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Control theory is concerned with manipulating systems to
induce them to enter a desired range of states. Modelling a
system helps us understand what is happening and what
manipulations can be made. Control theorists use the visual
language of signal-flow diagrams as an effective way of
communicating system models.

Despite working at the classical level, categories of signal-flow
diagrams have striking similarities to categories of quantum
systems.
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Two prominent features:

Integration

Feedback

Signal-flow diagrams in control theory
are systems of linear differential equations
with a user-friendly package.
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Lemma (Baez, E.)

The category FinVectk, with
finite dimensional vector spaces over k as objects,
linear maps as morphisms,

is a symmetric monoidal category with ⊕ as its tensor product
instead of ⊗. FinVectk is generated as a symmetric monoidal
category by one object, k, together with the morphisms

c

where c ∈ k.



Scalar multiplication

1. For each c ∈ k we get a linear map for multiplying numbers
by c:

c

c : k → k
x 7→ cx

By taking Laplace transforms, engineers reduce integration to
multiplication by 1

s . This makes integration a special case of
scalar multiplication when we take k = R(s).
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Addition

2. We can add two numbers together:

+: k⊕ k → k
(x, y) 7→ x + y



Duplication

3. We can duplicate a number to get two copies of it:

∆: k → k⊕ k
x 7→ (x, x)



Zero

4. We have the number zero:

0 : {0} → k
0 7→ 0



Deletion

5. We can delete a number:

! : k → {0}
x 7→ 0



These morphisms obey relations that we can state succinctly as

Theorem (Baez, E.)

FinVectk is the free symmetric monoidal category on a
bicommutative bimonoid over k.

Simon Wadsley and Nick Woods later demonstrated this also
holds for finitely generated free modules over any commutative
rig k.
Expanded, this theorem lists the relations obeyed by the
generating morphisms:



1–3 Commutative monoid

(k,+,0) is a commutative monoid:

= = =



4–6 Cocommutative comonoid

(k,∆, !) is a cocommutative comonoid:

= = =



7–10 Bimonoid

(k,+,0,∆, !) is a bimonoid:

= =

= =



11–14 Rig structure

The rig structure of k can be recovered from the generators:

b+c = b c
c

b
=bc

1 = 0 =



15–18 Scalar multiplication

Scalar multiplication by c ∈ k commutes with the generators:

c c
=

c c =

c c
=

c c =



Linear maps only flow one-way. Since we want to describe
feedback, we need something better.

Linear relations!



Linear maps only flow one-way. Since we want to describe
feedback, we need something better.

Linear relations!



A linear relation F : U 9 V from a vector space U to a vector
space V is a linear subspace F ⊆ U ⊕ V.

When we compose linear relations F : U 9 V and G : V 9 W, we
get a linear relation G ◦ F : U 9 W:

G ◦ F = {(u,w) : ∃v ∈ V (u, v) ∈ F and (v,w) ∈ G}.



A linear map φ : U → V gives a linear relation F : U 9 V, namely
the graph of that map:

F = {(u, φ(u)) : u ∈ U}.

In this way, composing linear maps is a special case of
composing linear relations.

There is a category FinRelk with finite-dimensional vector spaces
over the field k as objects and linear relations as morphisms.

FinRelk becomes symmetric monoidal using ⊕. It has FinVectk
as a symmetric monoidal subcategory.

Fully general signal-flow diagrams are pictures of morphisms in
FinRelk.



Baez and I showed that starting with the generators of FinVectk,
we only need two more morphisms to generate FinRelk, namely:

6. The ‘cup’:

This is the linear relation

∪ : k⊕ k 9 {0}

given by:
∪ = {(x, x,0) : x ∈ k} ⊆ k⊕ k⊕ {0}.



7. The ‘cap’:

This is the linear relation

∩ : {0}9 k⊕ k

given by:
∩ = {(0, x, x) : x ∈ k} ⊆ {0} ⊕ k⊕ k.



Lemma (Baez, E.)

The category FinRelk, with
finite dimensional vector spaces over k as objects,
linear relations as morphisms,

is a symmetric monoidal category with ⊕ as its tensor product
instead of ⊗. FinRelk is generated as a symmetric monoidal
category by one object, k, together with the morphisms

c

where c ∈ k.



The relations governing these morphisms can be briefly stated as

Theorem (Baez–E., Bonchi–Sobociński–Zanasi)

FinRelk is the free symmetric monoidal category on a pair of
interacting bimonoids over k.

Expanded to a list, this theorem says we have the following
relations in addition to the ones already seen:



19–20 Zigzag relations

= =

These relations allow us to ‘turn morphisms around’. E.g.
coaddition is addition turned around:

:=

+† : k 9 k2

+† = {(x, y, z) : x = y + z} ⊆ k⊕ k2
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21–24 Frobenius relations

‘Dark’ morphisms:
(k,+,0,+†,0†) is a Frobenius monoid:

= =

‘Light’ morphisms:
(k,∆†, !†,∆, !) is a Frobenius monoid:

= =
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25–28 Extra-special structure

Both Frobenius monoids are extra-special:

= =

= =



29–30 Cap and Cup

∩ can be expressed in terms of ∆ and !†:

=

∪ with a factor of −1 inserted can be expressed in terms of +
and 0†:

−1 =



31 Reciprocal scalar multiplication

For any c ∈ k, c 6= 0, scalar multiplication by c−1 is the adjoint of
scalar multiplication by c:

c = c−1

This list of relations was independently discovered by Bonchi,
Sobociński and Zanasi. They noted the Frobenius relations can
be seen as coming from the interaction of the bimonoids over k.
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The categories FinVectk and FinRelk are beautiful exhibits of the
category theory lurking within control theory. What other
remarkable structures can we uncover?
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