
Background
Our results

Outlook

Additive monotones for resource theories of
parallel-combinable processes with discarding

Brendan Fong
Hugo Nava-Kopp

Department of Computer Science
University of Oxford

QPL , July 2015

1 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Table of Contents

1 Background
Preordered monoid
Free processes

2 Our results
List of the results
Working out concrete cases in (Bijt,Sett)
A second concrete case in (Bijt,Sett)
Working out concrete cases in (Injt,Sett)
General theorem

3 Outlook
Short term (and long term) future work

2 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into
another state. This is modelled by a preorder relation ≤ i.e.

Reflexive: a ≤ a

Transitive: if a ≤ b and b ≤ c , then a ≤ c

2. In physics two state spaces can be combined to create a new
state space. This is modelled by a monoid binary operation • i.e.

Associativity: (x • y) • z = x • (y • z)

Identity element: ∃e such that e • a = a, ∀a ∈ X

The preordered monoid is the structure at the core of the
Resource Theory formalism.

3 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into
another state. This is modelled by a preorder relation ≤ i.e.

Reflexive: a ≤ a

Transitive: if a ≤ b and b ≤ c , then a ≤ c

2. In physics two state spaces can be combined to create a new
state space. This is modelled by a monoid binary operation • i.e.

Associativity: (x • y) • z = x • (y • z)

Identity element: ∃e such that e • a = a, ∀a ∈ X

The preordered monoid is the structure at the core of the
Resource Theory formalism.

3 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into
another state. This is modelled by a preorder relation ≤ i.e.

Reflexive: a ≤ a

Transitive: if a ≤ b and b ≤ c , then a ≤ c

2. In physics two state spaces can be combined to create a new
state space. This is modelled by a monoid binary operation • i.e.

Associativity: (x • y) • z = x • (y • z)

Identity element: ∃e such that e • a = a, ∀a ∈ X

The preordered monoid is the structure at the core of the
Resource Theory formalism.

3 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into
another state. This is modelled by a preorder relation ≤ i.e.

Reflexive: a ≤ a

Transitive: if a ≤ b and b ≤ c , then a ≤ c

2. In physics two state spaces can be combined to create a new
state space. This is modelled by a monoid binary operation • i.e.

Associativity: (x • y) • z = x • (y • z)

Identity element: ∃e such that e • a = a, ∀a ∈ X

The preordered monoid is the structure at the core of the
Resource Theory formalism.

3 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Ordered monoid from Symmetric Monoidal Category C

Given C we can always get a preordered monoid.

Theorem

Let C be a symmetric monoidal category, and f ∼ g in C if there
∃f → g and g → f . This defines an equivalence relation.

Write [f] for the equivalence class of f ; we also write |C| for the
set of equivalence classes of objects in C.

Then there exists an ordered monoid (|C|,�,⊗) on the set of
these equivalence classes, with [f] � [g] if ∃f → g in C, and using
the monoidal product in C to define [f]⊗ [g] = [f ⊗ g]. Moreover,
this monoid is commutative.

4 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Ordered monoid from Symmetric Monoidal Category C

Given C we can always get a preordered monoid.

Theorem

Let C be a symmetric monoidal category, and f ∼ g in C if there
∃f → g and g → f . This defines an equivalence relation.

Write [f] for the equivalence class of f ; we also write |C| for the
set of equivalence classes of objects in C.

Then there exists an ordered monoid (|C|,�,⊗) on the set of
these equivalence classes, with [f] � [g] if ∃f → g in C, and using
the monoidal product in C to define [f]⊗ [g] = [f ⊗ g]. Moreover,
this monoid is commutative.

4 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Given a set of processes, some can be considered very easy to
perform or require almost null effort. We call these free processes.

This free / non-free separation is modelled by a partitioned
resource theory (Cfree,C) which consists of

1 A symmetric monoidal category C, and

2 An all-object-including symmetric monoidal subcategoryCfree

Cfree ⊆ C

Examples

(Bij,Set), (Inj,Set), (Bijt,Sett), (Injt,Sett)

5 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Given a set of processes, some can be considered very easy to
perform or require almost null effort. We call these free processes.

This free / non-free separation is modelled by a partitioned
resource theory (Cfree,C) which consists of

1 A symmetric monoidal category C, and

2 An all-object-including symmetric monoidal subcategoryCfree

Cfree ⊆ C

Examples

(Bij,Set), (Inj,Set), (Bijt,Sett), (Injt,Sett)

5 / 17

Background
Our results

Outlook

Preordered monoid
Free processes

Given a set of processes, some can be considered very easy to
perform or require almost null effort. We call these free processes.

This free / non-free separation is modelled by a partitioned
resource theory (Cfree,C) which consists of

1 A symmetric monoidal category C, and

2 An all-object-including symmetric monoidal subcategoryCfree

Cfree ⊆ C

Examples

(Bij,Set), (Inj,Set), (Bijt,Sett), (Injt,Sett)

5 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Table of Contents

1 Background
Preordered monoid
Free processes

2 Our results
List of the results
Working out concrete cases in (Bijt,Sett)
A second concrete case in (Bijt,Sett)
Working out concrete cases in (Injt,Sett)
General theorem

3 Outlook
Short term (and long term) future work

6 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Result 1

Given the relation � defined in the next frame which stands for can
be transformed into, we find the complete family of “consistent
pricing functions” of morphisms of two Resource Theories:

(Bijt,Sett) and (Injt,Sett)

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for
finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a
complete family of monotones.
To our knowledge, complete family of monotones haven’t worked
out yet making use of this � relation.

7 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Result 1

Given the relation � defined in the next frame which stands for can
be transformed into, we find the complete family of “consistent
pricing functions” of morphisms of two Resource Theories:

(Bijt,Sett) and (Injt,Sett)

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for
finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a
complete family of monotones.
To our knowledge, complete family of monotones haven’t worked
out yet making use of this � relation.

7 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Result 1

Given the relation � defined in the next frame which stands for can
be transformed into, we find the complete family of “consistent
pricing functions” of morphisms of two Resource Theories:

(Bijt,Sett) and (Injt,Sett)

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for
finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a
complete family of monotones.

To our knowledge, complete family of monotones haven’t worked
out yet making use of this � relation.

7 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Result 1

Given the relation � defined in the next frame which stands for can
be transformed into, we find the complete family of “consistent
pricing functions” of morphisms of two Resource Theories:

(Bijt,Sett) and (Injt,Sett)

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for
finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a
complete family of monotones.
To our knowledge, complete family of monotones haven’t worked
out yet making use of this � relation.

7 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

For f , g ∈ Mor(C) we set
f � g

whenever ∃Z ∈ |C| , ξ1, ξ2 ∈ Mor(Cfree) , j ∈ Mor(C) such that

ξ2 ◦ (f ⊗ 1Z) ◦ ξ1 = g ⊗ j . (1)

ξ2

ξ1

f g j=

8 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Definition

Let (X ,�) be a partially ordered set. A monotone is an
order-preserving function M : (X ,�)→ (R,≥). It is called
complete if for all x , y ∈ X we have

x � y if and only if M(x) ≥ M(y).

Definition

Given a partially ordered set (X ,�), we call a collection {Mi}i∈I of
monotones on (X ,�) a complete family of monotones if for all
x , y ∈ X we have

x � y if and only if Mi (x) ≥ Mi (y) for all i ∈ I .

9 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Complete family of additive monotones of (Bijt,Sett)

For i ∈ N, define functions:

ϕi : Mor(Sett) −→ N;

(f : X → Y) 7−→ #{y ∈ Y | #f −1(y) = i}.

10 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

11 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

11 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

11 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

11 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

11 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

12 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Complete family of additive monotones of (Injt,Sett)

For i ∈ N, define functions

γi : Mor(Sett) −→ N;

(f : X → Y) 7−→ #
{
y ∈ Y |#f −1(y) ≥ i

}

13 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

13 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

13 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

13 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

13 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Finding one monotone for a given R.T. is relatively easy.

Finding multiple monotones for a given R.T. is a bit harder.

Finding monotones that satisfy the iff condition is much
harder.

Finding all possible monotones that satisfy the iff condition is
much much harder.

Our theorem eases the task of finding this complete family by
reducing it to only finding 3 properties:

(i) µ(f ⊗ g) = µ(f) · µ(g);

(ii) µ(1Z) = 1; and

(iii) µ(f) ≥ µ(ξ ◦ f) and µ(f) ≥ µ(f ◦ ξ) whenever it makes sense.

for all Z ∈ |C|, f , g ∈ Mor(C), and ξ ∈ Mor(Cfree)

14 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Finding one monotone for a given R.T. is relatively easy.

Finding multiple monotones for a given R.T. is a bit harder.

Finding monotones that satisfy the iff condition is much
harder.

Finding all possible monotones that satisfy the iff condition is
much much harder.

Our theorem eases the task of finding this complete family by
reducing it to only finding 3 properties:

(i) µ(f ⊗ g) = µ(f) · µ(g);

(ii) µ(1Z) = 1; and

(iii) µ(f) ≥ µ(ξ ◦ f) and µ(f) ≥ µ(f ◦ ξ) whenever it makes sense.

for all Z ∈ |C|, f , g ∈ Mor(C), and ξ ∈ Mor(Cfree)

14 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Finding one monotone for a given R.T. is relatively easy.

Finding multiple monotones for a given R.T. is a bit harder.

Finding monotones that satisfy the iff condition is much
harder.

Finding all possible monotones that satisfy the iff condition is
much much harder.

Our theorem eases the task of finding this complete family by
reducing it to only finding 3 properties:

(i) µ(f ⊗ g) = µ(f) · µ(g);

(ii) µ(1Z) = 1; and

(iii) µ(f) ≥ µ(ξ ◦ f) and µ(f) ≥ µ(f ◦ ξ) whenever it makes sense.

for all Z ∈ |C|, f , g ∈ Mor(C), and ξ ∈ Mor(Cfree)

14 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Finding one monotone for a given R.T. is relatively easy.

Finding multiple monotones for a given R.T. is a bit harder.

Finding monotones that satisfy the iff condition is much
harder.

Finding all possible monotones that satisfy the iff condition is
much much harder.

Our theorem eases the task of finding this complete family by
reducing it to only finding 3 properties:

(i) µ(f ⊗ g) = µ(f) · µ(g);

(ii) µ(1Z) = 1; and

(iii) µ(f) ≥ µ(ξ ◦ f) and µ(f) ≥ µ(f ◦ ξ) whenever it makes sense.

for all Z ∈ |C|, f , g ∈ Mor(C), and ξ ∈ Mor(Cfree)

14 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Finding one monotone for a given R.T. is relatively easy.

Finding multiple monotones for a given R.T. is a bit harder.

Finding monotones that satisfy the iff condition is much
harder.

Finding all possible monotones that satisfy the iff condition is
much much harder.

Our theorem eases the task of finding this complete family by
reducing it to only finding 3 properties:

(i) µ(f ⊗ g) = µ(f) · µ(g);

(ii) µ(1Z) = 1; and

(iii) µ(f) ≥ µ(ξ ◦ f) and µ(f) ≥ µ(f ◦ ξ) whenever it makes sense.

for all Z ∈ |C|, f , g ∈ Mor(C), and ξ ∈ Mor(Cfree)

14 / 17

Background
Our results

Outlook

List of the results
Working out concrete cases in (Bijt, Sett)
A second concrete case in (Bijt, Sett)
Working out concrete cases in (Injt, Sett)
General theorem

Theorem

Let (C,Cfree) be a PRT and let (X ,≥, ·) be a non-negative
ordered monoid. A function µ : Mor(C)→ X induces an
order-preserving monoid homomorphism

M : (|PCD(C,Cfree)|,�,⊗) −→ (X ,≥, ·)
[f] 7−→ µ(f)

iff for all Z ∈ |C|, f , g ∈ Mor(C), and ξ ∈ Mor(Cfree) we have

(i) µ(f ⊗ g) = µ(f) · µ(g);

(ii) µ(1Z) = 1; and

(iii) µ(f) ≥ µ(ξ ◦ f) and µ(f) ≥ µ(f ◦ ξ) whenever such
composites are well-defined.

Moreover, this gives a one-to-one correspondence: every
order-preserving monoid homomorphism on (|PCD(C,Cfree)|,�,⊗)
arises from a unique such function µ. 15 / 17

Background
Our results

Outlook
Short term (and long term) future work

Table of Contents

1 Background
Preordered monoid
Free processes

2 Our results
List of the results
Working out concrete cases in (Bijt,Sett)
A second concrete case in (Bijt,Sett)
Working out concrete cases in (Injt,Sett)
General theorem

3 Outlook
Short term (and long term) future work

16 / 17

Background
Our results

Outlook
Short term (and long term) future work

Find complete families of monotones for more interesting pairs
of monoidal categories. Rel, Vect, Hilb, etc.

Seek for properties of physical (and chemical, biological)
interest that this theory could predict.

Extend the theory so that it can measure properties currently
incommensurable, like the irreversibility of a Markov process
(by taking FinStoch as the main Category) or the irreducibility.
Neither irreversible nor irreducible matrices form a category.

17 / 17

	Background
	Preordered monoid
	Free processes

	Our results
	List of the results
	Working out concrete cases in (Bij,Set)
	A second concrete case in (Bij,Set)
	Working out concrete cases in (Inj,Set)
	General theorem

	Outlook
	Short term (and long term) future work

