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Rob says “Hi” to everyone!



Motivation

To turn the Kochen-Specker theorem, a no-go result precluding
deterministic noncontextual models of quantum theory, into an
experimentally testable noncontextuality inequality whose violation
rules out a noncontextual model of nature (rather than the theory
we currently believe best describes nature).1 Crucially, determinism
is not assumed.2

1Just as Bell’s theorem allows a test of local causality independent of the
validity of quantum theory, we seek a test of noncontextuality that is
theory-independent.

2R.W. Spekkens, Contextuality for preparations, transformations, and
unsharp measurements, Phys. Rev. A 71, 052108 (2005).



The Kochen-Specker theorem

Original proof of the KS theorem: 117 rays in 3d Hilbert space.3

To illustrate our approach, we use the proof due to Cabello et al.4,
requiring 18 rays in 4d:

3S. Kochen and E. P. Specker, The Problem of Hidden Variables in
Quantum Mechanics, J. Math. Mech. 17, 59 (1967).

4A. Cabello, J. Estebaranz, and G. Garcia-Alcaine, Bell-Kochen-Specker
theorem: A proof with 18 vectors, Physics Letters A 212, 183 (1996).



Obstacles to a robust noncontextuality inequality

I KS theorem - about quantum theory, not general operational
theories. Operationalization needed.

I Even after operationalization, need to relax the perfect
predictability ideal.



Towards a noncontextuality inequality

1. Operationalize the KS theorem,

2. Define noncontextuality without outcome determinism,

3. Justify outcome determinism for perfectly predictable
measurements:

universal noncontextuality
∧

operational equivalences∧
perfect correlation⇒ contradiction (1)

4. Contend with the lack of perfect predictability in real
experiments:

universal noncontextuality
∧

operational equivalences

⇒ failure of perfect correlation (2)



Operational theory

(P,M, p), where p : (M,P)→ [0, 1] is the probability p(k |M,P)
that k ∈ KM occurs when M ∈M is implemented following
P ∈ P. For each M:∑

k∈KM

p(k |M,P) = 1 ∀P ∈ P. (3)

[k |M] denotes the event: outcome k occurs for measurement M.



Ontological model of an Operational theory

(Λ, µ, ξ), where each preparation P ∈ P is associated with a
distribution µ(λ|P) ∈ [0, 1] such that

∑
λ∈Λ µ(λ|P) = 1 for all

P ∈ P, each [k |M] with the probability ξ(k|M, λ) ∈ [0, 1] that
[k |M] occurs when the ontic state of the system is λ, and for each
M ∈M: ∑

k∈KM

ξ(k|M, λ) = 1 ∀λ ∈ Λ. (4)

Assumption of outcome determinism: for any [k |M],
ξ(k |M, λ) ∈ {0, 1}∀λ ∈ Λ.



An ontological model of an operational theory must be empirically
adequate, that is:

p(k|M,P) =
∑
λ∈Λ

ξ(k|M, λ)µ(λ|P) (5)

for all P ∈ P,M ∈M. This is how an operational theory and its
ontological model fit together.



Operational equivalence of experimental procedures

I [k |M] and [k ′|M ′] operationally equivalent ([k |M] ' [k ′|M ′])
if no preparation procedure yields differing outcome
probabilities for them, i.e.,

∀P ∈ P : p(k|M,P) = p(k ′|M ′,P). (6)

I P and P ′ operationally equivalent (P ' P ′) if no
measurement event [k|M] yields differing outcome
probabilities for them, i.e.,

p(k|M,P) = p(k |M,P ′) ∀k ∈ KM , (M,KM) ∈M. (7)



What is a ‘context’?

I Any distinction between two operationally equivalent
experimental procedures.5

I Measurement contexts: (a) whether M1 is jointly measured

with M2 (M12) or with M3 (M13), where M
(2)
1 ' M

(3)
1 ' M1,

(b) different operationally equivalent ways of implementing a
fair coin flip measurement.6

I Preparation contexts: (a) different convex decompositions:
I
2 = 1

2 |0〉〈0|+
1
2 |1〉〈1| = 1

2 |+〉〈+|+
1
2 |−〉〈−|, (b) different

purifications: ρA = TrB |ψ〉〈ψ|AB = TrC |φ〉〈φ|AC .

5A distinction that doesn’t make a difference, operationally. ‘Contextuality’:
this distinction sometimes necessarily makes a difference in any ontological
model underlying the operational statistics.

6M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch, and R. W.
Spekkens, An experimental test of noncontextuality without unwarranted
idealizations, arXiv:1505.06244 [quant-ph] (2015).



Operationalizing KS-noncontextuality
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An ontological model (Λ, µ, ξ) of an operational theory (P,M, p)
is KS-noncontextual if

1. operational equivalence of events implies equivalent
representations in the model, i.e.,
[k |M] ' [k ′|M ′]⇒ ξ(k |M, λ) = ξ(k ′|M ′, λ) for all λ ∈ Λ
(measurement noncontextuality), and

2. the model is outcome-deterministic, ξ(k|M, λ) : Λ→ {0, 1}.



Defining noncontextuality without outcome determinism

I Identity of indiscernables: context-independence at the
operational level should imply context-independence at the
ontological level.

I A Kochen-Specker contradiction cannot be derived from
measurement noncontextuality alone.

I How do we fix this? Enter preparation noncontextuality.



Justifying outcome determinism for perfectly predictable
measurements

I Preparation noncontextuality: P ' P ′ ⇒ µ(λ|P) = µ(λ|P ′)
for all λ ∈ Λ.

I Assumption of universal noncontextuality: preparations and
measurements.

I PNC
∧

QT ⇒ ODSM.7 We outline how this argument plays
out for an operational theory in the present scenario.

7RWS, Phys. Rev. A 71, 052108 (2005). Abandoning outcome determinism
in this case amounts to allowing preparation contextuality.



Preparation procedures and their operational equivalences



I Suppose ∀i , ∀k : p(k |Mi ,Pi ,k) = 1. (perfect correlation or
perfect predictability).

I Since P
(ave)
i ' P

(ave)
i ′ for all i , i ′ ∈ {1, 2, . . . , 9}, and

µ(λ|P(ave)
i ) = 1

4

∑4
k=1 µ(λ|Pi ,k), we have by preparation

noncontextuality:

1

4

4∑
k=1

µ(λ|Pi ,k) ≡ ν(λ) ∀i ∈ {1, 2, . . . , 9}. (8)

I Empirical adequacy requires that

∀i ,∀k :
∑
λ

ξ(k |Mi , λ)µ(λ|Pi ,k) = 1. (9)

This immediately implies that ξ(k |Mi , λ) = 1 for all λ in the
support of Pi ,k , i.e., λ ∈ {Λ|µ(λ|Pi ,k) > 0}. Since this is true
for all i , k , and since every λ in the support of ν(λ) appears in
the support of some Pi ,k (for each i), we must have
∀i ,∀k : ξ(k |Mi , λ) ∈ {0, 1} for all λ ∈ {Λ|ν(λ) > 0}.



In justifying outcome determinism, we have revised the operational
content of the Kochen-Specker theorem:

universal noncontextuality
∧

operational equivalences∧
perfect correlation⇒ contradiction (10)

This leads to a natural formulation of a noncontextuality
inequality when perfect correlation fails.



Contending with the lack of perfect predictability in real
experiments

universal noncontextuality
∧

operational equivalences

⇒ failure of perfect correlation (11)

∴ our noncontextuality inequality bounds

A ≡ 1

36

9∑
i=1

4∑
k=1

p(k |Mi ,Pi ,k). (12)



Bounding the average predictability

A =
1

36

9∑
i=1

4∑
k=1

∑
λ

ξ(k |Mi , λ)µ(λ|Pi ,k)

≤ 1

9

9∑
i=1

∑
λ

ζ(Mi , λ)
1

4

4∑
k=1

µ(λ|Pi ,k)

(where ζ(Mi , λ) ≡ max
k ′∈KM

ξ(k ′|M, λ))

=
∑
λ

1

9

(
9∑

i=1

ζ(Mi , λ)

)
ν(λ)

≤ max
λ

1

9

(
9∑

i=1

ζ(Mi , λ)

)

=
5

6
(13)



Figure : An extremal vertex of 146-vertex, 9-dimensional polytope. It
makes at most 6 measurements have deterministic outcomes but the
remaining 3 have a max-probability of 1

2 each: 1
9 (6.1 + 3. 1

2 ) = 5
6 . One can

think of the 146 vertices as the space of ontic states Λ, since their convex
hull characterizes all possible probabilistic models on the hypergraph.



Noise robustness: why trivial POVMs are not a problem

I Assuming the experiment is well-modelled by quantum theory:
p(k |Mi ,Pi ,k) = Tr(Ek|Mi

ρi ,k), where
Ek|Mi

≥ 0,
∑

k Ek|Mi
= I , ρi ,k ≥ 0, and Trρi ,k = 1.

I In the ideal limit of (noiseless) projective measurements, we
have Ek|Mi

= Πi ,k and ρi ,k = Πi ,k , where Πi ,k is a rank 1
projector, so that ∀i , ∀k : p(k |Mi ,Pi ,k) = 1 (perfect
correlation is satisfied) and A = 1: operational equivalences

∧
perfect correlation ⇒ contextuality.

I Consider a simple depolarizing channel acting on the
preparation: Dp(·) = pI (·)I + (1− p) I

4 Tr(·). Equivalently, the
adjoint of this channel acts on the measurement.



The deviation from the noiseless ideal is given by

ρi ,k = Dp1(Πi ,k) = p1Πi ,k + (1− p1)
I

4
,

Ek|Mi
= D†

p2
(Πi ,k) = p2Πi ,k + (1− p2)

I

4
.

The channel between the preparation and measurement introduces
noise characterized by p1 and p2. It then follows that
p(k|Mi ,Pi ,k) = p1p2 + (1− p1p2) 1

4 and therefore

A =
1

4
+

3

4
p1p2.

Clearly A > 5
6 (contextuality!) if and only if p1p2 >

7
9 . In the

completely noisy case (trivial POVMs!) p1p2 = 0 and A = 1
4 and

the noncontextuality inequality is satisfied. On the other hand, in
the noiseless ideal limit (rank 1 projectors!) p1p2 = 1 and A = 1,
maximally violating the noncontextuality inequality.



Takeaway

I Operational KS: universal noncontextuality
∧

operational
equivalences

∧
perfect predictability ⇒ contradiction.

I This allows us to graduate to a theory-independent
noncontextuality inequality from an uncolourability proof of
the KS theorem.

I This noncontextuality inequality is NOT a traditional
Kochen-Specker inequality. A Kochen-Specker inequality for a
KS-uncolourable hypergraph is anyway an oxymoron.

I It tolerates noisy preparations and measurements but if an
experiment doesn’t suppress noise sufficiently, the inequality
cannot be violated. This simple criterion of operational
meaningfulness in the presence of noise is not satisfied by KS
inequalities (in cases where they are well-defined).

I No artificial restriction to “sharp” measurements, however
defined, is needed.



That’s a wrap!



Bonus slides: Critiquing a previous proposal8

α′ ≡ 〈w1 ⊕ w2 ⊕ w3 ⊕ w4〉+ 〈w4 ⊕ w5 ⊕ w6 ⊕ w7〉
+ 〈w7 ⊕ w8 ⊕ w9 ⊕ w10〉+ 〈w10 ⊕ w11 ⊕ w12 ⊕ w13〉
+ 〈w13 ⊕ w14 ⊕ w15 ⊕ w16〉+ 〈w16 ⊕ w17 ⊕ w18 ⊕ w1〉
+ 〈w18 ⊕ w2 ⊕ w9 ⊕ w11〉+ 〈w3 ⊕ w5 ⊕ w12 ⊕ w14〉
+ 〈w6 ⊕ w8 ⊕ w15 ⊕ w17〉
≤ 8. (14)

8A. Cabello, Experimentally testable state independent quantum
contextuality, Phys. Rev. Lett. 101, 210401 (2008)
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Figure : Unphysical assignments

I Obtained by considering the 218 assignments to the vector
(w1,w2, . . . ,w18) ∈ {0, 1}18 and noting that none of these
assignments beats the upper bound.

I BUT: wi ∈ {0, 1}, and the physical assignments to wi in an
edge are 1000, 0100, 0010, and 0001. KS theorem already
precludes such assignments.



I Clearly, the 218 deterministic assignments considered in
deriving this inequality are not valid probabilistic assignments
(hence, unphysical).

I A violation, α′ > 8, is therefore necessary for any valid
probablistic assignment. It says nothing about contextuality,
quantum or otherwise: α′ ≤ 7 is ruled out by logic alone, no
experiment is needed.

I For possible responses to this criticism, and their inadequacy,
read the paper!



That’s a bubble wrap!
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