes with n inputs and m outputs,
α ∈ {−π/2,0, π/2, π}
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I red nodes with k inputs and l outputs,
β ∈ {−π/2,0, π/2, π}
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I Hadamard nodes with one input and one output
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:= |+〉 〈0|+ |−〉 〈1|
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Scalar diagrams

Definition
A ZX-calculus diagram is a scalar if it has no inputs or outputs.

E.g.
π

H

π/2

−π/2

The empty diagram represents the identity scalar:

J K = 1
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Zero diagrams

Definition
A ZX-calculus diagram is a zero diagram if it represents a zero
matrix.

E.g. π

J π K = |0〉⊗0 〈0|⊗0 + eiπ |1〉⊗0 〈1|⊗0 = 1− 1 = 0



Zero diagrams

Definition
A ZX-calculus diagram is a zero diagram if it represents a zero
matrix.

E.g. π

J π K = |0〉⊗0 〈0|⊗0 + eiπ |1〉⊗0 〈1|⊗0 = 1− 1 = 0



Rules of the scalar-free ZX-calculus
I only the topology matters
I ignore non-zero scalar factors
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Rules also hold upside-down and/or with the colours swapped.



Completeness
Definition
A graphical calculus for quantum theory is complete if any
equality that can be derived using matrices can also be derived
graphically, i.e. for any diagrams D1 and D2:

JD1K = JD2K =⇒ D1 = D2.

Theorem (arXiv:1307.7025)
The scalar-free ZX-calculus is complete for stabilizer quantum
mechanics.

Proof (sketch).
Any non-scalar stabilizer ZX-calculus diagram can be brought
into a (non-unique) normal form called GS-LC form.
If two GS-LC form diagrams represent the same operator up to
scalar factor, then they are equal in the scalar-free
ZX-calculus.
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Rules of the ZX-calculus without scalars
I only the topology matters
I ignore non-zero scalar factors
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Rules of the ZX-calculus with scalars
I only the topology matters

I ignore non-zero scalar factors
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Corollaries to the original stabilizer completeness
proof

Assume every non-zero scalar diagram has an inverse.

E.g. = but = ??
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disconnected segments containing at most two nodes each.



Corollaries to the original stabilizer completeness
proof

Assume every non-zero scalar diagram has an inverse.

Corollary
Any stabilizer scalar diagram can be decomposed into
disconnected segments containing at most two nodes each.

Corollary
When a stabilizer zero diagram is brought into normal form and
all scalar subdiagrams are decomposed as in the corollary
above, the resulting diagram explicitly contains at least one of:

π , π ,
π/2

−π/2
, or

−π/2
π/2

.

Will see later that the above zero scalars can all be rewritten
into each other, as

r
π/2

z
= eiπ/4

r
π/2

z
.



The star node and the star rule

Any non-zero scalar diagram built from disconnected segments
containing at most two nodes each represents a number with
absolute value greater than 1.

Introduce new node – the star node – with J K = 1/2, and a
new rewrite rule – the star rule:

=

Can then derive:

( )

=
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Completeness for non-zero stabilizer scalars

Theorem
The following is a unique normal form for non-zero stabilizer
scalars: take one element of the set{

,
π/2

π/2
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π

,
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π

π/2
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,

π

π
,

−π/2
π

−π/2
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,
−π/2
π

,
−π/2
−π/2

}

and combine it with
I some number of copies of , or
I some number of copies of , or
I one copy of and some number of copies of .

Non-zero stabilizer scalar diagrams represent complex
numbers

√
2r eisπ/4 for (possibly negative) integers r , s.
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Completeness for non-zero scaled stabilizer diagrams
Theorem
The scaled stabilizer ZX-calculus with and the star rule is
complete for non-zero scaled stabilizer diagrams.

Proof.
To derive equalities between non-zero scaled stabilizer
diagrams:

I Deal with the non-scalar parts of the diagrams as in the
scalar-free completeness proof [arXiv:1307.7025], but
keep track of the scalars on the side.

I If the non-scalar parts are not equal up to scalar, the full
diagrams cannot be equal.

I If the non-scalar parts are equal, bring the scalar parts into
the normal form.

I The resulting diagrams are either identical or they do not
represent the same matrix.
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Stabilizer zero diagrams
New rules: the zero rule [suggested by Aleks Kissinger]:

=π π

and the zero scalar rule:

π α = π

Theorem
The scaled stabilizer ZX-calculus with the star rule, zero rule,
and zero scalar rule is complete for zero diagrams.

Proof.
This is a unique normal form for stabilizer zero diagrams:

π
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Conclusions and Outlook

I The ZX-calculus was known to be complete for stabilizer
QM without scalars, i.e. equalities between operators could
be derived up to scalar factor.

I We have:

I modified the existing rewrite rules,
I added a new node , and
I added three new rewrite rules.

I With these, the ZX-calculus is complete for stabilizer QM
with scalars, i.e. can now compute amplitudes and
probabilities graphically.

I Can completeness be extended to larger fragment of QM,
e.g. Clifford+T group?

Thank you!



Conclusions and Outlook

I The ZX-calculus was known to be complete for stabilizer
QM without scalars, i.e. equalities between operators could
be derived up to scalar factor.

I We have:
I modified the existing rewrite rules,

I added a new node , and
I added three new rewrite rules.

I With these, the ZX-calculus is complete for stabilizer QM
with scalars, i.e. can now compute amplitudes and
probabilities graphically.

I Can completeness be extended to larger fragment of QM,
e.g. Clifford+T group?

Thank you!



Conclusions and Outlook

I The ZX-calculus was known to be complete for stabilizer
QM without scalars, i.e. equalities between operators could
be derived up to scalar factor.

I We have:
I modified the existing rewrite rules,
I added a new node , and

I added three new rewrite rules.
I With these, the ZX-calculus is complete for stabilizer QM

with scalars, i.e. can now compute amplitudes and
probabilities graphically.

I Can completeness be extended to larger fragment of QM,
e.g. Clifford+T group?

Thank you!



Conclusions and Outlook

I The ZX-calculus was known to be complete for stabilizer
QM without scalars, i.e. equalities between operators could
be derived up to scalar factor.

I We have:
I modified the existing rewrite rules,
I added a new node , and
I added three new rewrite rules.

I With these, the ZX-calculus is complete for stabilizer QM
with scalars, i.e. can now compute amplitudes and
probabilities graphically.

I Can completeness be extended to larger fragment of QM,
e.g. Clifford+T group?

Thank you!



Conclusions and Outlook

I The ZX-calculus was known to be complete for stabilizer
QM without scalars, i.e. equalities between operators could
be derived up to scalar factor.

I We have:
I modified the existing rewrite rules,
I added a new node , and
I added three new rewrite rules.

I With these, the ZX-calculus is complete for stabilizer QM
with scalars, i.e. can now compute amplitudes and
probabilities graphically.

I Can completeness be extended to larger fragment of QM,
e.g. Clifford+T group?

Thank you!



Conclusions and Outlook

I The ZX-calculus was known to be complete for stabilizer
QM without scalars, i.e. equalities between operators could
be derived up to scalar factor.

I We have:
I modified the existing rewrite rules,
I added a new node , and
I added three new rewrite rules.

I With these, the ZX-calculus is complete for stabilizer QM
with scalars, i.e. can now compute amplitudes and
probabilities graphically.

I Can completeness be extended to larger fragment of QM,
e.g. Clifford+T group?

Thank you!



Conclusions and Outlook

I The ZX-calculus was known to be complete for stabilizer
QM without scalars, i.e. equalities between operators could
be derived up to scalar factor.

I We have:
I modified the existing rewrite rules,
I added a new node , and
I added three new rewrite rules.

I With these, the ZX-calculus is complete for stabilizer QM
with scalars, i.e. can now compute amplitudes and
probabilities graphically.

I Can completeness be extended to larger fragment of QM,
e.g. Clifford+T group?

Thank you!


	Background
	Modifying the zx-calculus to keep account of scalars
	The new completeness results
	Conclusions

