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Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into
another state. This is modelled by a preorder relation ≤ i.e.

Reflexive: a ≤ a

Transitive: if a ≤ b and b ≤ c , then a ≤ c

2. In physics two state spaces can be combined to create a new
state space. This is modelled by a monoid binary operation • i.e.

Associativity: (x • y) • z = x • (y • z)

Identity element: ∃e such that e • a = a, ∀a ∈ X

The preordered monoid is the structure at the core of the
Resource Theory formalism.
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Ordered monoid from Symmetric Monoidal Category C

Given C we can always get a preordered monoid.

Theorem

Let C be a symmetric monoidal category, and f ∼ g in C if there
∃f → g and g → f . This defines an equivalence relation.

Write [f ] for the equivalence class of f ; we also write |C| for the
set of equivalence classes of objects in C.

Then there exists an ordered monoid (|C|,�,⊗) on the set of
these equivalence classes, with [f ] � [g ] if ∃f → g in C, and using
the monoidal product in C to define [f ]⊗ [g ] = [f ⊗ g ]. Moreover,
this monoid is commutative.
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Given a set of processes, some can be considered very easy to
perform or require almost null effort. We call these free processes.

This free / non-free separation is modelled by a partitioned
resource theory (Cfree,C) which consists of

1 A symmetric monoidal category C, and

2 An all-object-including symmetric monoidal subcategoryCfree

Cfree ⊆ C

Examples

(Bij,Set), (Inj,Set), (Bijt,Sett), (Injt,Sett)
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Result 1

Given the relation � defined in the next frame which stands for can
be transformed into, we find the complete family of “consistent
pricing functions” of morphisms of two Resource Theories:

(Bijt,Sett) and (Injt,Sett)

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for
finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a
complete family of monotones.
To our knowledge, complete family of monotones haven’t worked
out yet making use of this � relation.
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For f , g ∈ Mor(C) we set
f � g

whenever ∃Z ∈ |C| , ξ1, ξ2 ∈ Mor(Cfree) , j ∈ Mor(C) such that

ξ2 ◦ (f ⊗ 1Z ) ◦ ξ1 = g ⊗ j . (1)

ξ2

ξ1

f g j=
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Definition

Let (X ,�) be a partially ordered set. A monotone is an
order-preserving function M : (X ,�)→ (R,≥). It is called
complete if for all x , y ∈ X we have

x � y if and only if M(x) ≥ M(y).

Definition

Given a partially ordered set (X ,�), we call a collection {Mi}i∈I of
monotones on (X ,�) a complete family of monotones if for all
x , y ∈ X we have

x � y if and only if Mi (x) ≥ Mi (y) for all i ∈ I .
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Complete family of additive monotones of (Bijt,Sett)

For i ∈ N, define functions:

ϕi : Mor(Sett) −→ N;

(f : X → Y ) 7−→ #{y ∈ Y | #f −1(y) = i}.
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Complete family of additive monotones of (Injt,Sett)

For i ∈ N, define functions

γi : Mor(Sett) −→ N;

(f : X → Y ) 7−→ #
{
y ∈ Y |#f −1(y) ≥ i

}
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Finding one monotone for a given R.T. is relatively easy.

Finding multiple monotones for a given R.T. is a bit harder.

Finding monotones that satisfy the iff condition is much
harder.

Finding all possible monotones that satisfy the iff condition is
much much harder.

Our theorem eases the task of finding this complete family by
reducing it to only finding 3 properties:

(i) µ(f ⊗ g) = µ(f ) · µ(g);

(ii) µ(1Z ) = 1; and

(iii) µ(f ) ≥ µ(ξ ◦ f ) and µ(f ) ≥ µ(f ◦ ξ) whenever it makes sense.

for all Z ∈ |C|, f , g ∈ Mor(C), and ξ ∈ Mor(Cfree)
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Theorem

Let (C,Cfree) be a PRT and let (X ,≥, ·) be a non-negative
ordered monoid. A function µ : Mor(C)→ X induces an
order-preserving monoid homomorphism

M : (|PCD(C,Cfree)|,�,⊗) −→ (X ,≥, ·)
[f ] 7−→ µ(f )

iff for all Z ∈ |C|, f , g ∈ Mor(C), and ξ ∈ Mor(Cfree) we have

(i) µ(f ⊗ g) = µ(f ) · µ(g);

(ii) µ(1Z ) = 1; and

(iii) µ(f ) ≥ µ(ξ ◦ f ) and µ(f ) ≥ µ(f ◦ ξ) whenever such
composites are well-defined.

Moreover, this gives a one-to-one correspondence: every
order-preserving monoid homomorphism on (|PCD(C,Cfree)|,�,⊗)
arises from a unique such function µ. 15 / 17
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Find complete families of monotones for more interesting pairs
of monoidal categories. Rel, Vect, Hilb, etc.

Seek for properties of physical (and chemical, biological)
interest that this theory could predict.

Extend the theory so that it can measure properties currently
incommensurable, like the irreversibility of a Markov process
(by taking FinStoch as the main Category) or the irreducibility.
Neither irreversible nor irreducible matrices form a category.
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