Additive monotones for resource theories of parallel-combinable processes with discarding

Brendan Fong
Hugo Nava-Kopp

Department of Computer Science
University of Oxford

QPL , July 2015

Table of Contents

(1) Background

- Preordered monoid
- Free processes
(2) Our results
- List of the results
- Working out concrete cases in (Bij_{\sqcup}, Set $\left._{\sqcup}\right)$
- A second concrete case in (Bij_{\sqcup}, Set $_{\sqcup}$)
- Working out concrete cases in (Inj $\mathbf{J}_{\llcorner }$, Set $_{\sqcup}$)
- General theorem
(3) Outlook
- Short term (and long term) future work

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into another state. This is modelled by a preorder relation $\leq i . e$.

- Reflexive: $a \leq a$
- Transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into another state. This is modelled by a preorder relation $\leq i . e$.

- Reflexive: $a \leq a$
- Transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$

2. In physics two state spaces can be combined to create a new state space. This is modelled by a monoid binary operation \bullet i.e.

- Associativity: $(x \bullet y) \bullet z=x \bullet(y \bullet z)$
- Identity element: $\exists e$ such that $e \bullet a=a, \forall a \in X$

Resource theory framework by B. Coecke, T. Fritz, R. W. Spekkens

1. In physics it can be that a state can be transformed into another state. This is modelled by a preorder relation \leq i.e.

- Reflexive: $a \leq a$
- Transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$

2. In physics two state spaces can be combined to create a new state space. This is modelled by a monoid binary operation \bullet i.e.

- Associativity: $(x \bullet y) \bullet z=x \bullet(y \bullet z)$
- Identity element: $\exists e$ such that $e \bullet a=a, \forall a \in X$

The preordered monoid is the structure at the core of the Resource Theory formalism.

Ordered monoid from Symmetric Monoidal Category C

Given \mathbf{C} we can always get a preordered monoid.

Ordered monoid from Symmetric Monoidal Category C

Given \mathbf{C} we can always get a preordered monoid.

Theorem

Let \mathbf{C} be a symmetric monoidal category, and $f \sim g$ in \mathbf{C} if there $\exists f \rightarrow g$ and $g \rightarrow f$. This defines an equivalence relation.

Write [f] for the equivalence class of f; we also write $|\mathbf{C}|$ for the set of equivalence classes of objects in \mathbf{C}.

Then there exists an ordered monoid $(|\mathbf{C}|, \succeq, \otimes)$ on the set of these equivalence classes, with $[f] \succeq[g]$ if $\exists f \rightarrow g$ in \mathbf{C}, and using the monoidal product in \mathbf{C} to define $[f] \otimes[g]=[f \otimes g]$. Moreover, this monoid is commutative.

Given a set of processes, some can be considered very easy to perform or require almost null effort. We call these free processes.

Given a set of processes, some can be considered very easy to perform or require almost null effort. We call these free processes.

This free / non-free separation is modelled by a partitioned resource theory $\left(\mathbf{C}_{\text {free }}, \mathbf{C}\right)$ which consists of
(1) A symmetric monoidal category \mathbf{C}, and
(2) An all-object-including symmetric monoidal subcategory $\mathbf{C}_{\text {free }}$

$$
\mathbf{C}_{\text {free }} \subseteq \mathbf{C}
$$

Given a set of processes, some can be considered very easy to perform or require almost null effort. We call these free processes.

This free / non-free separation is modelled by a partitioned resource theory $\left(\mathbf{C}_{\text {free }}, \mathbf{C}\right)$ which consists of
(1) A symmetric monoidal category \mathbf{C}, and
(2) An all-object-including symmetric monoidal subcategory $\mathrm{C}_{\text {free }}$

$$
\mathbf{C}_{\text {free }} \subseteq \mathbf{C}
$$

Examples

$($ Bij, Set $),(\mathbf{I n j}$, Set $),\left(\right.$ Bij $_{\sqcup}$, Set $\left._{\sqcup}\right),\left(\mathbf{I n j}_{\sqcup}\right.$, Set $\left._{\sqcup}\right)$

Table of Contents

(1) Background

- Preordered monoid
- Free processes
(2) Our results
- List of the results
- Working out concrete cases in ($\mathbf{B i j}_{\sqcup}$, Set $\left._{\sqcup}\right)$
- A second concrete case in (Bij_{\sqcup}, Set $_{\sqcup}$)
- Working out concrete cases in (Inj\sqcup, Set $_{\sqcup}$)
- General theorem
(3) Outlook
- Short term (and long term) future work

Result 1

Given the relation \succeq defined in the next frame which stands for can be transformed into, we find the complete family of "consistent pricing functions" of morphisms of two Resource Theories:

$\left(\mathbf{B i j}\right.$, Set $\left._{\sqcup}\right)$ and $\left(\mathbf{I n j}_{\sqcup}\right.$, Set $\left._{\sqcup}\right)$

onto the reals.

Result 1

Given the relation \succeq defined in the next frame which stands for can be transformed into, we find the complete family of "consistent pricing functions" of morphisms of two Resource Theories:

$$
\left(\mathbf{B i j} \mathbf{j}_{\sqcup}, \mathbf{S e t}_{\sqcup}\right) \text { and }\left(\mathbf{I} \mathbf{n j}_{\sqcup}, \text { Set }_{\sqcup}\right)
$$

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for finding these pricing functions in general resource theories.

Result 1

Given the relation \succeq defined in the next frame which stands for can be transformed into, we find the complete family of "consistent pricing functions" of morphisms of two Resource Theories:
$\left(\mathbf{B i j} \mathbf{j}_{\sqcup}\right.$, Set $\left._{\sqcup}\right)$ and $\left(\mathbf{I n j} \mathbf{j}_{\sqcup}\right.$, Set $\left._{\sqcup}\right)$
onto the reals.

Result 2

We also give a general theorem that can be used as a tool for finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a complete family of monotones.

Result 1

Given the relation \succeq defined in the next frame which stands for can be transformed into, we find the complete family of "consistent pricing functions" of morphisms of two Resource Theories:

$$
\left(\mathbf{B i j} \mathbf{j}_{\sqcup}, \mathbf{S e t}_{\sqcup}\right) \text { and }\left(\mathbf{I} \mathbf{n j}_{\sqcup}, \text { Set }_{\sqcup}\right)
$$

onto the reals.

Result 2

We also give a general theorem that can be used as a tool for finding these pricing functions in general resource theories.

This family of consistent pricing functions onto the reals is called a complete family of monotones.
To our knowledge, complete family of monotones haven't worked out yet making use of this \succeq relation.

For $f, g \in \operatorname{Mor}(\mathbf{C})$ we set

$$
f \succeq g
$$

whenever $\exists Z \in|\mathbf{C}|, \xi_{1}, \xi_{2} \in \operatorname{Mor}\left(\mathbf{C}_{\text {free }}\right), j \in \operatorname{Mor}(\mathbf{C})$ such that

$$
\begin{equation*}
\xi_{2} \circ\left(f \otimes 1_{Z}\right) \circ \xi_{1}=g \otimes j . \tag{1}
\end{equation*}
$$

Definition

Let (X, \succeq) be a partially ordered set. A monotone is an order-preserving function $M:(X, \succeq) \rightarrow(\mathbb{R}, \geq)$. It is called complete if for all $x, y \in X$ we have

$$
x \succeq y \quad \text { if and only if } \quad M(x) \geq M(y)
$$

Definition

Given a partially ordered set (X, \succeq), we call a collection $\left\{M_{i}\right\}_{i \in I}$ of monotones on (X, \succeq) a complete family of monotones if for all $x, y \in X$ we have

$$
x \succeq y \quad \text { if and only if } \quad M_{i}(x) \geq M_{i}(y) \text { for all } i \in I
$$

Complete family of additive monotones of $\left(\mathrm{Bij}_{\lrcorner}\right.$, Set $\left._{\Perp}\right)$

For $i \in \mathbb{N}$, define functions:
$\varphi_{i}: \operatorname{Mor}\left(\operatorname{Set}_{\sqcup}\right) \longrightarrow \mathbb{N} ;$

$$
(f: X \rightarrow Y) \longmapsto \#\left\{y \in Y \mid \# f^{-1}(y)=i\right\} .
$$

List of the results
Working out concrete cases in (Bij_{\sqcup}, Set \sqcup)
A second concrete case in (Bij_{\sqcup}, Set S_{\sqcup})
Working out concrete cases in (Inj \sqcup, Set \sqcup)
General theorem

	\ldots	4	3	2
f	\ldots	0	2	1
g	\ldots	0	1	0

	\ldots	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
\mathbf{f}	\ldots	0	2	1
\mathbf{g}	\ldots	0	1	0
		$0 \geq 0$	$2 \geq 1$	

	\ldots	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
\mathbf{f}	\ldots	0	2	1
\mathbf{g}	\ldots	0	1	0
		$0 \geq 0$	$2 \geq 1$	$1 \geq 0$

List of the results
Working out concrete cases in (Bij_{\sqcup}, Set $_{\sqcup} \sqcup$)
A second concrete case in (Bij_{\sqcup}, Set $_{\sqcup}$)
Working out concrete cases in (Inj \sqcup, Set \sqcup)
General theorem

Complete family of additive monotones of ($\operatorname{lnj}_{\sqcup}$, Set $_{\sqcup}$)

For $i \in \mathbb{N}$, define functions

$$
\begin{aligned}
\gamma_{i}: \operatorname{Mor}\left(\operatorname{Set}_{\sqcup}\right) & \longrightarrow \mathbb{N} ; \\
\quad(f: X \rightarrow Y) & \longmapsto \#\left\{y \in Y \mid \# f^{-1}(y) \geq i\right\}
\end{aligned}
$$

	\ldots	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
f	\ldots	0	2	1
g	\ldots	0	1	1

	\ldots	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
\mathbf{f}	\ldots	0	2	1
\mathbf{g}	\ldots	0	1	1
		$0 \geq 0$		

	\ldots	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
\mathbf{f}	\ldots	0	2	1
\mathbf{g}	\ldots	0	1	1
		$0 \geq 0$	$0+2 \geq$ $0+1$	

	\ldots	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
\mathbf{f}	\ldots	0	2	1
\mathbf{g}	\ldots	0	1	1
		$0 \geq 0$	$0+2 \geq$ $0+1$	$0+2+1 \geq$ $0+1+1$

- Finding one monotone for a given R.T. is relatively easy.
- Finding one monotone for a given R.T. is relatively easy.
- Finding multiple monotones for a given R.T. is a bit harder.
- Finding one monotone for a given R.T. is relatively easy.
- Finding multiple monotones for a given R.T. is a bit harder.
- Finding monotones that satisfy the iff condition is much harder.
- Finding one monotone for a given R.T. is relatively easy.
- Finding multiple monotones for a given R.T. is a bit harder.
- Finding monotones that satisfy the iff condition is much harder.
- Finding all possible monotones that satisfy the iff condition is much much harder.
- Finding one monotone for a given R.T. is relatively easy.
- Finding multiple monotones for a given R.T. is a bit harder.
- Finding monotones that satisfy the iff condition is much harder.
- Finding all possible monotones that satisfy the iff condition is much much harder.

Our theorem eases the task of finding this complete family by reducing it to only finding 3 properties:
(i) $\mu(f \otimes g)=\mu(f) \cdot \mu(g)$;
(ii) $\mu\left(1_{z}\right)=1$; and
(iii) $\mu(f) \geq \mu(\xi \circ f)$ and $\mu(f) \geq \mu(f \circ \xi)$ whenever it makes sense. for all $Z \in|\mathbf{C}|, f, g \in \operatorname{Mor}(\mathbf{C})$, and $\xi \in \operatorname{Mor}\left(\mathbf{C}_{\text {free }}\right)$

Theorem

Let $\left(\mathbf{C}, \mathbf{C}_{\text {free }}\right)$ be a PRT and let (X, \geq, \cdot) be a non-negative ordered monoid. A function $\mu: \operatorname{Mor}(\mathbf{C}) \rightarrow X$ induces an order-preserving monoid homomorphism

$$
\begin{aligned}
M:\left(\left|\operatorname{PCD}\left(\mathbf{C}, \mathbf{C}_{\text {free }}\right)\right|, \succeq, \otimes\right) & \longrightarrow(X, \geq, \cdot) \\
{[f] } & \longmapsto \mu(f)
\end{aligned}
$$

iff for all $Z \in|\mathbf{C}|, f, g \in \operatorname{Mor}(\mathbf{C})$, and $\xi \in \operatorname{Mor}\left(\mathbf{C}_{\text {free }}\right)$ we have
(i) $\mu(f \otimes g)=\mu(f) \cdot \mu(g)$;
(ii) $\mu\left(1_{z}\right)=1$; and
(iii) $\mu(f) \geq \mu(\xi \circ f)$ and $\mu(f) \geq \mu(f \circ \xi)$ whenever such composites are well-defined.
Moreover, this gives a one-to-one correspondence: every order-preserving monoid homomorphism on $\left(\left|\operatorname{PCD}\left(\mathbf{C}, \mathbf{C}_{\text {free }}\right)\right|, \succeq, \otimes\right)$ arises from a unique such function μ.

Table of Contents

(1) Background

- Preordered monoid
- Free processes
(2) Our results
- List of the results
- Working out concrete cases in ($\mathbf{B i j}_{\sqcup}$, Set $\left._{\sqcup}\right)$
- A second concrete case in ($\mathbf{B i j}_{\sqcup}$, Set $_{\sqcup}$)
- Working out concrete cases in (Inj」, Set \sqcup)
- General theorem
(3) Outlook
- Short term (and long term) future work
- Find complete families of monotones for more interesting pairs of monoidal categories. Rel, Vect, Hilb, etc.
- Seek for properties of physical (and chemical, biological) interest that this theory could predict.
- Extend the theory so that it can measure properties currently incommensurable, like the irreversibility of a Markov process (by taking FinStoch as the main Category) or the irreducibility. Neither irreversible nor irreducible matrices form a category.

