Additive monotones for resource theories of parallel-combinable processes with discarding

Brendan Fong Hugo Nava-Kopp

Department of Computer Science University of Oxford

QPL, July 2015

1/17

Preordered monoid Free processes

Table of Contents

1 Background

- Preordered monoid
- Free processes

2 Our results

- List of the results
- Working out concrete cases in (Bij_⊥, Set_⊥)
- A second concrete case in (**Bij**, **Set**)
- Working out concrete cases in (Inj_⊥, Set_⊥)
- General theorem

3 Outlook

• Short term (and long term) future work

Preordered monoid Free processes

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

3/17

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into another state. This is modelled by a **preorder** relation $\leq i.e.$

- Reflexive: $a \leq a$
- Transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$

3/17

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into another state. This is modelled by a **preorder** relation $\leq i.e.$

- Reflexive: $a \leq a$
- Transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$

2. In physics two state spaces can be combined to create a new state space. This is modelled by a **monoid** binary operation \bullet *i.e.*

- Associativity: $(x \bullet y) \bullet z = x \bullet (y \bullet z)$
- Identity element: $\exists e \text{ such that } e \bullet a = a, \ \forall a \in X$

3/17

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into another state. This is modelled by a **preorder** relation $\leq i.e.$

- Reflexive: $a \leq a$
- Transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$

2. In physics two state spaces can be combined to create a new state space. This is modelled by a **monoid** binary operation \bullet *i.e.*

- Associativity: $(x \bullet y) \bullet z = x \bullet (y \bullet z)$
- Identity element: $\exists e \text{ such that } e \bullet a = a, \forall a \in X$

The **preordered monoid** is the structure at the core of the Resource Theory formalism.

Preordered monoid Free processes

イロン イヨン イヨン イヨン 三日

4/17

Ordered monoid from Symmetric Monoidal Category ${\bf C}$

Given ${\boldsymbol{\mathsf{C}}}$ we can always get a preordered monoid.

Preordered monoid Free processes

Ordered monoid from Symmetric Monoidal Category ${\bf C}$

Given \mathbf{C} we can always get a preordered monoid.

Theorem

Let **C** be a symmetric monoidal category, and $f \sim g$ in **C** if there $\exists f \rightarrow g$ and $g \rightarrow f$. This defines an equivalence relation.

Write [f] for the equivalence class of f; we also write $|\mathbf{C}|$ for the set of equivalence classes of objects in \mathbf{C} .

Then there exists an ordered monoid $(|\mathbf{C}|, \geq, \otimes)$ on the set of these equivalence classes, with $[f] \geq [g]$ if $\exists f \to g$ in \mathbf{C} , and using the monoidal product in \mathbf{C} to define $[f] \otimes [g] = [f \otimes g]$. Moreover, this monoid is commutative.

Given a set of processes, some can be considered very easy to perform or require almost null effort. We call these **free processes**.

5/17

Given a set of processes, some can be considered very easy to perform or require almost null effort. We call these **free processes**.

This free / non-free separation is modelled by a partitioned resource theory $(C_{\rm free},C)$ which consists of

- O A symmetric monoidal category C, and
- $\textcircled{O} An all-object-including symmetric monoidal subcategory \textbf{C}_{\rm free}$

 $\textbf{C}_{\rm free} \subseteq \textbf{C}$

Preordered monoid Free processes

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ ・ つへの

5/17

Given a set of processes, some can be considered very easy to perform or require almost null effort. We call these **free processes**.

This free / non-free separation is modelled by a partitioned resource theory $(C_{\rm free},C)$ which consists of

- () A symmetric monoidal category \mathbf{C} , and
- $\textbf{@} An all-object-including symmetric monoidal subcategory \textbf{C}_{\rm free}$

 $\textbf{C}_{\rm free} \subseteq \textbf{C}$

Examples

 $(\mathsf{Bij}, \mathsf{Set}), (\mathsf{Inj}, \mathsf{Set}), (\mathsf{Bij}_{\sqcup}, \mathsf{Set}_{\sqcup}), (\mathsf{Inj}_{\sqcup}, \mathsf{Set}_{\sqcup})$

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square})$ A second concrete case in $(Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square})$ General theorem

≣ ∽ 6/17

Table of Contents

Background

- Preordered monoid
- Free processes

Our results

- List of the results
- Working out concrete cases in $(Bij_{\sqcup}, Set_{\sqcup})$
- A second concrete case in (**Bij**_L, **Set**_L)
- Working out concrete cases in $(Inj_{\sqcup}, Set_{\sqcup})$
- General theorem

3 Outlook

• Short term (and long term) future work

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square} A second concrete cases in <math>(Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square} General theorem$

イロン イロン イヨン イヨン 三日

7 / 17

Result 1

Given the relation \succeq defined in the next frame which stands for *can* be transformed into, we find the complete family of "consistent pricing functions" of morphisms of two Resource Theories:

$(\mathsf{Bij}_{\sqcup},\mathsf{Set}_{\sqcup}) \text{ and } (\mathsf{Inj}_{\sqcup},\mathsf{Set}_{\sqcup})$

onto the reals.

 $\begin{array}{l} \mbox{List of the results} \\ \mbox{Working out concrete cases in } (Bij_{\Box}, Set_{\Box}) \\ \mbox{A second concrete case in } (Bij_{\Box}, Set_{\Box}) \\ \mbox{Working out concrete cases in } (Inj_{\Box}, Set_{\Box}) \\ \mbox{General theorem} \end{array}$

7 / 17

Result 1

Given the relation \succeq defined in the next frame which stands for *can* be transformed into, we find the complete family of "consistent pricing functions" of morphisms of two Resource Theories:

$(\mathsf{Bij}_{\sqcup},\mathsf{Set}_{\sqcup})$ and $(\mathsf{Inj}_{\sqcup},\mathsf{Set}_{\sqcup})$

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for finding these pricing functions in general resource theories.

Result 1

Given the relation \succeq defined in the next frame which stands for *can* be transformed into, we find the complete family of "consistent pricing functions" of morphisms of two Resource Theories:

$(\mathsf{Bij}_{\sqcup},\mathsf{Set}_{\sqcup})$ and $(\mathsf{Inj}_{\sqcup},\mathsf{Set}_{\sqcup})$

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a *complete family of monotones.*

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square} A \text{ second concrete case in } (Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square} General theorem$

Result 1

Given the relation \succeq defined in the next frame which stands for *can* be transformed into, we find the complete family of "consistent pricing functions" of morphisms of two Resource Theories:

$(\mathsf{Bij}_{\sqcup},\mathsf{Set}_{\sqcup})$ and $(\mathsf{Inj}_{\sqcup},\mathsf{Set}_{\sqcup})$

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a *complete family of monotones.*

To our knowledge, complete family of monotones haven't worked out yet making use of this \succeq relation.

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square})$ A second concrete case in $(Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square})$ General theorem

≡ ∽ 8/17

For $f,g \in Mor(\mathbf{C})$ we set

 $f \succeq g$

whenever $\exists Z \in |\mathbf{C}|$, $\xi_1, \xi_2 \in \mathsf{Mor}(\mathbf{C}_{\mathrm{free}})$, $j \in \mathsf{Mor}(\mathbf{C})$ such that

$$\xi_2 \circ (f \otimes 1_Z) \circ \xi_1 = g \otimes j. \tag{1}$$

List of the results

Working out concrete cases in (**Bij**, **Set**) A second concrete case in (**Bij**, **Set**) Working out concrete cases in (**Inj**, **Set**) General theorem

Definition

Let (X, \succeq) be a partially ordered set. A monotone is an order-preserving function $M : (X, \succeq) \to (\mathbb{R}, \geq)$. It is called complete if for all $x, y \in X$ we have

$$x \succeq y$$
 if and only if $M(x) \ge M(y)$.

Definition

Given a partially ordered set (X, \succeq) , we call a collection $\{M_i\}_{i \in I}$ of monotones on (X, \succeq) a complete family of monotones if for all $x, y \in X$ we have

 $x \succeq y$ if and only if $M_i(x) \ge M_i(y)$ for all $i \in I$.

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square})$ A second concrete case in $(Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square})$ General theorem

Complete family of additive monotones of $(Bij_{\sqcup}, Set_{\sqcup})$

For $i \in \mathbb{N}$, define functions:

$$arphi_i : \mathsf{Mor}(\mathbf{Set}_{\sqcup}) \longrightarrow \mathbb{N};$$

 $(f : X \to Y) \longmapsto \#\{y \in Y \mid \#f^{-1}(y) = i\}.$

	 4	3	2
f	 0	2	1
g	 0	1	0

	 4	3	2
f	 0	2	1
g	 0	1	0
	0 ≥ 0		

	 4	3	2
f	 0	2	1
g	 0	1	0
	$0 \ge 0$	$2 \ge 1$	

 \checkmark

	:	4	3	2
f		0	2	1
g		0	1	0
		$0 \ge 0$	$2 \ge 1$	$1 \ge 0$

 \checkmark \checkmark

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square})$ A second concrete case in $(Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square})$ General theorem

Complete family of additive monotones of $(Inj_{\sqcup}, Set_{\sqcup})$

For $i \in \mathbb{N}$, define functions

$$\gamma_i : \mathsf{Mor}(\mathsf{Set}_{\sqcup}) \longrightarrow \mathbb{N};$$

 $(f : X \to Y) \longmapsto \# \{ y \in Y \mid \# f^{-1}(y) \ge i \}$

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square})$ A second concrete case in $(Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square})$ General theorem

• Finding one monotone for a given R.T. is relatively easy.

- Finding one monotone for a given R.T. is relatively easy.
- Finding multiple monotones for a given R.T. is a bit harder.

- Finding one monotone for a given R.T. is relatively easy.
- Finding multiple monotones for a given R.T. is a bit harder.
- Finding monotones that satisfy the *iff* condition is much harder.

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square})$ A second concrete case in $(Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square})$ General theorem

14/17

- Finding one monotone for a given R.T. is relatively easy.
- Finding multiple monotones for a given R.T. is a bit harder.
- Finding monotones that satisfy the *iff* condition is much harder.
- Finding *all* possible monotones that satisfy the *iff* condition is much much harder.

List of the results Working out concrete cases in $(Bij_{\bigsqcup}, Set_{\bigsqcup})$ A second concrete case in $(Bij_{\bigsqcup}, Set_{\bigsqcup})$ Working out concrete cases in $(Inj_{\bigsqcup}, Set_{\bigsqcup})$ General theorem

- Finding one monotone for a given R.T. is relatively easy.
- Finding multiple monotones for a given R.T. is a bit harder.
- Finding monotones that satisfy the *iff* condition is much harder.
- Finding *all* possible monotones that satisfy the *iff* condition is much much harder.

Our theorem eases the task of finding this complete family by reducing it to only finding 3 properties:

(i) $\mu(f \otimes g) = \mu(f) \cdot \mu(g)$; (ii) $\mu(1_Z) = 1$; and (iii) $\mu(f) \ge \mu(\xi \circ f)$ and $\mu(f) \ge \mu(f \circ \xi)$ whenever it makes sense. for all $Z \in |\mathbf{C}|$, $f, g \in Mor(\mathbf{C})$, and $\xi \in Mor(\mathbf{C}_{free})$

List of the results Working out concrete cases in $(Bij_{\square}, Set_{\square})$ A second concrete case in $(Bij_{\square}, Set_{\square})$ Working out concrete cases in $(Inj_{\square}, Set_{\square})$ General theorem

Theorem

Let $(\mathbf{C}, \mathbf{C}_{free})$ be a PRT and let (X, \geq, \cdot) be a non-negative ordered monoid. A function $\mu : Mor(\mathbf{C}) \to X$ induces an order-preserving monoid homomorphism

$$egin{aligned} M : (|\mathsf{PCD}(\mathbf{C},\mathbf{C}_{free})|,\succeq,\otimes) &\longrightarrow (X,\geq,\cdot) \ &[f] &\longmapsto \mu(f) \end{aligned}$$

iff for all $Z \in |\mathbf{C}|$, $f, g \in Mor(\mathbf{C})$, and $\xi \in Mor(\mathbf{C}_{free})$ we have (i) $\mu(f \otimes g) = \mu(f) \cdot \mu(g)$; (ii) $\mu(1_Z) = 1$; and

(iii) $\mu(f) \ge \mu(\xi \circ f)$ and $\mu(f) \ge \mu(f \circ \xi)$ whenever such composites are well-defined.

Moreover, this gives a one-to-one correspondence: every order-preserving monoid homomorphism on $(|PCD(\mathbf{C}, \mathbf{C}_{free})|, \succeq, \otimes)$ arises from a unique such function μ .

Short term (and long term) future work

Table of Contents

1 Background

- Preordered monoid
- Free processes

2 Our results

- List of the results
- Working out concrete cases in (Bij_□, Set_□)
- A second concrete case in (**Bij**, **Set**)
- Working out concrete cases in (Inj_⊥, Set_⊥)
- General theorem

3 Outlook

• Short term (and long term) future work

・ロト ・回ト ・ヨト ・ヨト

17/17

- Find complete families of monotones for more interesting pairs of monoidal categories. **Rel**, **Vect**, **Hilb**, etc.
- Seek for properties of physical (and chemical, biological) interest that this theory could predict.
- Extend the theory so that it can measure properties currently incommensurable, like the irreversibility of a Markov process (by taking FinStoch as the main Category) or the irreducibility. Neither irreversible nor irreducible matrices form a category.