Categories of Relations as Models of Quantum Theory

Sean Tull

(with Chris Heunen)

University of Oxford

sean.tull@cs.ox.ac.uk

QPL 2015

Categories as Toy Quantum Models

Examples

• FHilb - finite-dimensional Hilbert spaces & linear maps.

Examples

- FHilb finite-dimensional Hilbert spaces & linear maps.
- Rel sets & relations.

Examples

- FHilb finite-dimensional Hilbert spaces & linear maps.
- Rel sets & relations.
- Spek Spekkens' toy model, subcategory of Rel.

Examples

- FHilb finite-dimensional Hilbert spaces & linear maps.
- Rel sets & relations.
- Spek Spekkens' toy model, subcategory of Rel.

A new class of models

Rel(C) - the category of relations of a regular category C.

Examples

- FHilb finite-dimensional Hilbert spaces & linear maps.
- Rel sets & relations.
- Spek Spekkens' toy model, subcategory of Rel.

A new class of models

Rel(C) - the category of relations of a regular category C.

● Surprising connections: mixing ~→ groupoids & categorification!

Examples

- FHilb finite-dimensional Hilbert spaces & linear maps.
- Rel sets & relations.
- Spek Spekkens' toy model, subcategory of Rel.

A new class of models

Rel(C) - the category of relations of a regular category C.

- Surprising connections: mixing ~> groupoids & categorification!
- Quantum-like behaviour without superposition.

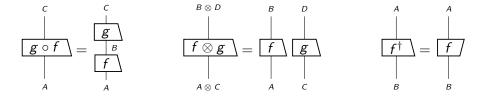
Dagger compact category **D**:

Dagger compact category **D**:

- symmetric monoidal $A \otimes B \simeq B \otimes A$
- compact closed $A \dashv A^*$
- $\dagger: \mathbf{D}^{\mathrm{op}} \to \mathbf{D}$ with $A^{\dagger} = A$

Dagger compact category **D**:

- symmetric monoidal $A \otimes B \simeq B \otimes A$
- compact closed $A \dashv A^*$
- $\dagger: \mathbf{D}^{\mathrm{op}} \to \mathbf{D}$ with $A^{\dagger} = A$



Sean Tull (Oxford)

A relation $R : A \rightarrow B$ in **C** is a subobject $R \rightarrow A \times B$.

A relation $R : A \rightarrow B$ in **C** is a subobject $R \rightarrow A \times B$. **C** regular \rightsquigarrow **Rel**(**C**) dagger compact.

A relation $R : A \rightarrow B$ in **C** is a subobject $R \rightarrow A \times B$. **C** regular \rightarrow **Rel**(**C**) dagger compact. Internal logic: can pretend we're in **Rel**(**Set**), use \land and \exists :

A relation $R : A \rightarrow B$ in **C** is a subobject $R \rightarrow A \times B$. **C** regular \rightsquigarrow **Rel**(**C**) dagger compact. Internal logic: can pretend we're in **Rel**(**Set**), use \land and \exists :

$$S \circ R = \{(a, c) \in A \times C \mid (\exists b \in B) \ R(a, b) \land S(b, c)\}
ightarrow A imes C$$

A relation $R : A \rightarrow B$ in **C** is a subobject $R \rightarrow A \times B$. **C** regular \rightsquigarrow **Rel**(**C**) dagger compact. Internal logic: can pretend we're in **Rel**(**Set**), use \land and \exists :

$$S \circ R = \{(a, c) \in A \times C \mid (\exists b \in B) \ R(a, b) \land S(b, c)\}
ightarrow A imes C$$

$$R^{\dagger} = \{(b, a) \in B \times A \mid R(a, b)\}, \quad \otimes \text{ from } \times \text{ in } \mathbf{C}$$

.

A relation $R : A \rightarrow B$ in **C** is a subobject $R \rightarrow A \times B$. **C** regular \rightsquigarrow **Rel**(**C**) dagger compact. Internal logic: can pretend we're in **Rel**(**Set**), use \land and \exists :

$$S \circ R = \{(a, c) \in A \times C \mid (\exists b \in B) \ R(a, b) \land S(b, c)\}
ightarrow A imes C$$

$$R^{\dagger} = \{(b, a) \in B \times A \mid R(a, b)\}, \quad \otimes \text{ from } \times \text{ in } \mathbf{C}$$

Examples

Regular: any topos, category of algebras, abelian category.

A relation $R : A \rightarrow B$ in **C** is a subobject $R \rightarrow A \times B$. **C** regular \rightsquigarrow **Rel**(**C**) dagger compact. Internal logic: can pretend we're in **Rel**(**Set**), use \land and \exists :

$$S \circ R = \{(a, c) \in A \times C \mid (\exists b \in B) \ R(a, b) \land S(b, c)\}
ightarrow A imes C$$

$$R^{\dagger} = \{(b, a) \in B \times A \mid R(a, b)\}, \quad \otimes \text{ from } \times \text{ in } \mathbf{C}$$

Examples

Regular: any topos, category of algebras, abelian category. Rel(Set) = Rel. Rel(Grp): subgroups $R \le G \times H.$ $Rel(Vect_k)$: subspaces $R \le V \oplus W$ - see 'Categories in Control'.

A special dagger Frobenius structure (A, \diamond, \diamond) satisfies:

A special dagger Frobenius structure (A, \diamond, \diamond) satisfies:

In FHilb: finite-dimensional C*-algebras. In Rel: small groupoids!

A special dagger Frobenius structure (A, \diamond, \diamond) satisfies:

In FHilb: finite-dimensional C*-algebras. In Rel: small groupoids!

Theorem

Special dagger Frobenius structures $rightarrow in \operatorname{Rel}(C)$ are the same as internal groupoids in C.

A special dagger Frobenius structure (A, \diamond, \diamond) satisfies:

In FHilb: finite-dimensional C*-algebras. In Rel: small groupoids!

Theorem

Special dagger Frobenius structures $\land h$ in Rel(C) are the same as internal groupoids in C.

$$O \xrightarrow{\underbrace{t}}_{\underbrace{u}} A \xleftarrow{m}_{i} A \times_{O} A$$

A special dagger Frobenius structure (A, \diamond, \diamond) satisfies:

In FHilb: finite-dimensional C*-algebras. In Rel: small groupoids!

Theorem

Special dagger Frobenius structures \land in **Rel**(**C**) are the same as internal groupoids in **C**.

Examples

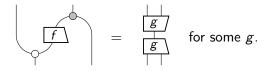
Set: small groupoids. **Grp**: strict 2-groups (Baez-Lauda) \iff crossed modules. **Vect**_k: 2-vector spaces (Baez-Crans).

Sean Tull (Oxford)

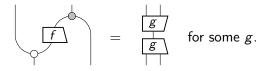
Quantum Categories of Relations

Completely Positive Relations

CP(D): Frobenius \triangleleft in **D** & completely positive $(A, \triangleleft) \xrightarrow{f} (B, \triangleleft)$



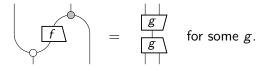
CP(D): Frobenius \triangleleft in **D** & completely positive $(A, \triangleleft) \xrightarrow{f} (B, \triangleleft)$



Examples

CP(**FHilb**): finite-dimensional C*-algebras & completely positive maps.

CP(D): Frobenius \triangleleft in **D** & completely positive $(A, \triangleleft) \xrightarrow{f} (B, \triangleleft)$



Examples

CP(**FHilb**): finite-dimensional C*-algebras & completely positive maps. **CP**(**Rel**): groupoids & relations such that

$$R(a,b) \Rightarrow R(a^{-1},b^{-1}) \wedge R(\mathrm{id}_{\mathsf{dom}(a)},\mathrm{id}_{\mathsf{dom}(b)})$$

Mal'cev Categories

Mal'cev Categories

In **Grp** or **Vect**_k:

In **Grp** or **Vect**_k:

 $R(a,c) \wedge R(b,c) \wedge R(b,d) \implies R(a,d)$

In **Grp** or **Vect**_k:

$$egin{array}{rcl} R(a,c)\wedge R(b,c)\wedge R(b,d) \implies R(a,d) \ (a,c) \ - \ (b,c) \ + \ (b,d) \ = \ (a,d) \end{array}$$

In **Grp** or **Vect**_k:

$$R(a,c) \wedge R(b,c) \wedge R(b,d) \implies R(a,d)$$

C is Mal'cev when holds $\forall R$.

In **Grp** or **Vect**_k:

$$R(a,c) \wedge R(b,c) \wedge R(b,d) \implies R(a,d)$$

C is Mal'cev when holds $\forall R$.

Theorem

When C is Mal'cev regular we get an equivalence of categories

 $\mathsf{CP}(\mathsf{Rel}(\mathsf{C}))\simeq\mathsf{Rel}(\mathsf{Gpd}(\mathsf{C}))\simeq\mathsf{Rel}(\mathsf{Cat}(\mathsf{C}))$

In **Grp** or **Vect**_k:

$$R(a,c) \wedge R(b,c) \wedge R(b,d) \implies R(a,d)$$

C is Mal'cev when holds $\forall R$.

Theorem

When C is Mal'cev regular we get an equivalence of categories

 $\mathsf{CP}(\mathsf{Rel}(\mathsf{C}))\simeq\mathsf{Rel}(\mathsf{Gpd}(\mathsf{C}))\simeq\mathsf{Rel}(\mathsf{Cat}(\mathsf{C}))$

Examples

Grp, **Vect**_k, Rings, Lie algebras. Any abelian category.

In **Grp** or **Vect**_k:

$$R(a,c) \wedge R(b,c) \wedge R(b,d) \implies R(a,d)$$

C is Mal'cev when holds $\forall R$.

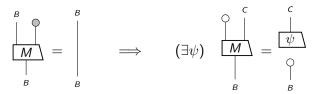
Theorem

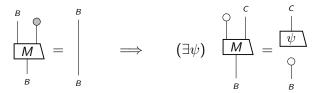
When C is Mal'cev regular we get an equivalence of categories

 $\mathsf{CP}(\mathsf{Rel}(\mathsf{C}))\simeq\mathsf{Rel}(\mathsf{Gpd}(\mathsf{C}))\simeq\mathsf{Rel}(\mathsf{Cat}(\mathsf{C}))$

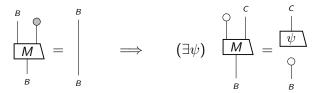
Examples

Grp, **Vect**_k, Rings, Lie algebras. Any abelian category. $CP(Rel(Grp)) \simeq Rel(CrossedModules)$ $CP(Rel(Vect_k)) \simeq Rel(2Vect_k)$

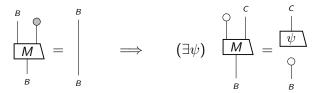




Rel	Rel(C) Mal'cev	FHilb
		✓

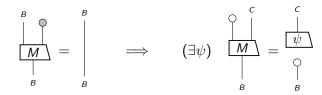


Rel	Rel(C) Mal'cev	FHilb
×		✓



Rel	Rel(C) Mal'cev	FHilb
×	✓	✓

Heisenberg Uncertainty Principle:



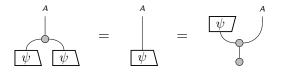
No-Broadcasting:



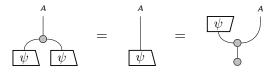
Rel	Rel(C) Mal'cev	FHilb
×	1	✓

Non-Quantum Features of **Rel**(**C**)

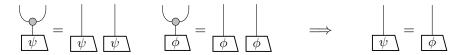
C Mal'cev \rightsquigarrow any state is a projection:



C Mal'cev \rightsquigarrow any state is a projection:



C has zero object (e.g. **Grp**, **Vect**_k) \rightsquigarrow no distinct classical data:



Summary

• Rel(C) gives us many new toy quantum models.

- Rel(C) gives us many new toy quantum models.
- Internal logic makes life easy: can pretend we're in Rel.

- Rel(C) gives us many new toy quantum models.
- Internal logic makes life easy: can pretend we're in Rel.

• $CP(Rel(C)) \simeq Rel(Cat(C))$, mixing \rightsquigarrow categorification.

- Rel(C) gives us many new toy quantum models.
- Internal logic makes life easy: can pretend we're in Rel.

- $CP(Rel(C)) \simeq Rel(Cat(C))$, mixing \rightsquigarrow categorification.
- Rel(C) lacks superposition + while retaining quantum-like behaviour.

- Rel(C) gives us many new toy quantum models.
- Internal logic makes life easy: can pretend we're in Rel.

- $CP(Rel(C)) \simeq Rel(Cat(C))$, mixing \rightsquigarrow categorification.
- **Rel**(**C**) lacks superposition + while retaining quantum-like behaviour.

 $\begin{array}{cccc} \mbox{``least quantum''} & \leftrightarrow & \mbox{``most quantum''} \\ {\mbox{Rel}} & {\mbox{Rel}(C) \mbox{Mal'cev}} & {\mbox{FHilb}} \end{array}$

- Rel(C) gives us many new toy quantum models.
- Internal logic makes life easy: can pretend we're in Rel.

- $CP(Rel(C)) \simeq Rel(Cat(C))$, mixing \rightsquigarrow categorification.
- Rel(C) lacks superposition + while retaining quantum-like behaviour.

"least quantum"	\leftrightarrow	"most quantum"
Rel	Rel(C) Mal'cev	FHilb

Thanks for listening!